You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							143 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							143 lines
						
					
					
						
							5.3 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2003-2012 Yves Renard, Julien Pommier
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								/**@file gmm_condition_number.h
							 | 
						|
								   @author  Yves Renard <Yves.Renard@insa-lyon.fr>, Julien Pommier <Julien.Pommier@insa-toulouse.fr>
							 | 
						|
								   @date August 27, 2003.
							 | 
						|
								   @brief computation of the condition number of dense matrices.
							 | 
						|
								*/
							 | 
						|
								#ifndef GMM_CONDITION_NUMBER_H__
							 | 
						|
								#define GMM_CONDITION_NUMBER_H__
							 | 
						|
								
							 | 
						|
								#include "gmm_dense_qr.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  /** computation of the condition number of dense matrices using SVD.
							 | 
						|
								
							 | 
						|
								      Uses symmetric_qr_algorithm => dense matrices only.
							 | 
						|
								
							 | 
						|
								      @param M a matrix.
							 | 
						|
								      @param emin smallest (in magnitude) eigenvalue
							 | 
						|
								      @param emax largest eigenvalue.
							 | 
						|
								   */
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  condition_number(const MAT& M, 
							 | 
						|
									  typename number_traits<typename
							 | 
						|
									  linalg_traits<MAT>::value_type>::magnitude_type& emin,
							 | 
						|
									  typename number_traits<typename
							 | 
						|
									  linalg_traits<MAT>::value_type>::magnitude_type& emax) {
							 | 
						|
								    typedef typename linalg_traits<MAT>::value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								
							 | 
						|
								    size_type m = mat_nrows(M), n = mat_ncols(M);
							 | 
						|
								    emax = emin = R(0);
							 | 
						|
								    std::vector<R> eig(m+n);
							 | 
						|
								
							 | 
						|
								    if (m+n == 0) return R(0);
							 | 
						|
								    if (is_hermitian(M)) {
							 | 
						|
								      eig.resize(m);
							 | 
						|
								      gmm::symmetric_qr_algorithm(M, eig);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      dense_matrix<T> B(m+n, m+n); // not very efficient ??
							 | 
						|
								      gmm::copy(conjugated(M), sub_matrix(B, sub_interval(m, n), sub_interval(0, m)));
							 | 
						|
								      gmm::copy(M, sub_matrix(B, sub_interval(0, m),
							 | 
						|
													  sub_interval(m, n)));
							 | 
						|
								      gmm::symmetric_qr_algorithm(B, eig);
							 | 
						|
								    }
							 | 
						|
								    emin = emax = gmm::abs(eig[0]);
							 | 
						|
								    for (size_type i = 1; i < eig.size(); ++i) {
							 | 
						|
								      R e = gmm::abs(eig[i]); 
							 | 
						|
								      emin = std::min(emin, e);
							 | 
						|
								      emax = std::max(emax, e);
							 | 
						|
								    }
							 | 
						|
								    // cout << "emin = " << emin << " emax = " << emax << endl;
							 | 
						|
								    if (emin == R(0)) return gmm::default_max(R());
							 | 
						|
								    return emax / emin;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  condition_number(const MAT& M) { 
							 | 
						|
								    typename number_traits<typename
							 | 
						|
								      linalg_traits<MAT>::value_type>::magnitude_type emax, emin;
							 | 
						|
								    return condition_number(M, emin, emax);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  Frobenius_condition_number_sqr(const MAT& M) { 
							 | 
						|
								    typedef typename linalg_traits<MAT>::value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    size_type m = mat_nrows(M), n = mat_ncols(M);
							 | 
						|
								    dense_matrix<T> B(std::min(m,n), std::min(m,n));
							 | 
						|
								    if (m < n) mult(M,gmm::conjugated(M),B);
							 | 
						|
								    else       mult(gmm::conjugated(M),M,B);
							 | 
						|
								    R trB = abs(mat_trace(B));
							 | 
						|
								    lu_inverse(B);
							 | 
						|
								    return trB*abs(mat_trace(B));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  Frobenius_condition_number(const MAT& M)
							 | 
						|
								  { return sqrt(Frobenius_condition_number_sqr(M)); }
							 | 
						|
								
							 | 
						|
								  /** estimation of the condition number (TO BE DONE...)
							 | 
						|
								   */
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  condest(const MAT& M, 
							 | 
						|
									  typename number_traits<typename
							 | 
						|
									  linalg_traits<MAT>::value_type>::magnitude_type& emin,
							 | 
						|
									  typename number_traits<typename
							 | 
						|
									  linalg_traits<MAT>::value_type>::magnitude_type& emax) {
							 | 
						|
								    return condition_number(M, emin, emax);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  template <typename MAT> 
							 | 
						|
								  typename number_traits<typename 
							 | 
						|
								  linalg_traits<MAT>::value_type>::magnitude_type
							 | 
						|
								  condest(const MAT& M) { 
							 | 
						|
								    typename number_traits<typename
							 | 
						|
								      linalg_traits<MAT>::value_type>::magnitude_type emax, emin;
							 | 
						|
								    return condest(M, emin, emax);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif
							 |