You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							113 lines
						
					
					
						
							3.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							113 lines
						
					
					
						
							3.5 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#define EIGEN_NO_ASSERTION_CHECKING
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/Cholesky>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								
							 | 
						|
								#ifdef HAS_GSL
							 | 
						|
								#include "gsl_helper.h"
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void cholesky(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     LLT.h LDLT.h
							 | 
						|
								  */
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  MatrixType a0 = MatrixType::Random(rows,cols);
							 | 
						|
								  VectorType vecB = VectorType::Random(rows), vecX(rows);
							 | 
						|
								  MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
							 | 
						|
								  SquareMatrixType symm =  a0 * a0.adjoint();
							 | 
						|
								  // let's make sure the matrix is not singular or near singular
							 | 
						|
								  MatrixType a1 = MatrixType::Random(rows,cols);
							 | 
						|
								  symm += a1 * a1.adjoint();
							 | 
						|
								
							 | 
						|
								  #ifdef HAS_GSL
							 | 
						|
								  if (ei_is_same_type<RealScalar,double>::ret)
							 | 
						|
								  {
							 | 
						|
								    typedef GslTraits<Scalar> Gsl;
							 | 
						|
								    typename Gsl::Matrix gMatA=0, gSymm=0;
							 | 
						|
								    typename Gsl::Vector gVecB=0, gVecX=0;
							 | 
						|
								    convert<MatrixType>(symm, gSymm);
							 | 
						|
								    convert<MatrixType>(symm, gMatA);
							 | 
						|
								    convert<VectorType>(vecB, gVecB);
							 | 
						|
								    convert<VectorType>(vecB, gVecX);
							 | 
						|
								    Gsl::cholesky(gMatA);
							 | 
						|
								    Gsl::cholesky_solve(gMatA, gVecB, gVecX);
							 | 
						|
								    VectorType vecX(rows), _vecX, _vecB;
							 | 
						|
								    convert(gVecX, _vecX);
							 | 
						|
								    symm.llt().solve(vecB, &vecX);
							 | 
						|
								    Gsl::prod(gSymm, gVecX, gVecB);
							 | 
						|
								    convert(gVecB, _vecB);
							 | 
						|
								    // test gsl itself !
							 | 
						|
								    VERIFY_IS_APPROX(vecB, _vecB);
							 | 
						|
								    VERIFY_IS_APPROX(vecX, _vecX);
							 | 
						|
								
							 | 
						|
								    Gsl::free(gMatA);
							 | 
						|
								    Gsl::free(gSymm);
							 | 
						|
								    Gsl::free(gVecB);
							 | 
						|
								    Gsl::free(gVecX);
							 | 
						|
								  }
							 | 
						|
								  #endif
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    LDLT<SquareMatrixType> ldlt(symm);
							 | 
						|
								    VERIFY(ldlt.isPositiveDefinite());
							 | 
						|
								    // in eigen3, LDLT is pivoting
							 | 
						|
								    //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
							 | 
						|
								    ldlt.solve(vecB, &vecX);
							 | 
						|
								    VERIFY_IS_APPROX(symm * vecX, vecB);
							 | 
						|
								    ldlt.solve(matB, &matX);
							 | 
						|
								    VERIFY_IS_APPROX(symm * matX, matB);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  {
							 | 
						|
								    LLT<SquareMatrixType> chol(symm);
							 | 
						|
								    VERIFY(chol.isPositiveDefinite());
							 | 
						|
								    VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint());
							 | 
						|
								    chol.solve(vecB, &vecX);
							 | 
						|
								    VERIFY_IS_APPROX(symm * vecX, vecB);
							 | 
						|
								    chol.solve(matB, &matX);
							 | 
						|
								    VERIFY_IS_APPROX(symm * matX, matB);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								#if 0 // cholesky is not rank-revealing anyway
							 | 
						|
								  // test isPositiveDefinite on non definite matrix
							 | 
						|
								  if (rows>4)
							 | 
						|
								  {
							 | 
						|
								    SquareMatrixType symm =  a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
							 | 
						|
								    LLT<SquareMatrixType> chol(symm);
							 | 
						|
								    VERIFY(!chol.isPositiveDefinite());
							 | 
						|
								    LDLT<SquareMatrixType> cholnosqrt(symm);
							 | 
						|
								    VERIFY(!cholnosqrt.isPositiveDefinite());
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_cholesky()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
							 | 
						|
								    CALL_SUBTEST_2( cholesky(Matrix2d()) );
							 | 
						|
								    CALL_SUBTEST_3( cholesky(Matrix3f()) );
							 | 
						|
								    CALL_SUBTEST_4( cholesky(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) );
							 | 
						|
								    CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) );
							 | 
						|
								    CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |