You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							194 lines
						
					
					
						
							6.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							194 lines
						
					
					
						
							6.6 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <unsupported/Eigen/MatrixFunctions>
							 | 
						|
								
							 | 
						|
								// Variant of VERIFY_IS_APPROX which uses absolute error instead of
							 | 
						|
								// relative error.
							 | 
						|
								#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
							 | 
						|
								
							 | 
						|
								template<typename Type1, typename Type2>
							 | 
						|
								inline bool test_isApprox_abs(const Type1& a, const Type2& b)
							 | 
						|
								{
							 | 
						|
								  return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								  MatrixType diag = MatrixType::Zero(size, size);
							 | 
						|
								  for (Index i = 0; i < size; ++i) {
							 | 
						|
								    diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2)))
							 | 
						|
								      + internal::random<Scalar>() * Scalar(RealScalar(0.01));
							 | 
						|
								  }
							 | 
						|
								  MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								  HouseholderQR<MatrixType> QRofA(A);
							 | 
						|
								  return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
							 | 
						|
								struct randomMatrixWithImagEivals
							 | 
						|
								{
							 | 
						|
								  // Returns a matrix with eigenvalues clustered around 0 and +/- i.
							 | 
						|
								  static MatrixType run(const typename MatrixType::Index size);
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// Partial specialization for real matrices
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								struct randomMatrixWithImagEivals<MatrixType, 0>
							 | 
						|
								{
							 | 
						|
								  static MatrixType run(const typename MatrixType::Index size)
							 | 
						|
								  {
							 | 
						|
								    typedef typename MatrixType::Index Index;
							 | 
						|
								    typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								    MatrixType diag = MatrixType::Zero(size, size);
							 | 
						|
								    Index i = 0;
							 | 
						|
								    while (i < size) {
							 | 
						|
								      Index randomInt = internal::random<Index>(-1, 1);
							 | 
						|
								      if (randomInt == 0 || i == size-1) {
							 | 
						|
								        diag(i, i) = internal::random<Scalar>() * Scalar(0.01);
							 | 
						|
								        ++i;
							 | 
						|
								      } else {
							 | 
						|
								        Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01);
							 | 
						|
								        diag(i, i+1) = alpha;
							 | 
						|
								        diag(i+1, i) = -alpha;
							 | 
						|
								        i += 2;
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								    HouseholderQR<MatrixType> QRofA(A);
							 | 
						|
								    return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// Partial specialization for complex matrices
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								struct randomMatrixWithImagEivals<MatrixType, 1>
							 | 
						|
								{
							 | 
						|
								  static MatrixType run(const typename MatrixType::Index size)
							 | 
						|
								  {
							 | 
						|
								    typedef typename MatrixType::Index Index;
							 | 
						|
								    typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								    typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								    const Scalar imagUnit(0, 1);
							 | 
						|
								    MatrixType diag = MatrixType::Zero(size, size);
							 | 
						|
								    for (Index i = 0; i < size; ++i) {
							 | 
						|
								      diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit
							 | 
						|
								        + internal::random<Scalar>() * Scalar(RealScalar(0.01));
							 | 
						|
								    }
							 | 
						|
								    MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								    HouseholderQR<MatrixType> QRofA(A);
							 | 
						|
								    return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testMatrixExponential(const MatrixType& A)
							 | 
						|
								{
							 | 
						|
								  typedef typename internal::traits<MatrixType>::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef std::complex<RealScalar> ComplexScalar;
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(A.exp(), A.matrixFunction(StdStemFunctions<ComplexScalar>::exp));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testMatrixLogarithm(const MatrixType& A)
							 | 
						|
								{
							 | 
						|
								  typedef typename internal::traits<MatrixType>::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef std::complex<RealScalar> ComplexScalar;
							 | 
						|
								
							 | 
						|
								  MatrixType scaledA;
							 | 
						|
								  RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff();
							 | 
						|
								  if (maxImagPartOfSpectrum >= 0.9 * M_PI)
							 | 
						|
								    scaledA = A * 0.9 * M_PI / maxImagPartOfSpectrum;
							 | 
						|
								  else
							 | 
						|
								    scaledA = A;
							 | 
						|
								
							 | 
						|
								  // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X
							 | 
						|
								  MatrixType expA = scaledA.exp();
							 | 
						|
								  MatrixType logExpA = expA.log();
							 | 
						|
								  VERIFY_IS_APPROX(logExpA, scaledA);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testHyperbolicFunctions(const MatrixType& A)
							 | 
						|
								{
							 | 
						|
								  // Need to use absolute error because of possible cancellation when
							 | 
						|
								  // adding/subtracting expA and expmA.
							 | 
						|
								  VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
							 | 
						|
								  VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testGonioFunctions(const MatrixType& A)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef std::complex<RealScalar> ComplexScalar;
							 | 
						|
								  typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, 
							 | 
						|
								                 MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
							 | 
						|
								
							 | 
						|
								  ComplexScalar imagUnit(0,1);
							 | 
						|
								  ComplexScalar two(2,0);
							 | 
						|
								
							 | 
						|
								  ComplexMatrix Ac = A.template cast<ComplexScalar>();
							 | 
						|
								  
							 | 
						|
								  ComplexMatrix exp_iA = (imagUnit * Ac).exp();
							 | 
						|
								  ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
							 | 
						|
								  
							 | 
						|
								  ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
							 | 
						|
								  VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
							 | 
						|
								  
							 | 
						|
								  ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
							 | 
						|
								  VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testMatrix(const MatrixType& A)
							 | 
						|
								{
							 | 
						|
								  testMatrixExponential(A);
							 | 
						|
								  testMatrixLogarithm(A);
							 | 
						|
								  testHyperbolicFunctions(A);
							 | 
						|
								  testGonioFunctions(A);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testMatrixType(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  // Matrices with clustered eigenvalue lead to different code paths
							 | 
						|
								  // in MatrixFunction.h and are thus useful for testing.
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								
							 | 
						|
								  const Index size = m.rows();
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    testMatrix(MatrixType::Random(size, size).eval());
							 | 
						|
								    testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
							 | 
						|
								    testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_matrix_function()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
							 | 
						|
								  CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
							 | 
						|
								  CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
							 | 
						|
								  CALL_SUBTEST_4(testMatrixType(Matrix2d()));
							 | 
						|
								  CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
							 | 
						|
								  CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
							 | 
						|
								  CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
							 | 
						|
								}
							 |