You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							138 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							138 lines
						
					
					
						
							5.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/QR> | |
|  | |
| template<typename MatrixType> void householder(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   static bool even = true; | |
|   even = !even; | |
|   /* this test covers the following files: | |
|      Householder.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
|   typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | |
|   typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; | |
|   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; | |
| 
 | |
|   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; | |
|    | |
|   Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols)); | |
|   Scalar* tmp = &_tmp.coeffRef(0,0); | |
| 
 | |
|   Scalar beta; | |
|   RealScalar alpha; | |
|   EssentialVectorType essential; | |
| 
 | |
|   VectorType v1 = VectorType::Random(rows), v2; | |
|   v2 = v1; | |
|   v1.makeHouseholder(essential, beta, alpha); | |
|   v1.applyHouseholderOnTheLeft(essential,beta,tmp); | |
|   VERIFY_IS_APPROX(v1.norm(), v2.norm()); | |
|   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm()); | |
|   v1 = VectorType::Random(rows); | |
|   v2 = v1; | |
|   v1.applyHouseholderOnTheLeft(essential,beta,tmp); | |
|   VERIFY_IS_APPROX(v1.norm(), v2.norm()); | |
| 
 | |
|   MatrixType m1(rows, cols), | |
|              m2(rows, cols); | |
| 
 | |
|   v1 = VectorType::Random(rows); | |
|   if(even) v1.tail(rows-1).setZero(); | |
|   m1.colwise() = v1; | |
|   m2 = m1; | |
|   m1.col(0).makeHouseholder(essential, beta, alpha); | |
|   m1.applyHouseholderOnTheLeft(essential,beta,tmp); | |
|   VERIFY_IS_APPROX(m1.norm(), m2.norm()); | |
|   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm()); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0))); | |
|   VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha); | |
| 
 | |
|   v1 = VectorType::Random(rows); | |
|   if(even) v1.tail(rows-1).setZero(); | |
|   SquareMatrixType m3(rows,rows), m4(rows,rows); | |
|   m3.rowwise() = v1.transpose(); | |
|   m4 = m3; | |
|   m3.row(0).makeHouseholder(essential, beta, alpha); | |
|   m3.applyHouseholderOnTheRight(essential,beta,tmp); | |
|   VERIFY_IS_APPROX(m3.norm(), m4.norm()); | |
|   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm()); | |
|   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0))); | |
|   VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha); | |
| 
 | |
|   // test householder sequence on the left with a shift | |
|  | |
|   Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0)); | |
|   Index brows = rows - shift; | |
|   m1.setRandom(rows, cols); | |
|   HBlockMatrixType hbm = m1.block(shift,0,brows,cols); | |
|   HouseholderQR<HBlockMatrixType> qr(hbm); | |
|   m2 = m1; | |
|   m2.block(shift,0,brows,cols) = qr.matrixQR(); | |
|   HCoeffsVectorType hc = qr.hCoeffs().conjugate(); | |
|   HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc); | |
|   hseq.setLength(hc.size()).setShift(shift); | |
|   VERIFY(hseq.length() == hc.size()); | |
|   VERIFY(hseq.shift() == shift); | |
|    | |
|   MatrixType m5 = m2; | |
|   m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero(); | |
|   VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly | |
|   m3 = hseq; | |
|   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying | |
|    | |
|   SquareMatrixType hseq_mat = hseq; | |
|   SquareMatrixType hseq_mat_conj = hseq.conjugate(); | |
|   SquareMatrixType hseq_mat_adj = hseq.adjoint(); | |
|   SquareMatrixType hseq_mat_trans = hseq.transpose(); | |
|   SquareMatrixType m6 = SquareMatrixType::Random(rows, rows); | |
|   VERIFY_IS_APPROX(hseq_mat.adjoint(),    hseq_mat_adj); | |
|   VERIFY_IS_APPROX(hseq_mat.conjugate(),  hseq_mat_conj); | |
|   VERIFY_IS_APPROX(hseq_mat.transpose(),  hseq_mat_trans); | |
|   VERIFY_IS_APPROX(hseq_mat * m6,             hseq_mat * m6); | |
|   VERIFY_IS_APPROX(hseq_mat.adjoint() * m6,   hseq_mat_adj * m6); | |
|   VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6); | |
|   VERIFY_IS_APPROX(hseq_mat.transpose() * m6, hseq_mat_trans * m6); | |
|   VERIFY_IS_APPROX(m6 * hseq_mat,             m6 * hseq_mat); | |
|   VERIFY_IS_APPROX(m6 * hseq_mat.adjoint(),   m6 * hseq_mat_adj); | |
|   VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj); | |
|   VERIFY_IS_APPROX(m6 * hseq_mat.transpose(), m6 * hseq_mat_trans); | |
| 
 | |
|   // test householder sequence on the right with a shift | |
|  | |
|   TMatrixType tm2 = m2.transpose(); | |
|   HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc); | |
|   rhseq.setLength(hc.size()).setShift(shift); | |
|   VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly | |
|   m3 = rhseq; | |
|   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying | |
| } | |
| 
 | |
| void test_householder() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( householder(Matrix<double,2,2>()) ); | |
|     CALL_SUBTEST_2( householder(Matrix<float,2,3>()) ); | |
|     CALL_SUBTEST_3( householder(Matrix<double,3,5>()) ); | |
|     CALL_SUBTEST_4( householder(Matrix<float,4,4>()) ); | |
|     CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | |
|     CALL_SUBTEST_8( householder(Matrix<double,1,1>()) ); | |
|   } | |
| }
 |