You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							122 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							122 lines
						
					
					
						
							4.0 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								
							 | 
						|
								template<typename Derived>
							 | 
						|
								void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename Derived::RealScalar RealScalar;
							 | 
						|
								  for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
							 | 
						|
								  {
							 | 
						|
								    RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
							 | 
						|
								    int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
							 | 
						|
								    int j;
							 | 
						|
								    do {
							 | 
						|
								      j = Eigen::ei_random<int>(0,m.rows()-1);
							 | 
						|
								    } while (i==j); // j is another one (must be different)
							 | 
						|
								    m.row(i) += d * m.row(j);
							 | 
						|
								
							 | 
						|
								    i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
							 | 
						|
								    do {
							 | 
						|
								      j = Eigen::ei_random<int>(0,m.cols()-1);
							 | 
						|
								    } while (i==j); // j is another one (must be different)
							 | 
						|
								    m.col(i) += d * m.col(j);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_non_invertible()
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     LU.h
							 | 
						|
								  */
							 | 
						|
								  // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
							 | 
						|
								  int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
							 | 
						|
								  int rank = ei_random<int>(1, std::min(rows, cols)-1);
							 | 
						|
								
							 | 
						|
								  MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
							 | 
						|
								  m1 = MatrixType::Random(rows,cols);
							 | 
						|
								  if(rows <= cols)
							 | 
						|
								    for(int i = rank; i < rows; i++) m1.row(i).setZero();
							 | 
						|
								  else
							 | 
						|
								    for(int i = rank; i < cols; i++) m1.col(i).setZero();
							 | 
						|
								  doSomeRankPreservingOperations(m1);
							 | 
						|
								
							 | 
						|
								  LU<MatrixType> lu(m1);
							 | 
						|
								  typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
							 | 
						|
								  typename LU<MatrixType>::ImageResultType m1image = lu.image();
							 | 
						|
								
							 | 
						|
								  VERIFY(rank == lu.rank());
							 | 
						|
								  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
							 | 
						|
								  VERIFY(!lu.isInjective());
							 | 
						|
								  VERIFY(!lu.isInvertible());
							 | 
						|
								  VERIFY(lu.isSurjective() == (lu.rank() == rows));
							 | 
						|
								  VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
							 | 
						|
								  VERIFY(m1image.lu().rank() == rank);
							 | 
						|
								  MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
							 | 
						|
								  sidebyside << m1, m1image;
							 | 
						|
								  VERIFY(sidebyside.lu().rank() == rank);
							 | 
						|
								  m2 = MatrixType::Random(cols,cols2);
							 | 
						|
								  m3 = m1*m2;
							 | 
						|
								  m2 = MatrixType::Random(cols,cols2);
							 | 
						|
								  lu.solve(m3, &m2);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								  /* solve now always returns true
							 | 
						|
								  m3 = MatrixType::Random(rows,cols2);
							 | 
						|
								  VERIFY(!lu.solve(m3, &m2));
							 | 
						|
								  */
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void lu_invertible()
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     LU.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
							 | 
						|
								  int size = ei_random<int>(10,200);
							 | 
						|
								
							 | 
						|
								  MatrixType m1(size, size), m2(size, size), m3(size, size);
							 | 
						|
								  m1 = MatrixType::Random(size,size);
							 | 
						|
								
							 | 
						|
								  if (ei_is_same_type<RealScalar,float>::ret)
							 | 
						|
								  {
							 | 
						|
								    // let's build a matrix more stable to inverse
							 | 
						|
								    MatrixType a = MatrixType::Random(size,size*2);
							 | 
						|
								    m1 += a * a.adjoint();
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  LU<MatrixType> lu(m1);
							 | 
						|
								  VERIFY(0 == lu.dimensionOfKernel());
							 | 
						|
								  VERIFY(size == lu.rank());
							 | 
						|
								  VERIFY(lu.isInjective());
							 | 
						|
								  VERIFY(lu.isSurjective());
							 | 
						|
								  VERIFY(lu.isInvertible());
							 | 
						|
								  VERIFY(lu.image().lu().isInvertible());
							 | 
						|
								  m3 = MatrixType::Random(size,size);
							 | 
						|
								  lu.solve(m3, &m2);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								  VERIFY_IS_APPROX(m2, lu.inverse()*m3);
							 | 
						|
								  m3 = MatrixType::Random(size,size);
							 | 
						|
								  VERIFY(lu.solve(m3, &m2));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_lu()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() );
							 | 
						|
								    CALL_SUBTEST_1( lu_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_2( lu_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_3( lu_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_4( lu_invertible<MatrixXcd>() );
							 | 
						|
								  }
							 | 
						|
								}
							 |