You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							69 lines
						
					
					
						
							2.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							69 lines
						
					
					
						
							2.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     QR.h
							 | 
						|
								  */
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  QR<MatrixType> qrOfA(a);
							 | 
						|
								  VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
							 | 
						|
								  VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
							 | 
						|
								
							 | 
						|
								  #if 0 // eigenvalues module not yet ready
							 | 
						|
								  SquareMatrixType b = a.adjoint() * a;
							 | 
						|
								
							 | 
						|
								  // check tridiagonalization
							 | 
						|
								  Tridiagonalization<SquareMatrixType> tridiag(b);
							 | 
						|
								  VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
							 | 
						|
								
							 | 
						|
								  // check hessenberg decomposition
							 | 
						|
								  HessenbergDecomposition<SquareMatrixType> hess(b);
							 | 
						|
								  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
							 | 
						|
								  VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
							 | 
						|
								  b = SquareMatrixType::Random(cols,cols);
							 | 
						|
								  hess.compute(b);
							 | 
						|
								  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
							 | 
						|
								  #endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_qr()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < 1; i++) {
							 | 
						|
								    CALL_SUBTEST_1( qr(Matrix2f()) );
							 | 
						|
								    CALL_SUBTEST_2( qr(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
							 | 
						|
								    CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
							 | 
						|
								    CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_TEST_PART_5
							 | 
						|
								  // small isFullRank test
							 | 
						|
								  {
							 | 
						|
								    Matrix3d mat;
							 | 
						|
								    mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
							 | 
						|
								    VERIFY(mat.qr().isFullRank());
							 | 
						|
								    mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
							 | 
						|
								    //always returns true in eigen2support
							 | 
						|
								    //VERIFY(!mat.qr().isFullRank());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								#endif
							 | 
						|
								}
							 |