You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

314 lines
9.3 KiB

/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
Copyright (C) 2003-2012 Yves Renard, Julien Pommier
This file is a part of GETFEM++
Getfem++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
As a special exception, you may use this file as it is a part of a free
software library without restriction. Specifically, if other files
instantiate templates or use macros or inline functions from this file,
or you compile this file and link it with other files to produce an
executable, this file does not by itself cause the resulting executable
to be covered by the GNU Lesser General Public License. This exception
does not however invalidate any other reasons why the executable file
might be covered by the GNU Lesser General Public License.
===========================================================================*/
/**@file gmm_MUMPS_interface.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>,
@author Julien Pommier <Julien.Pommier@insa-toulouse.fr>
@date December 8, 2005.
@brief Interface with MUMPS (LU direct solver for sparse matrices).
*/
#if defined(GMM_USES_MUMPS) || defined(HAVE_DMUMPS_C_H)
#ifndef GMM_MUMPS_INTERFACE_H
#define GMM_MUMPS_INTERFACE_H
#include "gmm_kernel.h"
extern "C" {
#include <smumps_c.h>
#undef F_INT
#undef F_DOUBLE
#undef F_DOUBLE2
#include <dmumps_c.h>
#undef F_INT
#undef F_DOUBLE
#undef F_DOUBLE2
#include <cmumps_c.h>
#undef F_INT
#undef F_DOUBLE
#undef F_DOUBLE2
#include <zmumps_c.h>
#undef F_INT
#undef F_DOUBLE
#undef F_DOUBLE2
}
namespace gmm {
template <typename T> struct ij_sparse_matrix {
std::vector<int> irn;
std::vector<int> jcn;
std::vector<T> a;
template <typename L> void store(const L& l, size_type i) {
typename linalg_traits<L>::const_iterator it = vect_const_begin(l),
ite = vect_const_end(l);
for (; it != ite; ++it)
{ irn.push_back((int)i + 1); jcn.push_back((int)it.index() + 1); a.push_back(*it); }
}
template <typename L> void build_from(const L& l, row_major) {
for (size_type i = 0; i < mat_nrows(l); ++i)
store(mat_const_row(l, i), i);
}
template <typename L> void build_from(const L& l, col_major) {
for (size_type i = 0; i < mat_ncols(l); ++i)
store(mat_const_col(l, i), i);
irn.swap(jcn);
}
template <typename L> ij_sparse_matrix(const L& A) {
size_type nz = nnz(A);
irn.reserve(nz); jcn.reserve(nz); a.reserve(nz);
build_from(A, typename principal_orientation_type<typename
linalg_traits<L>::sub_orientation>::potype());
}
};
/* ********************************************************************* */
/* MUMPS solve interface */
/* ********************************************************************* */
template <typename T> struct mumps_interf {};
template <> struct mumps_interf<float> {
typedef SMUMPS_STRUC_C MUMPS_STRUC_C;
typedef float value_type;
static void mumps_c(MUMPS_STRUC_C &id) { smumps_c(&id); }
};
template <> struct mumps_interf<double> {
typedef DMUMPS_STRUC_C MUMPS_STRUC_C;
typedef double value_type;
static void mumps_c(MUMPS_STRUC_C &id) { dmumps_c(&id); }
};
template <> struct mumps_interf<std::complex<float> > {
typedef CMUMPS_STRUC_C MUMPS_STRUC_C;
typedef mumps_complex value_type;
static void mumps_c(MUMPS_STRUC_C &id) { cmumps_c(&id); }
};
template <> struct mumps_interf<std::complex<double> > {
typedef ZMUMPS_STRUC_C MUMPS_STRUC_C;
typedef mumps_double_complex value_type;
static void mumps_c(MUMPS_STRUC_C &id) { zmumps_c(&id); }
};
/** MUMPS solve interface
* Works only with sparse or skyline matrices
*/
template <typename MAT, typename VECTX, typename VECTB>
bool MUMPS_solve(const MAT &A, const VECTX &X_, const VECTB &B) {
VECTX &X = const_cast<VECTX &>(X_);
typedef typename linalg_traits<MAT>::value_type T;
typedef typename mumps_interf<T>::value_type MUMPS_T;
GMM_ASSERT2(gmm::mat_nrows(A) == gmm::mat_ncols(A), "Non square matrix");
std::vector<T> rhs(gmm::vect_size(B)); gmm::copy(B, rhs);
ij_sparse_matrix<T> AA(A);
const int JOB_INIT = -1;
const int JOB_END = -2;
const int USE_COMM_WORLD = -987654;
typename mumps_interf<T>::MUMPS_STRUC_C id;
#ifdef GMM_USES_MPI
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#endif
id.job = JOB_INIT;
id.par = 1;
id.sym = 0;
id.comm_fortran = USE_COMM_WORLD;
mumps_interf<T>::mumps_c(id);
#ifdef GMM_USES_MPI
if (rank == 0) {
#endif
id.n = (int)gmm::mat_nrows(A);
id.nz = (int)AA.irn.size();
id.irn = &(AA.irn[0]);
id.jcn = &(AA.jcn[0]);
id.a = (MUMPS_T*)(&(AA.a[0]));
id.rhs = (MUMPS_T*)(&(rhs[0]));
#ifdef GMM_USES_MPI
}
#endif
#define ICNTL(I) icntl[(I)-1]
id.ICNTL(1) = -1; // output stream for error messages
id.ICNTL(2) = -1; // output stream for other messages
id.ICNTL(3) = -1; // output stream for global information
id.ICNTL(4) = 0; // verbosity level
id.ICNTL(14) += 80; /* small boost to the workspace size as we have encountered some problem
who did not fit in the default settings of mumps..
by default, ICNTL(14) = 15 or 20
*/
//cout << "ICNTL(14): " << id.ICNTL(14) << "\n";
// id.ICNTL(22) = 1; /* enables out-of-core support */
id.job = 6;
mumps_interf<T>::mumps_c(id);
bool ok = mumps_error_check(id);
id.job = JOB_END;
mumps_interf<T>::mumps_c(id);
gmm::copy(rhs, X);
return ok;
#undef ICNTL
}
/** MUMPS solve interface for distributed matrices
* Works only with sparse or skyline matrices
*/
template <typename MAT, typename VECTX, typename VECTB>
bool MUMPS_distributed_matrix_solve(const MAT &A, const VECTX &X_,
const VECTB &B) {
VECTX &X = const_cast<VECTX &>(X_);
typedef typename linalg_traits<MAT>::value_type T;
typedef typename mumps_interf<T>::value_type MUMPS_T;
GMM_ASSERT2(gmm::mat_nrows(A) == gmm::mat_ncols(A), "Non-square matrix");
std::vector<T> rhs(gmm::vect_size(B)); gmm::copy(B, rhs);
ij_sparse_matrix<T> AA(A);
const int JOB_INIT = -1;
const int JOB_END = -2;
const int USE_COMM_WORLD = -987654;
typename mumps_interf<T>::MUMPS_STRUC_C id;
#ifdef GMM_USES_MPI
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#endif
id.job = JOB_INIT;
id.par = 1;
id.sym = 0;
id.comm_fortran = USE_COMM_WORLD;
mumps_interf<T>::mumps_c(id);
id.n = gmm::mat_nrows(A);
id.nz_loc = AA.irn.size();
id.irn_loc = &(AA.irn[0]);
id.jcn_loc = &(AA.jcn[0]);
id.a_loc = (MUMPS_T*)(&(AA.a[0]));
#ifdef GMM_USES_MPI
if (rank == 0) {
#endif
id.rhs = (MUMPS_T*)(&(rhs[0]));
#ifdef GMM_USES_MPI
}
#endif
#define ICNTL(I) icntl[(I)-1]
id.ICNTL(1) = -1; // output stream for error messages
id.ICNTL(2) = 6; // id.ICNTL(2) = -1; // output stream for other messages
id.ICNTL(3) = 6; // id.ICNTL(3) = -1; // output stream for global information
id.ICNTL(4) = 2; // verbosity level
id.ICNTL(5) = 0; // assembled input matrix (default)
id.ICNTL(18) = 3; // strategy for distributed input matrix
id.job = 6;
mumps_interf<T>::mumps_c(id);
bool ok = mumps_error_check(id);
id.job = JOB_END;
mumps_interf<T>::mumps_c(id);
#ifdef GMM_USES_MPI
MPI_Bcast(&(rhs[0]),id.n,gmm::mpi_type(T()),0,MPI_COMM_WORLD);
#endif
gmm::copy(rhs, X);
return ok;
#undef ICNTL
}
template <typename MUMPS_STRUCT>
static inline bool mumps_error_check(MUMPS_STRUCT &id) {
#define INFO(I) info[(I)-1]
if (id.INFO(1) < 0) {
switch (id.INFO(1)) {
case -2:
GMM_ASSERT1(false, "Solve with MUMPS failed: NZ = " << id.INFO(2)
<< " is out of range");
case -6 : case -10 :
GMM_WARNING1("Solve with MUMPS failed: matrix is singular");
return false;
case -9:
GMM_ASSERT1(false, "Solve with MUMPS failed: error "
<< id.INFO(1) << ", increase ICNTL(14)");
case -13 :
GMM_ASSERT1(false, "Solve with MUMPS failed: not enough memory");
default :
GMM_ASSERT1(false, "Solve with MUMPS failed with error "
<< id.INFO(1));
}
}
return true;
#undef INFO
}
}
#endif // GMM_MUMPS_INTERFACE_H
#endif // GMM_USES_MUMPS