You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							5703 lines
						
					
					
						
							195 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							5703 lines
						
					
					
						
							195 KiB
						
					
					
				| /* | |
|   This is a version (aka dlmalloc) of malloc/free/realloc written by | |
|   Doug Lea and released to the public domain, as explained at | |
|   http://creativecommons.org/licenses/publicdomain.  Send questions, | |
|   comments, complaints, performance data, etc to dl@cs.oswego.edu | |
|  | |
| * Version 2.8.4 Wed May 27 09:56:23 2009  Doug Lea  (dl at gee) | |
|  | |
|    Note: There may be an updated version of this malloc obtainable at | |
|            ftp://gee.cs.oswego.edu/pub/misc/malloc.c | |
|          Check before installing! | |
|  | |
| * Quickstart | |
|  | |
|   This library is all in one file to simplify the most common usage: | |
|   ftp it, compile it (-O3), and link it into another program. All of | |
|   the compile-time options default to reasonable values for use on | |
|   most platforms.  You might later want to step through various | |
|   compile-time and dynamic tuning options. | |
|  | |
|   For convenience, an include file for code using this malloc is at: | |
|      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h | |
|   You don't really need this .h file unless you call functions not | |
|   defined in your system include files.  The .h file contains only the | |
|   excerpts from this file needed for using this malloc on ANSI C/C++ | |
|   systems, so long as you haven't changed compile-time options about | |
|   naming and tuning parameters.  If you do, then you can create your | |
|   own malloc.h that does include all settings by cutting at the point | |
|   indicated below. Note that you may already by default be using a C | |
|   library containing a malloc that is based on some version of this | |
|   malloc (for example in linux). You might still want to use the one | |
|   in this file to customize settings or to avoid overheads associated | |
|   with library versions. | |
|  | |
| * Vital statistics: | |
|  | |
|   Supported pointer/size_t representation:       4 or 8 bytes | |
|        size_t MUST be an unsigned type of the same width as | |
|        pointers. (If you are using an ancient system that declares | |
|        size_t as a signed type, or need it to be a different width | |
|        than pointers, you can use a previous release of this malloc | |
|        (e.g. 2.7.2) supporting these.) | |
|  | |
|   Alignment:                                     8 bytes (default) | |
|        This suffices for nearly all current machines and C compilers. | |
|        However, you can define MALLOC_ALIGNMENT to be wider than this | |
|        if necessary (up to 128bytes), at the expense of using more space. | |
|  | |
|   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes) | |
|                                           8 or 16 bytes (if 8byte sizes) | |
|        Each malloced chunk has a hidden word of overhead holding size | |
|        and status information, and additional cross-check word | |
|        if FOOTERS is defined. | |
|  | |
|   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead) | |
|                           8-byte ptrs:  32 bytes    (including overhead) | |
|  | |
|        Even a request for zero bytes (i.e., malloc(0)) returns a | |
|        pointer to something of the minimum allocatable size. | |
|        The maximum overhead wastage (i.e., number of extra bytes | |
|        allocated than were requested in malloc) is less than or equal | |
|        to the minimum size, except for requests >= mmap_threshold that | |
|        are serviced via mmap(), where the worst case wastage is about | |
|        32 bytes plus the remainder from a system page (the minimal | |
|        mmap unit); typically 4096 or 8192 bytes. | |
|  | |
|   Security: static-safe; optionally more or less | |
|        The "security" of malloc refers to the ability of malicious | |
|        code to accentuate the effects of errors (for example, freeing | |
|        space that is not currently malloc'ed or overwriting past the | |
|        ends of chunks) in code that calls malloc.  This malloc | |
|        guarantees not to modify any memory locations below the base of | |
|        heap, i.e., static variables, even in the presence of usage | |
|        errors.  The routines additionally detect most improper frees | |
|        and reallocs.  All this holds as long as the static bookkeeping | |
|        for malloc itself is not corrupted by some other means.  This | |
|        is only one aspect of security -- these checks do not, and | |
|        cannot, detect all possible programming errors. | |
|  | |
|        If FOOTERS is defined nonzero, then each allocated chunk | |
|        carries an additional check word to verify that it was malloced | |
|        from its space.  These check words are the same within each | |
|        execution of a program using malloc, but differ across | |
|        executions, so externally crafted fake chunks cannot be | |
|        freed. This improves security by rejecting frees/reallocs that | |
|        could corrupt heap memory, in addition to the checks preventing | |
|        writes to statics that are always on.  This may further improve | |
|        security at the expense of time and space overhead.  (Note that | |
|        FOOTERS may also be worth using with MSPACES.) | |
|  | |
|        By default detected errors cause the program to abort (calling | |
|        "abort()"). You can override this to instead proceed past | |
|        errors by defining PROCEED_ON_ERROR.  In this case, a bad free | |
|        has no effect, and a malloc that encounters a bad address | |
|        caused by user overwrites will ignore the bad address by | |
|        dropping pointers and indices to all known memory. This may | |
|        be appropriate for programs that should continue if at all | |
|        possible in the face of programming errors, although they may | |
|        run out of memory because dropped memory is never reclaimed. | |
|  | |
|        If you don't like either of these options, you can define | |
|        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything | |
|        else. And if if you are sure that your program using malloc has | |
|        no errors or vulnerabilities, you can define INSECURE to 1, | |
|        which might (or might not) provide a small performance improvement. | |
|  | |
|   Thread-safety: NOT thread-safe unless USE_LOCKS defined | |
|        When USE_LOCKS is defined, each public call to malloc, free, | |
|        etc is surrounded with either a pthread mutex or a win32 | |
|        spinlock (depending on WIN32). This is not especially fast, and | |
|        can be a major bottleneck.  It is designed only to provide | |
|        minimal protection in concurrent environments, and to provide a | |
|        basis for extensions.  If you are using malloc in a concurrent | |
|        program, consider instead using nedmalloc | |
|        (http://www.nedprod.com/programs/portable/nedmalloc/) or | |
|        ptmalloc (See http://www.malloc.de), which are derived | |
|        from versions of this malloc. | |
|  | |
|   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP | |
|        This malloc can use unix sbrk or any emulation (invoked using | |
|        the CALL_MORECORE macro) and/or mmap/munmap or any emulation | |
|        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system | |
|        memory.  On most unix systems, it tends to work best if both | |
|        MORECORE and MMAP are enabled.  On Win32, it uses emulations | |
|        based on VirtualAlloc. It also uses common C library functions | |
|        like memset. | |
|  | |
|   Compliance: I believe it is compliant with the Single Unix Specification | |
|        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably | |
|        others as well. | |
|  | |
| * Overview of algorithms | |
|  | |
|   This is not the fastest, most space-conserving, most portable, or | |
|   most tunable malloc ever written. However it is among the fastest | |
|   while also being among the most space-conserving, portable and | |
|   tunable.  Consistent balance across these factors results in a good | |
|   general-purpose allocator for malloc-intensive programs. | |
|  | |
|   In most ways, this malloc is a best-fit allocator. Generally, it | |
|   chooses the best-fitting existing chunk for a request, with ties | |
|   broken in approximately least-recently-used order. (This strategy | |
|   normally maintains low fragmentation.) However, for requests less | |
|   than 256bytes, it deviates from best-fit when there is not an | |
|   exactly fitting available chunk by preferring to use space adjacent | |
|   to that used for the previous small request, as well as by breaking | |
|   ties in approximately most-recently-used order. (These enhance | |
|   locality of series of small allocations.)  And for very large requests | |
|   (>= 256Kb by default), it relies on system memory mapping | |
|   facilities, if supported.  (This helps avoid carrying around and | |
|   possibly fragmenting memory used only for large chunks.) | |
|  | |
|   All operations (except malloc_stats and mallinfo) have execution | |
|   times that are bounded by a constant factor of the number of bits in | |
|   a size_t, not counting any clearing in calloc or copying in realloc, | |
|   or actions surrounding MORECORE and MMAP that have times | |
|   proportional to the number of non-contiguous regions returned by | |
|   system allocation routines, which is often just 1. In real-time | |
|   applications, you can optionally suppress segment traversals using | |
|   NO_SEGMENT_TRAVERSAL, which assures bounded execution even when | |
|   system allocators return non-contiguous spaces, at the typical | |
|   expense of carrying around more memory and increased fragmentation. | |
|  | |
|   The implementation is not very modular and seriously overuses | |
|   macros. Perhaps someday all C compilers will do as good a job | |
|   inlining modular code as can now be done by brute-force expansion, | |
|   but now, enough of them seem not to. | |
|  | |
|   Some compilers issue a lot of warnings about code that is | |
|   dead/unreachable only on some platforms, and also about intentional | |
|   uses of negation on unsigned types. All known cases of each can be | |
|   ignored. | |
|  | |
|   For a longer but out of date high-level description, see | |
|      http://gee.cs.oswego.edu/dl/html/malloc.html | |
|  | |
| * MSPACES | |
|   If MSPACES is defined, then in addition to malloc, free, etc., | |
|   this file also defines mspace_malloc, mspace_free, etc. These | |
|   are versions of malloc routines that take an "mspace" argument | |
|   obtained using create_mspace, to control all internal bookkeeping. | |
|   If ONLY_MSPACES is defined, only these versions are compiled. | |
|   So if you would like to use this allocator for only some allocations, | |
|   and your system malloc for others, you can compile with | |
|   ONLY_MSPACES and then do something like... | |
|     static mspace mymspace = create_mspace(0,0); // for example | |
|     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes) | |
|  | |
|   (Note: If you only need one instance of an mspace, you can instead | |
|   use "USE_DL_PREFIX" to relabel the global malloc.) | |
|  | |
|   You can similarly create thread-local allocators by storing | |
|   mspaces as thread-locals. For example: | |
|     static __thread mspace tlms = 0; | |
|     void*  tlmalloc(size_t bytes) { | |
|       if (tlms == 0) tlms = create_mspace(0, 0); | |
|       return mspace_malloc(tlms, bytes); | |
|     } | |
|     void  tlfree(void* mem) { mspace_free(tlms, mem); } | |
|  | |
|   Unless FOOTERS is defined, each mspace is completely independent. | |
|   You cannot allocate from one and free to another (although | |
|   conformance is only weakly checked, so usage errors are not always | |
|   caught). If FOOTERS is defined, then each chunk carries around a tag | |
|   indicating its originating mspace, and frees are directed to their | |
|   originating spaces. | |
|  | |
|  -------------------------  Compile-time options --------------------------- | |
|  | |
| Be careful in setting #define values for numerical constants of type | |
| size_t. On some systems, literal values are not automatically extended | |
| to size_t precision unless they are explicitly casted. You can also | |
| use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. | |
|  | |
| WIN32                    default: defined if _WIN32 defined | |
|   Defining WIN32 sets up defaults for MS environment and compilers. | |
|   Otherwise defaults are for unix. Beware that there seem to be some | |
|   cases where this malloc might not be a pure drop-in replacement for | |
|   Win32 malloc: Random-looking failures from Win32 GDI API's (eg; | |
|   SetDIBits()) may be due to bugs in some video driver implementations | |
|   when pixel buffers are malloc()ed, and the region spans more than | |
|   one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) | |
|   default granularity, pixel buffers may straddle virtual allocation | |
|   regions more often than when using the Microsoft allocator.  You can | |
|   avoid this by using VirtualAlloc() and VirtualFree() for all pixel | |
|   buffers rather than using malloc().  If this is not possible, | |
|   recompile this malloc with a larger DEFAULT_GRANULARITY. | |
|  | |
| MALLOC_ALIGNMENT         default: (size_t)8 | |
|   Controls the minimum alignment for malloc'ed chunks.  It must be a | |
|   power of two and at least 8, even on machines for which smaller | |
|   alignments would suffice. It may be defined as larger than this | |
|   though. Note however that code and data structures are optimized for | |
|   the case of 8-byte alignment. | |
|  | |
| MSPACES                  default: 0 (false) | |
|   If true, compile in support for independent allocation spaces. | |
|   This is only supported if HAVE_MMAP is true. | |
|  | |
| ONLY_MSPACES             default: 0 (false) | |
|   If true, only compile in mspace versions, not regular versions. | |
|  | |
| USE_LOCKS                default: 0 (false) | |
|   Causes each call to each public routine to be surrounded with | |
|   pthread or WIN32 mutex lock/unlock. (If set true, this can be | |
|   overridden on a per-mspace basis for mspace versions.) If set to a | |
|   non-zero value other than 1, locks are used, but their | |
|   implementation is left out, so lock functions must be supplied manually, | |
|   as described below. | |
|  | |
| USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and on x86 using gcc or MSC | |
|   If true, uses custom spin locks for locking. This is currently | |
|   supported only for x86 platforms using gcc or recent MS compilers. | |
|   Otherwise, posix locks or win32 critical sections are used. | |
|  | |
| FOOTERS                  default: 0 | |
|   If true, provide extra checking and dispatching by placing | |
|   information in the footers of allocated chunks. This adds | |
|   space and time overhead. | |
|  | |
| INSECURE                 default: 0 | |
|   If true, omit checks for usage errors and heap space overwrites. | |
|  | |
| USE_DL_PREFIX            default: NOT defined | |
|   Causes compiler to prefix all public routines with the string 'dl'. | |
|   This can be useful when you only want to use this malloc in one part | |
|   of a program, using your regular system malloc elsewhere. | |
|  | |
| ABORT                    default: defined as abort() | |
|   Defines how to abort on failed checks.  On most systems, a failed | |
|   check cannot die with an "assert" or even print an informative | |
|   message, because the underlying print routines in turn call malloc, | |
|   which will fail again.  Generally, the best policy is to simply call | |
|   abort(). It's not very useful to do more than this because many | |
|   errors due to overwriting will show up as address faults (null, odd | |
|   addresses etc) rather than malloc-triggered checks, so will also | |
|   abort.  Also, most compilers know that abort() does not return, so | |
|   can better optimize code conditionally calling it. | |
|  | |
| PROCEED_ON_ERROR           default: defined as 0 (false) | |
|   Controls whether detected bad addresses cause them to bypassed | |
|   rather than aborting. If set, detected bad arguments to free and | |
|   realloc are ignored. And all bookkeeping information is zeroed out | |
|   upon a detected overwrite of freed heap space, thus losing the | |
|   ability to ever return it from malloc again, but enabling the | |
|   application to proceed. If PROCEED_ON_ERROR is defined, the | |
|   static variable malloc_corruption_error_count is compiled in | |
|   and can be examined to see if errors have occurred. This option | |
|   generates slower code than the default abort policy. | |
|  | |
| DEBUG                    default: NOT defined | |
|   The DEBUG setting is mainly intended for people trying to modify | |
|   this code or diagnose problems when porting to new platforms. | |
|   However, it may also be able to better isolate user errors than just | |
|   using runtime checks.  The assertions in the check routines spell | |
|   out in more detail the assumptions and invariants underlying the | |
|   algorithms.  The checking is fairly extensive, and will slow down | |
|   execution noticeably. Calling malloc_stats or mallinfo with DEBUG | |
|   set will attempt to check every non-mmapped allocated and free chunk | |
|   in the course of computing the summaries. | |
|  | |
| ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true) | |
|   Debugging assertion failures can be nearly impossible if your | |
|   version of the assert macro causes malloc to be called, which will | |
|   lead to a cascade of further failures, blowing the runtime stack. | |
|   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), | |
|   which will usually make debugging easier. | |
|  | |
| MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32 | |
|   The action to take before "return 0" when malloc fails to be able to | |
|   return memory because there is none available. | |
|  | |
| HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES | |
|   True if this system supports sbrk or an emulation of it. | |
|  | |
| MORECORE                  default: sbrk | |
|   The name of the sbrk-style system routine to call to obtain more | |
|   memory.  See below for guidance on writing custom MORECORE | |
|   functions. The type of the argument to sbrk/MORECORE varies across | |
|   systems.  It cannot be size_t, because it supports negative | |
|   arguments, so it is normally the signed type of the same width as | |
|   size_t (sometimes declared as "intptr_t").  It doesn't much matter | |
|   though. Internally, we only call it with arguments less than half | |
|   the max value of a size_t, which should work across all reasonable | |
|   possibilities, although sometimes generating compiler warnings. | |
|  | |
| MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE | |
|   If true, take advantage of fact that consecutive calls to MORECORE | |
|   with positive arguments always return contiguous increasing | |
|   addresses.  This is true of unix sbrk. It does not hurt too much to | |
|   set it true anyway, since malloc copes with non-contiguities. | |
|   Setting it false when definitely non-contiguous saves time | |
|   and possibly wasted space it would take to discover this though. | |
|  | |
| MORECORE_CANNOT_TRIM      default: NOT defined | |
|   True if MORECORE cannot release space back to the system when given | |
|   negative arguments. This is generally necessary only if you are | |
|   using a hand-crafted MORECORE function that cannot handle negative | |
|   arguments. | |
|  | |
| NO_SEGMENT_TRAVERSAL       default: 0 | |
|   If non-zero, suppresses traversals of memory segments | |
|   returned by either MORECORE or CALL_MMAP. This disables | |
|   merging of segments that are contiguous, and selectively | |
|   releasing them to the OS if unused, but bounds execution times. | |
|  | |
| HAVE_MMAP                 default: 1 (true) | |
|   True if this system supports mmap or an emulation of it.  If so, and | |
|   HAVE_MORECORE is not true, MMAP is used for all system | |
|   allocation. If set and HAVE_MORECORE is true as well, MMAP is | |
|   primarily used to directly allocate very large blocks. It is also | |
|   used as a backup strategy in cases where MORECORE fails to provide | |
|   space from system. Note: A single call to MUNMAP is assumed to be | |
|   able to unmap memory that may have be allocated using multiple calls | |
|   to MMAP, so long as they are adjacent. | |
|  | |
| HAVE_MREMAP               default: 1 on linux, else 0 | |
|   If true realloc() uses mremap() to re-allocate large blocks and | |
|   extend or shrink allocation spaces. | |
|  | |
| MMAP_CLEARS               default: 1 except on WINCE. | |
|   True if mmap clears memory so calloc doesn't need to. This is true | |
|   for standard unix mmap using /dev/zero and on WIN32 except for WINCE. | |
|  | |
| USE_BUILTIN_FFS            default: 0 (i.e., not used) | |
|   Causes malloc to use the builtin ffs() function to compute indices. | |
|   Some compilers may recognize and intrinsify ffs to be faster than the | |
|   supplied C version. Also, the case of x86 using gcc is special-cased | |
|   to an asm instruction, so is already as fast as it can be, and so | |
|   this setting has no effect. Similarly for Win32 under recent MS compilers. | |
|   (On most x86s, the asm version is only slightly faster than the C version.) | |
|  | |
| malloc_getpagesize         default: derive from system includes, or 4096. | |
|   The system page size. To the extent possible, this malloc manages | |
|   memory from the system in page-size units.  This may be (and | |
|   usually is) a function rather than a constant. This is ignored | |
|   if WIN32, where page size is determined using getSystemInfo during | |
|   initialization. | |
|  | |
| USE_DEV_RANDOM             default: 0 (i.e., not used) | |
|   Causes malloc to use /dev/random to initialize secure magic seed for | |
|   stamping footers. Otherwise, the current time is used. | |
|  | |
| NO_MALLINFO                default: 0 | |
|   If defined, don't compile "mallinfo". This can be a simple way | |
|   of dealing with mismatches between system declarations and | |
|   those in this file. | |
|  | |
| MALLINFO_FIELD_TYPE        default: size_t | |
|   The type of the fields in the mallinfo struct. This was originally | |
|   defined as "int" in SVID etc, but is more usefully defined as | |
|   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set | |
|  | |
| REALLOC_ZERO_BYTES_FREES    default: not defined | |
|   This should be set if a call to realloc with zero bytes should | |
|   be the same as a call to free. Some people think it should. Otherwise, | |
|   since this malloc returns a unique pointer for malloc(0), so does | |
|   realloc(p, 0). | |
|  | |
| LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H | |
| LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H | |
| LACKS_STDLIB_H                default: NOT defined unless on WIN32 | |
|   Define these if your system does not have these header files. | |
|   You might need to manually insert some of the declarations they provide. | |
|  | |
| DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS, | |
|                                 system_info.dwAllocationGranularity in WIN32, | |
|                                 otherwise 64K. | |
|       Also settable using mallopt(M_GRANULARITY, x) | |
|   The unit for allocating and deallocating memory from the system.  On | |
|   most systems with contiguous MORECORE, there is no reason to | |
|   make this more than a page. However, systems with MMAP tend to | |
|   either require or encourage larger granularities.  You can increase | |
|   this value to prevent system allocation functions to be called so | |
|   often, especially if they are slow.  The value must be at least one | |
|   page and must be a power of two.  Setting to 0 causes initialization | |
|   to either page size or win32 region size.  (Note: In previous | |
|   versions of malloc, the equivalent of this option was called | |
|   "TOP_PAD") | |
|  | |
| DEFAULT_TRIM_THRESHOLD    default: 2MB | |
|       Also settable using mallopt(M_TRIM_THRESHOLD, x) | |
|   The maximum amount of unused top-most memory to keep before | |
|   releasing via malloc_trim in free().  Automatic trimming is mainly | |
|   useful in long-lived programs using contiguous MORECORE.  Because | |
|   trimming via sbrk can be slow on some systems, and can sometimes be | |
|   wasteful (in cases where programs immediately afterward allocate | |
|   more large chunks) the value should be high enough so that your | |
|   overall system performance would improve by releasing this much | |
|   memory.  As a rough guide, you might set to a value close to the | |
|   average size of a process (program) running on your system. | |
|   Releasing this much memory would allow such a process to run in | |
|   memory.  Generally, it is worth tuning trim thresholds when a | |
|   program undergoes phases where several large chunks are allocated | |
|   and released in ways that can reuse each other's storage, perhaps | |
|   mixed with phases where there are no such chunks at all. The trim | |
|   value must be greater than page size to have any useful effect.  To | |
|   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick | |
|   some people use of mallocing a huge space and then freeing it at | |
|   program startup, in an attempt to reserve system memory, doesn't | |
|   have the intended effect under automatic trimming, since that memory | |
|   will immediately be returned to the system. | |
|  | |
| DEFAULT_MMAP_THRESHOLD       default: 256K | |
|       Also settable using mallopt(M_MMAP_THRESHOLD, x) | |
|   The request size threshold for using MMAP to directly service a | |
|   request. Requests of at least this size that cannot be allocated | |
|   using already-existing space will be serviced via mmap.  (If enough | |
|   normal freed space already exists it is used instead.)  Using mmap | |
|   segregates relatively large chunks of memory so that they can be | |
|   individually obtained and released from the host system. A request | |
|   serviced through mmap is never reused by any other request (at least | |
|   not directly; the system may just so happen to remap successive | |
|   requests to the same locations).  Segregating space in this way has | |
|   the benefits that: Mmapped space can always be individually released | |
|   back to the system, which helps keep the system level memory demands | |
|   of a long-lived program low.  Also, mapped memory doesn't become | |
|   `locked' between other chunks, as can happen with normally allocated | |
|   chunks, which means that even trimming via malloc_trim would not | |
|   release them.  However, it has the disadvantage that the space | |
|   cannot be reclaimed, consolidated, and then used to service later | |
|   requests, as happens with normal chunks.  The advantages of mmap | |
|   nearly always outweigh disadvantages for "large" chunks, but the | |
|   value of "large" may vary across systems.  The default is an | |
|   empirically derived value that works well in most systems. You can | |
|   disable mmap by setting to MAX_SIZE_T. | |
|  | |
| MAX_RELEASE_CHECK_RATE   default: 4095 unless not HAVE_MMAP | |
|   The number of consolidated frees between checks to release | |
|   unused segments when freeing. When using non-contiguous segments, | |
|   especially with multiple mspaces, checking only for topmost space | |
|   doesn't always suffice to trigger trimming. To compensate for this, | |
|   free() will, with a period of MAX_RELEASE_CHECK_RATE (or the | |
|   current number of segments, if greater) try to release unused | |
|   segments to the OS when freeing chunks that result in | |
|   consolidation. The best value for this parameter is a compromise | |
|   between slowing down frees with relatively costly checks that | |
|   rarely trigger versus holding on to unused memory. To effectively | |
|   disable, set to MAX_SIZE_T. This may lead to a very slight speed | |
|   improvement at the expense of carrying around more memory. | |
| */ | |
| 
 | |
| #define USE_DL_PREFIX | |
| //#define HAVE_USR_INCLUDE_MALLOC_H | |
| //#define MSPACES 1 | |
| #define NO_SEGMENT_TRAVERSAL 1 | |
|  | |
| /* Version identifier to allow people to support multiple versions */ | |
| #ifndef DLMALLOC_VERSION | |
| #define DLMALLOC_VERSION 20804 | |
| #endif /* DLMALLOC_VERSION */ | |
|  | |
| #ifndef WIN32 | |
| #ifdef _WIN32 | |
| #define WIN32 1 | |
| #endif  /* _WIN32 */ | |
| #ifdef _WIN32_WCE | |
| #define LACKS_FCNTL_H | |
| #define WIN32 1 | |
| #endif /* _WIN32_WCE */ | |
| #endif  /* WIN32 */ | |
| #ifdef WIN32 | |
| #define WIN32_LEAN_AND_MEAN | |
| #include <windows.h> | |
| #define HAVE_MMAP 1 | |
| #define HAVE_MORECORE 0 | |
| #define LACKS_UNISTD_H | |
| #define LACKS_SYS_PARAM_H | |
| #define LACKS_SYS_MMAN_H | |
| #define LACKS_STRING_H | |
| #define LACKS_STRINGS_H | |
| #define LACKS_SYS_TYPES_H | |
| #define LACKS_ERRNO_H | |
| #ifndef MALLOC_FAILURE_ACTION | |
| #define MALLOC_FAILURE_ACTION | |
| #endif /* MALLOC_FAILURE_ACTION */ | |
| #ifdef _WIN32_WCE /* WINCE reportedly does not clear */ | |
| #define MMAP_CLEARS 0 | |
| #else | |
| #define MMAP_CLEARS 1 | |
| #endif /* _WIN32_WCE */ | |
| #endif  /* WIN32 */ | |
|  | |
| #if defined(DARWIN) || defined(_DARWIN) | |
| /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ | |
| #ifndef HAVE_MORECORE | |
| #define HAVE_MORECORE 0 | |
| #define HAVE_MMAP 1 | |
| /* OSX allocators provide 16 byte alignment */ | |
| #ifndef MALLOC_ALIGNMENT | |
| #define MALLOC_ALIGNMENT ((size_t)16U) | |
| #endif | |
| #endif  /* HAVE_MORECORE */ | |
| #endif  /* DARWIN */ | |
|  | |
| #ifndef LACKS_SYS_TYPES_H | |
| #include <sys/types.h>  /* For size_t */ | |
| #endif  /* LACKS_SYS_TYPES_H */ | |
|  | |
| #if (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310) | |
| #define SPIN_LOCKS_AVAILABLE 1 | |
| #else | |
| #define SPIN_LOCKS_AVAILABLE 0 | |
| #endif | |
|  | |
| /* The maximum possible size_t value has all bits set */ | |
| #define MAX_SIZE_T           (~(size_t)0) | |
|  | |
| #ifndef ONLY_MSPACES | |
| #define ONLY_MSPACES 0     /* define to a value */ | |
| #else | |
| #define ONLY_MSPACES 1 | |
| #endif  /* ONLY_MSPACES */ | |
| #ifndef MSPACES | |
| #if ONLY_MSPACES | |
| #define MSPACES 1 | |
| #else   /* ONLY_MSPACES */ | |
| #define MSPACES 0 | |
| #endif  /* ONLY_MSPACES */ | |
| #endif  /* MSPACES */ | |
| #ifndef MALLOC_ALIGNMENT | |
| #define MALLOC_ALIGNMENT ((size_t)8U) | |
| #endif  /* MALLOC_ALIGNMENT */ | |
| #ifndef FOOTERS | |
| #define FOOTERS 0 | |
| #endif  /* FOOTERS */ | |
| #ifndef ABORT | |
| #define ABORT  abort() | |
| #endif  /* ABORT */ | |
| #ifndef ABORT_ON_ASSERT_FAILURE | |
| #define ABORT_ON_ASSERT_FAILURE 1 | |
| #endif  /* ABORT_ON_ASSERT_FAILURE */ | |
| #ifndef PROCEED_ON_ERROR | |
| #define PROCEED_ON_ERROR 0 | |
| #endif  /* PROCEED_ON_ERROR */ | |
| #ifndef USE_LOCKS | |
| #define USE_LOCKS 0 | |
| #endif  /* USE_LOCKS */ | |
| #ifndef USE_SPIN_LOCKS | |
| #if USE_LOCKS && SPIN_LOCKS_AVAILABLE | |
| #define USE_SPIN_LOCKS 1 | |
| #else | |
| #define USE_SPIN_LOCKS 0 | |
| #endif /* USE_LOCKS && SPIN_LOCKS_AVAILABLE. */ | |
| #endif /* USE_SPIN_LOCKS */ | |
| #ifndef INSECURE | |
| #define INSECURE 0 | |
| #endif  /* INSECURE */ | |
| #ifndef HAVE_MMAP | |
| #define HAVE_MMAP 1 | |
| #endif  /* HAVE_MMAP */ | |
| #ifndef MMAP_CLEARS | |
| #define MMAP_CLEARS 1 | |
| #endif  /* MMAP_CLEARS */ | |
| #ifndef HAVE_MREMAP | |
| #ifdef linux | |
| #define HAVE_MREMAP 1 | |
| #else   /* linux */ | |
| #define HAVE_MREMAP 0 | |
| #endif  /* linux */ | |
| #endif  /* HAVE_MREMAP */ | |
| #ifndef MALLOC_FAILURE_ACTION | |
| #define MALLOC_FAILURE_ACTION  errno = ENOMEM; | |
| #endif  /* MALLOC_FAILURE_ACTION */ | |
| #ifndef HAVE_MORECORE | |
| #if ONLY_MSPACES | |
| #define HAVE_MORECORE 0 | |
| #else   /* ONLY_MSPACES */ | |
| #define HAVE_MORECORE 1 | |
| #endif  /* ONLY_MSPACES */ | |
| #endif  /* HAVE_MORECORE */ | |
| #if !HAVE_MORECORE | |
| #define MORECORE_CONTIGUOUS 0 | |
| #else   /* !HAVE_MORECORE */ | |
| #define MORECORE_DEFAULT sbrk | |
| #ifndef MORECORE_CONTIGUOUS | |
| #define MORECORE_CONTIGUOUS 1 | |
| #endif  /* MORECORE_CONTIGUOUS */ | |
| #endif  /* HAVE_MORECORE */ | |
| #ifndef DEFAULT_GRANULARITY | |
| #if (MORECORE_CONTIGUOUS || defined(WIN32)) | |
| #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */ | |
| #else   /* MORECORE_CONTIGUOUS */ | |
| #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) | |
| #endif  /* MORECORE_CONTIGUOUS */ | |
| #endif  /* DEFAULT_GRANULARITY */ | |
| #ifndef DEFAULT_TRIM_THRESHOLD | |
| #ifndef MORECORE_CANNOT_TRIM | |
| #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) | |
| #else   /* MORECORE_CANNOT_TRIM */ | |
| #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T | |
| #endif  /* MORECORE_CANNOT_TRIM */ | |
| #endif  /* DEFAULT_TRIM_THRESHOLD */ | |
| #ifndef DEFAULT_MMAP_THRESHOLD | |
| #if HAVE_MMAP | |
| #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) | |
| #else   /* HAVE_MMAP */ | |
| #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T | |
| #endif  /* HAVE_MMAP */ | |
| #endif  /* DEFAULT_MMAP_THRESHOLD */ | |
| #ifndef MAX_RELEASE_CHECK_RATE | |
| #if HAVE_MMAP | |
| #define MAX_RELEASE_CHECK_RATE 4095 | |
| #else | |
| #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T | |
| #endif /* HAVE_MMAP */ | |
| #endif /* MAX_RELEASE_CHECK_RATE */ | |
| #ifndef USE_BUILTIN_FFS | |
| #define USE_BUILTIN_FFS 0 | |
| #endif  /* USE_BUILTIN_FFS */ | |
| #ifndef USE_DEV_RANDOM | |
| #define USE_DEV_RANDOM 0 | |
| #endif  /* USE_DEV_RANDOM */ | |
| #ifndef NO_MALLINFO | |
| #define NO_MALLINFO 0 | |
| #endif  /* NO_MALLINFO */ | |
| #ifndef MALLINFO_FIELD_TYPE | |
| #define MALLINFO_FIELD_TYPE size_t | |
| #endif  /* MALLINFO_FIELD_TYPE */ | |
| #ifndef NO_SEGMENT_TRAVERSAL | |
| #define NO_SEGMENT_TRAVERSAL 0 | |
| #endif /* NO_SEGMENT_TRAVERSAL */ | |
|  | |
| /* | |
|   mallopt tuning options.  SVID/XPG defines four standard parameter | |
|   numbers for mallopt, normally defined in malloc.h.  None of these | |
|   are used in this malloc, so setting them has no effect. But this | |
|   malloc does support the following options. | |
| */ | |
| 
 | |
| #define M_TRIM_THRESHOLD     (-1) | |
| #define M_GRANULARITY        (-2) | |
| #define M_MMAP_THRESHOLD     (-3) | |
|  | |
| /* ------------------------ Mallinfo declarations ------------------------ */ | |
| 
 | |
| #if !NO_MALLINFO | |
| /* | |
|   This version of malloc supports the standard SVID/XPG mallinfo | |
|   routine that returns a struct containing usage properties and | |
|   statistics. It should work on any system that has a | |
|   /usr/include/malloc.h defining struct mallinfo.  The main | |
|   declaration needed is the mallinfo struct that is returned (by-copy) | |
|   by mallinfo().  The malloinfo struct contains a bunch of fields that | |
|   are not even meaningful in this version of malloc.  These fields are | |
|   are instead filled by mallinfo() with other numbers that might be of | |
|   interest. | |
|  | |
|   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a | |
|   /usr/include/malloc.h file that includes a declaration of struct | |
|   mallinfo.  If so, it is included; else a compliant version is | |
|   declared below.  These must be precisely the same for mallinfo() to | |
|   work.  The original SVID version of this struct, defined on most | |
|   systems with mallinfo, declares all fields as ints. But some others | |
|   define as unsigned long. If your system defines the fields using a | |
|   type of different width than listed here, you MUST #include your | |
|   system version and #define HAVE_USR_INCLUDE_MALLOC_H. | |
| */ | |
| 
 | |
| /* #define HAVE_USR_INCLUDE_MALLOC_H */ | |
| 
 | |
| #ifdef HAVE_USR_INCLUDE_MALLOC_H | |
| #include "/usr/include/malloc.h" | |
| #else /* HAVE_USR_INCLUDE_MALLOC_H */ | |
| #ifndef STRUCT_MALLINFO_DECLARED | |
| #define STRUCT_MALLINFO_DECLARED 1 | |
| struct mallinfo { | |
|   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */ | |
|   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */ | |
|   MALLINFO_FIELD_TYPE smblks;   /* always 0 */ | |
|   MALLINFO_FIELD_TYPE hblks;    /* always 0 */ | |
|   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */ | |
|   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */ | |
|   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */ | |
|   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ | |
|   MALLINFO_FIELD_TYPE fordblks; /* total free space */ | |
|   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ | |
| }; | |
| #endif /* STRUCT_MALLINFO_DECLARED */ | |
| #endif /* HAVE_USR_INCLUDE_MALLOC_H */ | |
| #endif /* NO_MALLINFO */ | |
|  | |
| /* | |
|   Try to persuade compilers to inline. The most critical functions for | |
|   inlining are defined as macros, so these aren't used for them. | |
| */ | |
| 
 | |
| #ifndef FORCEINLINE | |
|   #if defined(__GNUC__) | |
| #define FORCEINLINE __inline __attribute__ ((always_inline)) | |
|   #elif defined(_MSC_VER) | |
|     #define FORCEINLINE __forceinline | |
|   #endif | |
| #endif | |
| #ifndef NOINLINE | |
|   #if defined(__GNUC__) | |
|     #define NOINLINE __attribute__ ((noinline)) | |
|   #elif defined(_MSC_VER) | |
|     #define NOINLINE __declspec(noinline) | |
|   #else | |
|     #define NOINLINE | |
|   #endif | |
| #endif | |
|  | |
| #ifdef __cplusplus | |
| extern "C" { | |
| #ifndef FORCEINLINE | |
|  #define FORCEINLINE inline | |
| #endif | |
| #endif /* __cplusplus */ | |
| #ifndef FORCEINLINE | |
|  #define FORCEINLINE | |
| #endif | |
|  | |
| #if !ONLY_MSPACES | |
|  | |
| /* ------------------- Declarations of public routines ------------------- */ | |
| 
 | |
| #ifndef USE_DL_PREFIX | |
| #define dlcalloc               calloc | |
| #define dlfree                 free | |
| #define dlmalloc               malloc | |
| #define dlmemalign             memalign | |
| #define dlrealloc              realloc | |
| #define dlvalloc               valloc | |
| #define dlpvalloc              pvalloc | |
| #define dlmallinfo             mallinfo | |
| #define dlmallopt              mallopt | |
| #define dlmalloc_trim          malloc_trim | |
| #define dlmalloc_stats         malloc_stats | |
| #define dlmalloc_usable_size   malloc_usable_size | |
| #define dlmalloc_footprint     malloc_footprint | |
| #define dlmalloc_max_footprint malloc_max_footprint | |
| #define dlindependent_calloc   independent_calloc | |
| #define dlindependent_comalloc independent_comalloc | |
| #endif /* USE_DL_PREFIX */ | |
|  | |
| 
 | |
| /* | |
|   malloc(size_t n) | |
|   Returns a pointer to a newly allocated chunk of at least n bytes, or | |
|   null if no space is available, in which case errno is set to ENOMEM | |
|   on ANSI C systems. | |
|  | |
|   If n is zero, malloc returns a minimum-sized chunk. (The minimum | |
|   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit | |
|   systems.)  Note that size_t is an unsigned type, so calls with | |
|   arguments that would be negative if signed are interpreted as | |
|   requests for huge amounts of space, which will often fail. The | |
|   maximum supported value of n differs across systems, but is in all | |
|   cases less than the maximum representable value of a size_t. | |
| */ | |
| void* dlmalloc(size_t); | |
| 
 | |
| /* | |
|   free(void* p) | |
|   Releases the chunk of memory pointed to by p, that had been previously | |
|   allocated using malloc or a related routine such as realloc. | |
|   It has no effect if p is null. If p was not malloced or already | |
|   freed, free(p) will by default cause the current program to abort. | |
| */ | |
| void  dlfree(void*); | |
| 
 | |
| /* | |
|   calloc(size_t n_elements, size_t element_size); | |
|   Returns a pointer to n_elements * element_size bytes, with all locations | |
|   set to zero. | |
| */ | |
| void* dlcalloc(size_t, size_t); | |
| 
 | |
| /* | |
|   realloc(void* p, size_t n) | |
|   Returns a pointer to a chunk of size n that contains the same data | |
|   as does chunk p up to the minimum of (n, p's size) bytes, or null | |
|   if no space is available. | |
|  | |
|   The returned pointer may or may not be the same as p. The algorithm | |
|   prefers extending p in most cases when possible, otherwise it | |
|   employs the equivalent of a malloc-copy-free sequence. | |
|  | |
|   If p is null, realloc is equivalent to malloc. | |
|  | |
|   If space is not available, realloc returns null, errno is set (if on | |
|   ANSI) and p is NOT freed. | |
|  | |
|   if n is for fewer bytes than already held by p, the newly unused | |
|   space is lopped off and freed if possible.  realloc with a size | |
|   argument of zero (re)allocates a minimum-sized chunk. | |
|  | |
|   The old unix realloc convention of allowing the last-free'd chunk | |
|   to be used as an argument to realloc is not supported. | |
| */ | |
| 
 | |
| void* dlrealloc(void*, size_t); | |
| 
 | |
| /* | |
|   memalign(size_t alignment, size_t n); | |
|   Returns a pointer to a newly allocated chunk of n bytes, aligned | |
|   in accord with the alignment argument. | |
|  | |
|   The alignment argument should be a power of two. If the argument is | |
|   not a power of two, the nearest greater power is used. | |
|   8-byte alignment is guaranteed by normal malloc calls, so don't | |
|   bother calling memalign with an argument of 8 or less. | |
|  | |
|   Overreliance on memalign is a sure way to fragment space. | |
| */ | |
| void* dlmemalign(size_t, size_t); | |
| 
 | |
| /* | |
|   valloc(size_t n); | |
|   Equivalent to memalign(pagesize, n), where pagesize is the page | |
|   size of the system. If the pagesize is unknown, 4096 is used. | |
| */ | |
| void* dlvalloc(size_t); | |
| 
 | |
| /* | |
|   mallopt(int parameter_number, int parameter_value) | |
|   Sets tunable parameters The format is to provide a | |
|   (parameter-number, parameter-value) pair.  mallopt then sets the | |
|   corresponding parameter to the argument value if it can (i.e., so | |
|   long as the value is meaningful), and returns 1 if successful else | |
|   0.  To workaround the fact that mallopt is specified to use int, | |
|   not size_t parameters, the value -1 is specially treated as the | |
|   maximum unsigned size_t value. | |
|  | |
|   SVID/XPG/ANSI defines four standard param numbers for mallopt, | |
|   normally defined in malloc.h.  None of these are use in this malloc, | |
|   so setting them has no effect. But this malloc also supports other | |
|   options in mallopt. See below for details.  Briefly, supported | |
|   parameters are as follows (listed defaults are for "typical" | |
|   configurations). | |
|  | |
|   Symbol            param #  default    allowed param values | |
|   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1 disables) | |
|   M_GRANULARITY        -2     page size   any power of 2 >= page size | |
|   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support) | |
| */ | |
| int dlmallopt(int, int); | |
| 
 | |
| /* | |
|   malloc_footprint(); | |
|   Returns the number of bytes obtained from the system.  The total | |
|   number of bytes allocated by malloc, realloc etc., is less than this | |
|   value. Unlike mallinfo, this function returns only a precomputed | |
|   result, so can be called frequently to monitor memory consumption. | |
|   Even if locks are otherwise defined, this function does not use them, | |
|   so results might not be up to date. | |
| */ | |
| size_t dlmalloc_footprint(void); | |
| 
 | |
| /* | |
|   malloc_max_footprint(); | |
|   Returns the maximum number of bytes obtained from the system. This | |
|   value will be greater than current footprint if deallocated space | |
|   has been reclaimed by the system. The peak number of bytes allocated | |
|   by malloc, realloc etc., is less than this value. Unlike mallinfo, | |
|   this function returns only a precomputed result, so can be called | |
|   frequently to monitor memory consumption.  Even if locks are | |
|   otherwise defined, this function does not use them, so results might | |
|   not be up to date. | |
| */ | |
| size_t dlmalloc_max_footprint(void); | |
| 
 | |
| #if !NO_MALLINFO | |
| /* | |
|   mallinfo() | |
|   Returns (by copy) a struct containing various summary statistics: | |
|  | |
|   arena:     current total non-mmapped bytes allocated from system | |
|   ordblks:   the number of free chunks | |
|   smblks:    always zero. | |
|   hblks:     current number of mmapped regions | |
|   hblkhd:    total bytes held in mmapped regions | |
|   usmblks:   the maximum total allocated space. This will be greater | |
|                 than current total if trimming has occurred. | |
|   fsmblks:   always zero | |
|   uordblks:  current total allocated space (normal or mmapped) | |
|   fordblks:  total free space | |
|   keepcost:  the maximum number of bytes that could ideally be released | |
|                back to system via malloc_trim. ("ideally" means that | |
|                it ignores page restrictions etc.) | |
|  | |
|   Because these fields are ints, but internal bookkeeping may | |
|   be kept as longs, the reported values may wrap around zero and | |
|   thus be inaccurate. | |
| */ | |
| struct mallinfo dlmallinfo(void); | |
| #endif /* NO_MALLINFO */ | |
|  | |
| /* | |
|   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); | |
|  | |
|   independent_calloc is similar to calloc, but instead of returning a | |
|   single cleared space, it returns an array of pointers to n_elements | |
|   independent elements that can hold contents of size elem_size, each | |
|   of which starts out cleared, and can be independently freed, | |
|   realloc'ed etc. The elements are guaranteed to be adjacently | |
|   allocated (this is not guaranteed to occur with multiple callocs or | |
|   mallocs), which may also improve cache locality in some | |
|   applications. | |
|  | |
|   The "chunks" argument is optional (i.e., may be null, which is | |
|   probably the most typical usage). If it is null, the returned array | |
|   is itself dynamically allocated and should also be freed when it is | |
|   no longer needed. Otherwise, the chunks array must be of at least | |
|   n_elements in length. It is filled in with the pointers to the | |
|   chunks. | |
|  | |
|   In either case, independent_calloc returns this pointer array, or | |
|   null if the allocation failed.  If n_elements is zero and "chunks" | |
|   is null, it returns a chunk representing an array with zero elements | |
|   (which should be freed if not wanted). | |
|  | |
|   Each element must be individually freed when it is no longer | |
|   needed. If you'd like to instead be able to free all at once, you | |
|   should instead use regular calloc and assign pointers into this | |
|   space to represent elements.  (In this case though, you cannot | |
|   independently free elements.) | |
|  | |
|   independent_calloc simplifies and speeds up implementations of many | |
|   kinds of pools.  It may also be useful when constructing large data | |
|   structures that initially have a fixed number of fixed-sized nodes, | |
|   but the number is not known at compile time, and some of the nodes | |
|   may later need to be freed. For example: | |
|  | |
|   struct Node { int item; struct Node* next; }; | |
|  | |
|   struct Node* build_list() { | |
|     struct Node** pool; | |
|     int n = read_number_of_nodes_needed(); | |
|     if (n <= 0) return 0; | |
|     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); | |
|     if (pool == 0) die(); | |
|     // organize into a linked list... | |
|     struct Node* first = pool[0]; | |
|     for (i = 0; i < n-1; ++i) | |
|       pool[i]->next = pool[i+1]; | |
|     free(pool);     // Can now free the array (or not, if it is needed later) | |
|     return first; | |
|   } | |
| */ | |
| void** dlindependent_calloc(size_t, size_t, void**); | |
| 
 | |
| /* | |
|   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); | |
|  | |
|   independent_comalloc allocates, all at once, a set of n_elements | |
|   chunks with sizes indicated in the "sizes" array.    It returns | |
|   an array of pointers to these elements, each of which can be | |
|   independently freed, realloc'ed etc. The elements are guaranteed to | |
|   be adjacently allocated (this is not guaranteed to occur with | |
|   multiple callocs or mallocs), which may also improve cache locality | |
|   in some applications. | |
|  | |
|   The "chunks" argument is optional (i.e., may be null). If it is null | |
|   the returned array is itself dynamically allocated and should also | |
|   be freed when it is no longer needed. Otherwise, the chunks array | |
|   must be of at least n_elements in length. It is filled in with the | |
|   pointers to the chunks. | |
|  | |
|   In either case, independent_comalloc returns this pointer array, or | |
|   null if the allocation failed.  If n_elements is zero and chunks is | |
|   null, it returns a chunk representing an array with zero elements | |
|   (which should be freed if not wanted). | |
|  | |
|   Each element must be individually freed when it is no longer | |
|   needed. If you'd like to instead be able to free all at once, you | |
|   should instead use a single regular malloc, and assign pointers at | |
|   particular offsets in the aggregate space. (In this case though, you | |
|   cannot independently free elements.) | |
|  | |
|   independent_comallac differs from independent_calloc in that each | |
|   element may have a different size, and also that it does not | |
|   automatically clear elements. | |
|  | |
|   independent_comalloc can be used to speed up allocation in cases | |
|   where several structs or objects must always be allocated at the | |
|   same time.  For example: | |
|  | |
|   struct Head { ... } | |
|   struct Foot { ... } | |
|  | |
|   void send_message(char* msg) { | |
|     int msglen = strlen(msg); | |
|     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; | |
|     void* chunks[3]; | |
|     if (independent_comalloc(3, sizes, chunks) == 0) | |
|       die(); | |
|     struct Head* head = (struct Head*)(chunks[0]); | |
|     char*        body = (char*)(chunks[1]); | |
|     struct Foot* foot = (struct Foot*)(chunks[2]); | |
|     // ... | |
|   } | |
|  | |
|   In general though, independent_comalloc is worth using only for | |
|   larger values of n_elements. For small values, you probably won't | |
|   detect enough difference from series of malloc calls to bother. | |
|  | |
|   Overuse of independent_comalloc can increase overall memory usage, | |
|   since it cannot reuse existing noncontiguous small chunks that | |
|   might be available for some of the elements. | |
| */ | |
| void** dlindependent_comalloc(size_t, size_t*, void**); | |
| 
 | |
| 
 | |
| /* | |
|   pvalloc(size_t n); | |
|   Equivalent to valloc(minimum-page-that-holds(n)), that is, | |
|   round up n to nearest pagesize. | |
|  */ | |
| void*  dlpvalloc(size_t); | |
| 
 | |
| /* | |
|   malloc_trim(size_t pad); | |
|  | |
|   If possible, gives memory back to the system (via negative arguments | |
|   to sbrk) if there is unused memory at the `high' end of the malloc | |
|   pool or in unused MMAP segments. You can call this after freeing | |
|   large blocks of memory to potentially reduce the system-level memory | |
|   requirements of a program. However, it cannot guarantee to reduce | |
|   memory. Under some allocation patterns, some large free blocks of | |
|   memory will be locked between two used chunks, so they cannot be | |
|   given back to the system. | |
|  | |
|   The `pad' argument to malloc_trim represents the amount of free | |
|   trailing space to leave untrimmed. If this argument is zero, only | |
|   the minimum amount of memory to maintain internal data structures | |
|   will be left. Non-zero arguments can be supplied to maintain enough | |
|   trailing space to service future expected allocations without having | |
|   to re-obtain memory from the system. | |
|  | |
|   Malloc_trim returns 1 if it actually released any memory, else 0. | |
| */ | |
| int  dlmalloc_trim(size_t); | |
| 
 | |
| /* | |
|   malloc_stats(); | |
|   Prints on stderr the amount of space obtained from the system (both | |
|   via sbrk and mmap), the maximum amount (which may be more than | |
|   current if malloc_trim and/or munmap got called), and the current | |
|   number of bytes allocated via malloc (or realloc, etc) but not yet | |
|   freed. Note that this is the number of bytes allocated, not the | |
|   number requested. It will be larger than the number requested | |
|   because of alignment and bookkeeping overhead. Because it includes | |
|   alignment wastage as being in use, this figure may be greater than | |
|   zero even when no user-level chunks are allocated. | |
|  | |
|   The reported current and maximum system memory can be inaccurate if | |
|   a program makes other calls to system memory allocation functions | |
|   (normally sbrk) outside of malloc. | |
|  | |
|   malloc_stats prints only the most commonly interesting statistics. | |
|   More information can be obtained by calling mallinfo. | |
| */ | |
| void  dlmalloc_stats(void); | |
| 
 | |
| #endif /* ONLY_MSPACES */ | |
|  | |
| /* | |
|   malloc_usable_size(void* p); | |
|  | |
|   Returns the number of bytes you can actually use in | |
|   an allocated chunk, which may be more than you requested (although | |
|   often not) due to alignment and minimum size constraints. | |
|   You can use this many bytes without worrying about | |
|   overwriting other allocated objects. This is not a particularly great | |
|   programming practice. malloc_usable_size can be more useful in | |
|   debugging and assertions, for example: | |
|  | |
|   p = malloc(n); | |
|   assert(malloc_usable_size(p) >= 256); | |
| */ | |
| size_t dlmalloc_usable_size(void*); | |
| 
 | |
| 
 | |
| #if MSPACES | |
|  | |
| /* | |
|   mspace is an opaque type representing an independent | |
|   region of space that supports mspace_malloc, etc. | |
| */ | |
| typedef void* mspace; | |
| 
 | |
| /* | |
|   create_mspace creates and returns a new independent space with the | |
|   given initial capacity, or, if 0, the default granularity size.  It | |
|   returns null if there is no system memory available to create the | |
|   space.  If argument locked is non-zero, the space uses a separate | |
|   lock to control access. The capacity of the space will grow | |
|   dynamically as needed to service mspace_malloc requests.  You can | |
|   control the sizes of incremental increases of this space by | |
|   compiling with a different DEFAULT_GRANULARITY or dynamically | |
|   setting with mallopt(M_GRANULARITY, value). | |
| */ | |
| mspace create_mspace(size_t capacity, int locked); | |
| 
 | |
| /* | |
|   destroy_mspace destroys the given space, and attempts to return all | |
|   of its memory back to the system, returning the total number of | |
|   bytes freed. After destruction, the results of access to all memory | |
|   used by the space become undefined. | |
| */ | |
| size_t destroy_mspace(mspace msp); | |
| 
 | |
| /* | |
|   create_mspace_with_base uses the memory supplied as the initial base | |
|   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this | |
|   space is used for bookkeeping, so the capacity must be at least this | |
|   large. (Otherwise 0 is returned.) When this initial space is | |
|   exhausted, additional memory will be obtained from the system. | |
|   Destroying this space will deallocate all additionally allocated | |
|   space (if possible) but not the initial base. | |
| */ | |
| mspace create_mspace_with_base(void* base, size_t capacity, int locked); | |
| 
 | |
| /* | |
|   mspace_track_large_chunks controls whether requests for large chunks | |
|   are allocated in their own untracked mmapped regions, separate from | |
|   others in this mspace. By default large chunks are not tracked, | |
|   which reduces fragmentation. However, such chunks are not | |
|   necessarily released to the system upon destroy_mspace.  Enabling | |
|   tracking by setting to true may increase fragmentation, but avoids | |
|   leakage when relying on destroy_mspace to release all memory | |
|   allocated using this space.  The function returns the previous | |
|   setting. | |
| */ | |
| int mspace_track_large_chunks(mspace msp, int enable); | |
| 
 | |
| 
 | |
| /* | |
|   mspace_malloc behaves as malloc, but operates within | |
|   the given space. | |
| */ | |
| void* mspace_malloc(mspace msp, size_t bytes); | |
| 
 | |
| /* | |
|   mspace_free behaves as free, but operates within | |
|   the given space. | |
|  | |
|   If compiled with FOOTERS==1, mspace_free is not actually needed. | |
|   free may be called instead of mspace_free because freed chunks from | |
|   any space are handled by their originating spaces. | |
| */ | |
| void mspace_free(mspace msp, void* mem); | |
| 
 | |
| /* | |
|   mspace_realloc behaves as realloc, but operates within | |
|   the given space. | |
|  | |
|   If compiled with FOOTERS==1, mspace_realloc is not actually | |
|   needed.  realloc may be called instead of mspace_realloc because | |
|   realloced chunks from any space are handled by their originating | |
|   spaces. | |
| */ | |
| void* mspace_realloc(mspace msp, void* mem, size_t newsize); | |
| 
 | |
| /* | |
|   mspace_calloc behaves as calloc, but operates within | |
|   the given space. | |
| */ | |
| void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); | |
| 
 | |
| /* | |
|   mspace_memalign behaves as memalign, but operates within | |
|   the given space. | |
| */ | |
| void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); | |
| 
 | |
| /* | |
|   mspace_independent_calloc behaves as independent_calloc, but | |
|   operates within the given space. | |
| */ | |
| void** mspace_independent_calloc(mspace msp, size_t n_elements, | |
|                                  size_t elem_size, void* chunks[]); | |
| 
 | |
| /* | |
|   mspace_independent_comalloc behaves as independent_comalloc, but | |
|   operates within the given space. | |
| */ | |
| void** mspace_independent_comalloc(mspace msp, size_t n_elements, | |
|                                    size_t sizes[], void* chunks[]); | |
| 
 | |
| /* | |
|   mspace_footprint() returns the number of bytes obtained from the | |
|   system for this space. | |
| */ | |
| size_t mspace_footprint(mspace msp); | |
| 
 | |
| /* | |
|   mspace_max_footprint() returns the peak number of bytes obtained from the | |
|   system for this space. | |
| */ | |
| size_t mspace_max_footprint(mspace msp); | |
| 
 | |
| 
 | |
| #if !NO_MALLINFO | |
| /* | |
|   mspace_mallinfo behaves as mallinfo, but reports properties of | |
|   the given space. | |
| */ | |
| struct mallinfo mspace_mallinfo(mspace msp); | |
| #endif /* NO_MALLINFO */ | |
|  | |
| /* | |
|   malloc_usable_size(void* p) behaves the same as malloc_usable_size; | |
| */ | |
|   size_t mspace_usable_size(void* mem); | |
| 
 | |
| /* | |
|   mspace_malloc_stats behaves as malloc_stats, but reports | |
|   properties of the given space. | |
| */ | |
| void mspace_malloc_stats(mspace msp); | |
| 
 | |
| /* | |
|   mspace_trim behaves as malloc_trim, but | |
|   operates within the given space. | |
| */ | |
| int mspace_trim(mspace msp, size_t pad); | |
| 
 | |
| /* | |
|   An alias for mallopt. | |
| */ | |
| int mspace_mallopt(int, int); | |
| 
 | |
| #endif /* MSPACES */ | |
|  | |
| #ifdef __cplusplus | |
| }  /* end of extern "C" */ | |
| #endif /* __cplusplus */ | |
|  | |
| /* | |
|   ======================================================================== | |
|   To make a fully customizable malloc.h header file, cut everything | |
|   above this line, put into file malloc.h, edit to suit, and #include it | |
|   on the next line, as well as in programs that use this malloc. | |
|   ======================================================================== | |
| */ | |
| 
 | |
| /* #include "malloc.h" */ | |
| 
 | |
| /*------------------------------ internal #includes ---------------------- */ | |
| 
 | |
| #ifdef WIN32 | |
| #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ | |
| #endif /* WIN32 */ | |
|  | |
| #include <stdio.h>       /* for printing in malloc_stats */ | |
|  | |
| #ifndef LACKS_ERRNO_H | |
| #include <errno.h>       /* for MALLOC_FAILURE_ACTION */ | |
| #endif /* LACKS_ERRNO_H */ | |
| /*#if FOOTERS || DEBUG | |
| */ | |
| #include <time.h>        /* for magic initialization */ | |
| /*#endif*/ /* FOOTERS */ | |
| #ifndef LACKS_STDLIB_H | |
| #include <stdlib.h>      /* for abort() */ | |
| #endif /* LACKS_STDLIB_H */ | |
| #ifdef DEBUG | |
| #if ABORT_ON_ASSERT_FAILURE | |
| #undef assert | |
| #define assert(x) if(!(x)) ABORT | |
| #else /* ABORT_ON_ASSERT_FAILURE */ | |
| #include <assert.h> | |
| #endif /* ABORT_ON_ASSERT_FAILURE */ | |
| #else  /* DEBUG */ | |
| #ifndef assert | |
| #define assert(x) | |
| #endif | |
| #define DEBUG 0 | |
| #endif /* DEBUG */ | |
| #ifndef LACKS_STRING_H | |
| #include <string.h>      /* for memset etc */ | |
| #endif  /* LACKS_STRING_H */ | |
| #if USE_BUILTIN_FFS | |
| #ifndef LACKS_STRINGS_H | |
| #include <strings.h>     /* for ffs */ | |
| #endif /* LACKS_STRINGS_H */ | |
| #endif /* USE_BUILTIN_FFS */ | |
| #if HAVE_MMAP | |
| #ifndef LACKS_SYS_MMAN_H | |
| /* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ | |
| #if (defined(linux) && !defined(__USE_GNU)) | |
| #define __USE_GNU 1 | |
| #include <sys/mman.h>    /* for mmap */ | |
| #undef __USE_GNU | |
| #else | |
| #include <sys/mman.h>    /* for mmap */ | |
| #endif /* linux */ | |
| #endif /* LACKS_SYS_MMAN_H */ | |
| #ifndef LACKS_FCNTL_H | |
| #include <fcntl.h> | |
| #endif /* LACKS_FCNTL_H */ | |
| #endif /* HAVE_MMAP */ | |
| #ifndef LACKS_UNISTD_H | |
| #include <unistd.h>     /* for sbrk, sysconf */ | |
| #else /* LACKS_UNISTD_H */ | |
| #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) | |
| extern void*     sbrk(ptrdiff_t); | |
| #endif /* FreeBSD etc */ | |
| #endif /* LACKS_UNISTD_H */ | |
|  | |
| /* Declarations for locking */ | |
| #if USE_LOCKS | |
| #ifndef WIN32 | |
| #include <pthread.h> | |
| #if defined (__SVR4) && defined (__sun)  /* solaris */ | |
| #include <thread.h> | |
| #endif /* solaris */ | |
| #else | |
| #ifndef _M_AMD64 | |
| /* These are already defined on AMD64 builds */ | |
| #ifdef __cplusplus | |
| extern "C" { | |
| #endif /* __cplusplus */ | |
| LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); | |
| LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); | |
| #ifdef __cplusplus | |
| } | |
| #endif /* __cplusplus */ | |
| #endif /* _M_AMD64 */ | |
| #pragma intrinsic (_InterlockedCompareExchange) | |
| #pragma intrinsic (_InterlockedExchange) | |
| #define interlockedcompareexchange _InterlockedCompareExchange | |
| #define interlockedexchange _InterlockedExchange | |
| #endif /* Win32 */ | |
| #endif /* USE_LOCKS */ | |
|  | |
| /* Declarations for bit scanning on win32 */ | |
| #if defined(_MSC_VER) && _MSC_VER>=1300 | |
| #ifndef BitScanForward	/* Try to avoid pulling in WinNT.h */ | |
| #ifdef __cplusplus | |
| extern "C" { | |
| #endif /* __cplusplus */ | |
| unsigned char _BitScanForward(unsigned long *index, unsigned long mask); | |
| unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); | |
| #ifdef __cplusplus | |
| } | |
| #endif /* __cplusplus */ | |
|  | |
| #define BitScanForward _BitScanForward | |
| #define BitScanReverse _BitScanReverse | |
| #pragma intrinsic(_BitScanForward) | |
| #pragma intrinsic(_BitScanReverse) | |
| #endif /* BitScanForward */ | |
| #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ | |
|  | |
| #ifndef WIN32 | |
| #ifndef malloc_getpagesize | |
| #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */ | |
| #    ifndef _SC_PAGE_SIZE | |
| #      define _SC_PAGE_SIZE _SC_PAGESIZE | |
| #    endif | |
| #  endif | |
| #  ifdef _SC_PAGE_SIZE | |
| #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE) | |
| #  else | |
| #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) | |
|        extern size_t getpagesize(); | |
| #      define malloc_getpagesize getpagesize() | |
| #    else | |
| #      ifdef WIN32 /* use supplied emulation of getpagesize */ | |
| #        define malloc_getpagesize getpagesize() | |
| #      else | |
| #        ifndef LACKS_SYS_PARAM_H | |
| #          include <sys/param.h> | |
| #        endif | |
| #        ifdef EXEC_PAGESIZE | |
| #          define malloc_getpagesize EXEC_PAGESIZE | |
| #        else | |
| #          ifdef NBPG | |
| #            ifndef CLSIZE | |
| #              define malloc_getpagesize NBPG | |
| #            else | |
| #              define malloc_getpagesize (NBPG * CLSIZE) | |
| #            endif | |
| #          else | |
| #            ifdef NBPC | |
| #              define malloc_getpagesize NBPC | |
| #            else | |
| #              ifdef PAGESIZE | |
| #                define malloc_getpagesize PAGESIZE | |
| #              else /* just guess */ | |
| #                define malloc_getpagesize ((size_t)4096U) | |
| #              endif | |
| #            endif | |
| #          endif | |
| #        endif | |
| #      endif | |
| #    endif | |
| #  endif | |
| #endif | |
| #endif | |
|  | |
| 
 | |
| 
 | |
| /* ------------------- size_t and alignment properties -------------------- */ | |
| 
 | |
| /* The byte and bit size of a size_t */ | |
| #define SIZE_T_SIZE         (sizeof(size_t)) | |
| #define SIZE_T_BITSIZE      (sizeof(size_t) << 3) | |
|  | |
| /* Some constants coerced to size_t */ | |
| /* Annoying but necessary to avoid errors on some platforms */ | |
| #define SIZE_T_ZERO         ((size_t)0) | |
| #define SIZE_T_ONE          ((size_t)1) | |
| #define SIZE_T_TWO          ((size_t)2) | |
| #define SIZE_T_FOUR         ((size_t)4) | |
| #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1) | |
| #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2) | |
| #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) | |
| #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U) | |
|  | |
| /* The bit mask value corresponding to MALLOC_ALIGNMENT */ | |
| #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE) | |
|  | |
| /* True if address a has acceptable alignment */ | |
| #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) | |
|  | |
| /* the number of bytes to offset an address to align it */ | |
| #define align_offset(A)\ | |
|  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ | |
|   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) | |
|  | |
| /* -------------------------- MMAP preliminaries ------------------------- */ | |
| 
 | |
| /* | |
|    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and | |
|    checks to fail so compiler optimizer can delete code rather than | |
|    using so many "#if"s. | |
| */ | |
| 
 | |
| 
 | |
| /* MORECORE and MMAP must return MFAIL on failure */ | |
| #define MFAIL                ((void*)(MAX_SIZE_T)) | |
| #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */ | |
|  | |
| #if HAVE_MMAP | |
|  | |
| #ifndef WIN32 | |
| #define MUNMAP_DEFAULT(a, s)  munmap((a), (s)) | |
| #define MMAP_PROT            (PROT_READ|PROT_WRITE) | |
| #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) | |
| #define MAP_ANONYMOUS        MAP_ANON | |
| #endif /* MAP_ANON */ | |
| #ifdef MAP_ANONYMOUS | |
| #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS) | |
| #define MMAP_DEFAULT(s)       mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) | |
| #else /* MAP_ANONYMOUS */ | |
| /* | |
|    Nearly all versions of mmap support MAP_ANONYMOUS, so the following | |
|    is unlikely to be needed, but is supplied just in case. | |
| */ | |
| #define MMAP_FLAGS           (MAP_PRIVATE) | |
| static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ | |
| #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ | |
|            (dev_zero_fd = open("/dev/zero", O_RDWR), \ | |
|             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ | |
|             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) | |
| #endif /* MAP_ANONYMOUS */ | |
|  | |
| #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) | |
|  | |
| #else /* WIN32 */ | |
|  | |
| /* Win32 MMAP via VirtualAlloc */ | |
| static FORCEINLINE void* win32mmap(size_t size) { | |
|   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); | |
|   return (ptr != 0)? ptr: MFAIL; | |
| } | |
| 
 | |
| /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ | |
| static FORCEINLINE void* win32direct_mmap(size_t size) { | |
|   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, | |
|                            PAGE_READWRITE); | |
|   return (ptr != 0)? ptr: MFAIL; | |
| } | |
| 
 | |
| /* This function supports releasing coalesed segments */ | |
| static FORCEINLINE int win32munmap(void* ptr, size_t size) { | |
|   MEMORY_BASIC_INFORMATION minfo; | |
|   char* cptr = (char*)ptr; | |
|   while (size) { | |
|     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) | |
|       return -1; | |
|     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || | |
|         minfo.State != MEM_COMMIT || minfo.RegionSize > size) | |
|       return -1; | |
|     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) | |
|       return -1; | |
|     cptr += minfo.RegionSize; | |
|     size -= minfo.RegionSize; | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| #define MMAP_DEFAULT(s)             win32mmap(s) | |
| #define MUNMAP_DEFAULT(a, s)        win32munmap((a), (s)) | |
| #define DIRECT_MMAP_DEFAULT(s)      win32direct_mmap(s) | |
| #endif /* WIN32 */ | |
| #endif /* HAVE_MMAP */ | |
|  | |
| #if HAVE_MREMAP | |
| #ifndef WIN32 | |
| #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) | |
| #endif /* WIN32 */ | |
| #endif /* HAVE_MREMAP */ | |
|  | |
| 
 | |
| /** | |
|  * Define CALL_MORECORE | |
|  */ | |
| #if HAVE_MORECORE | |
|     #ifdef MORECORE | |
|         #define CALL_MORECORE(S)    MORECORE(S) | |
|     #else  /* MORECORE */ | |
|         #define CALL_MORECORE(S)    MORECORE_DEFAULT(S) | |
|     #endif /* MORECORE */ | |
| #else  /* HAVE_MORECORE */ | |
|     #define CALL_MORECORE(S)        MFAIL | |
| #endif /* HAVE_MORECORE */ | |
|  | |
| /** | |
|  * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP | |
|  */ | |
| #if HAVE_MMAP | |
|     #define USE_MMAP_BIT            (SIZE_T_ONE) | |
|  | |
|     #ifdef MMAP | |
|         #define CALL_MMAP(s)        MMAP(s) | |
|     #else /* MMAP */ | |
|         #define CALL_MMAP(s)        MMAP_DEFAULT(s) | |
|     #endif /* MMAP */ | |
|     #ifdef MUNMAP | |
|         #define CALL_MUNMAP(a, s)   MUNMAP((a), (s)) | |
|     #else /* MUNMAP */ | |
|         #define CALL_MUNMAP(a, s)   MUNMAP_DEFAULT((a), (s)) | |
|     #endif /* MUNMAP */ | |
|     #ifdef DIRECT_MMAP | |
|         #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) | |
|     #else /* DIRECT_MMAP */ | |
|         #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) | |
|     #endif /* DIRECT_MMAP */ | |
| #else  /* HAVE_MMAP */ | |
|     #define USE_MMAP_BIT            (SIZE_T_ZERO) | |
|  | |
|     #define MMAP(s)                 MFAIL | |
|     #define MUNMAP(a, s)            (-1) | |
|     #define DIRECT_MMAP(s)          MFAIL | |
|     #define CALL_DIRECT_MMAP(s)     DIRECT_MMAP(s) | |
|     #define CALL_MMAP(s)            MMAP(s) | |
|     #define CALL_MUNMAP(a, s)       MUNMAP((a), (s)) | |
| #endif /* HAVE_MMAP */ | |
|  | |
| /** | |
|  * Define CALL_MREMAP | |
|  */ | |
| #if HAVE_MMAP && HAVE_MREMAP | |
|     #ifdef MREMAP | |
|         #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) | |
|     #else /* MREMAP */ | |
|         #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) | |
|     #endif /* MREMAP */ | |
| #else  /* HAVE_MMAP && HAVE_MREMAP */ | |
|     #define CALL_MREMAP(addr, osz, nsz, mv)     MFAIL | |
| #endif /* HAVE_MMAP && HAVE_MREMAP */ | |
|  | |
| /* mstate bit set if continguous morecore disabled or failed */ | |
| #define USE_NONCONTIGUOUS_BIT (4U) | |
|  | |
| /* segment bit set in create_mspace_with_base */ | |
| #define EXTERN_BIT            (8U) | |
|  | |
| 
 | |
| /* --------------------------- Lock preliminaries ------------------------ */ | |
| 
 | |
| /* | |
|   When locks are defined, there is one global lock, plus | |
|   one per-mspace lock. | |
|  | |
|   The global lock_ensures that mparams.magic and other unique | |
|   mparams values are initialized only once. It also protects | |
|   sequences of calls to MORECORE.  In many cases sys_alloc requires | |
|   two calls, that should not be interleaved with calls by other | |
|   threads.  This does not protect against direct calls to MORECORE | |
|   by other threads not using this lock, so there is still code to | |
|   cope the best we can on interference. | |
|  | |
|   Per-mspace locks surround calls to malloc, free, etc.  To enable use | |
|   in layered extensions, per-mspace locks are reentrant. | |
|  | |
|   Because lock-protected regions generally have bounded times, it is | |
|   OK to use the supplied simple spinlocks in the custom versions for | |
|   x86. Spinlocks are likely to improve performance for lightly | |
|   contended applications, but worsen performance under heavy | |
|   contention. | |
|  | |
|   If USE_LOCKS is > 1, the definitions of lock routines here are | |
|   bypassed, in which case you will need to define the type MLOCK_T, | |
|   and at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly | |
|   TRY_LOCK (which is not used in this malloc, but commonly needed in | |
|   extensions.)  You must also declare a | |
|     static MLOCK_T malloc_global_mutex = { initialization values };. | |
|  | |
| */ | |
| 
 | |
| #if USE_LOCKS == 1 | |
|  | |
| #if USE_SPIN_LOCKS && SPIN_LOCKS_AVAILABLE | |
| #ifndef WIN32 | |
|  | |
| /* Custom pthread-style spin locks on x86 and x64 for gcc */ | |
| struct pthread_mlock_t { | |
|   volatile unsigned int l; | |
|   unsigned int c; | |
|   pthread_t threadid; | |
| }; | |
| #define MLOCK_T               struct pthread_mlock_t | |
| #define CURRENT_THREAD        pthread_self() | |
| #define INITIAL_LOCK(sl)      ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0) | |
| #define ACQUIRE_LOCK(sl)      pthread_acquire_lock(sl) | |
| #define RELEASE_LOCK(sl)      pthread_release_lock(sl) | |
| #define TRY_LOCK(sl)          pthread_try_lock(sl) | |
| #define SPINS_PER_YIELD       63 | |
|  | |
| static MLOCK_T malloc_global_mutex = { 0, 0, 0}; | |
| 
 | |
| static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { | |
|   int spins = 0; | |
|   volatile unsigned int* lp = &sl->l; | |
|   for (;;) { | |
|     if (*lp != 0) { | |
|       if (sl->threadid == CURRENT_THREAD) { | |
|         ++sl->c; | |
|         return 0; | |
|       } | |
|     } | |
|     else { | |
|       /* place args to cmpxchgl in locals to evade oddities in some gccs */ | |
|       int cmp = 0; | |
|       int val = 1; | |
|       int ret; | |
|       __asm__ __volatile__  ("lock; cmpxchgl %1, %2" | |
|                              : "=a" (ret) | |
|                              : "r" (val), "m" (*(lp)), "0"(cmp) | |
|                              : "memory", "cc"); | |
|       if (!ret) { | |
|         assert(!sl->threadid); | |
|         sl->threadid = CURRENT_THREAD; | |
|         sl->c = 1; | |
|         return 0; | |
|       } | |
|     } | |
|     if ((++spins & SPINS_PER_YIELD) == 0) { | |
| #if defined (__SVR4) && defined (__sun) /* solaris */ | |
|       thr_yield(); | |
| #else | |
| #if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__) | |
|       sched_yield(); | |
| #else  /* no-op yield on unknown systems */ | |
|       ; | |
| #endif /* __linux__ || __FreeBSD__ || __APPLE__ */ | |
| #endif /* solaris */ | |
|     } | |
|   } | |
| } | |
| 
 | |
| static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { | |
|   volatile unsigned int* lp = &sl->l; | |
|   assert(*lp != 0); | |
|   assert(sl->threadid == CURRENT_THREAD); | |
|   if (--sl->c == 0) { | |
|     sl->threadid = 0; | |
|     int prev = 0; | |
|     int ret; | |
|     __asm__ __volatile__ ("lock; xchgl %0, %1" | |
|                           : "=r" (ret) | |
|                           : "m" (*(lp)), "0"(prev) | |
|                           : "memory"); | |
|   } | |
| } | |
| 
 | |
| static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { | |
|   volatile unsigned int* lp = &sl->l; | |
|   if (*lp != 0) { | |
|     if (sl->threadid == CURRENT_THREAD) { | |
|       ++sl->c; | |
|       return 1; | |
|     } | |
|   } | |
|   else { | |
|     int cmp = 0; | |
|     int val = 1; | |
|     int ret; | |
|     __asm__ __volatile__  ("lock; cmpxchgl %1, %2" | |
|                            : "=a" (ret) | |
|                            : "r" (val), "m" (*(lp)), "0"(cmp) | |
|                            : "memory", "cc"); | |
|     if (!ret) { | |
|       assert(!sl->threadid); | |
|       sl->threadid = CURRENT_THREAD; | |
|       sl->c = 1; | |
|       return 1; | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| 
 | |
| #else /* WIN32 */ | |
| /* Custom win32-style spin locks on x86 and x64 for MSC */ | |
| struct win32_mlock_t { | |
|   volatile long l; | |
|   unsigned int c; | |
|   long threadid; | |
| }; | |
| 
 | |
| #define MLOCK_T               struct win32_mlock_t | |
| #define CURRENT_THREAD        GetCurrentThreadId() | |
| #define INITIAL_LOCK(sl)      ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0) | |
| #define ACQUIRE_LOCK(sl)      win32_acquire_lock(sl) | |
| #define RELEASE_LOCK(sl)      win32_release_lock(sl) | |
| #define TRY_LOCK(sl)          win32_try_lock(sl) | |
| #define SPINS_PER_YIELD       63 | |
|  | |
| static MLOCK_T malloc_global_mutex = { 0, 0, 0}; | |
| 
 | |
| static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) { | |
|   int spins = 0; | |
|   for (;;) { | |
|     if (sl->l != 0) { | |
|       if (sl->threadid == CURRENT_THREAD) { | |
|         ++sl->c; | |
|         return 0; | |
|       } | |
|     } | |
|     else { | |
|       if (!interlockedexchange(&sl->l, 1)) { | |
|         assert(!sl->threadid); | |
|         sl->threadid = CURRENT_THREAD; | |
|         sl->c = 1; | |
|         return 0; | |
|       } | |
|     } | |
|     if ((++spins & SPINS_PER_YIELD) == 0) | |
|       SleepEx(0, FALSE); | |
|   } | |
| } | |
| 
 | |
| static FORCEINLINE void win32_release_lock (MLOCK_T *sl) { | |
|   assert(sl->threadid == CURRENT_THREAD); | |
|   assert(sl->l != 0); | |
|   if (--sl->c == 0) { | |
|     sl->threadid = 0; | |
|     interlockedexchange (&sl->l, 0); | |
|   } | |
| } | |
| 
 | |
| static FORCEINLINE int win32_try_lock (MLOCK_T *sl) { | |
|   if (sl->l != 0) { | |
|     if (sl->threadid == CURRENT_THREAD) { | |
|       ++sl->c; | |
|       return 1; | |
|     } | |
|   } | |
|   else { | |
|     if (!interlockedexchange(&sl->l, 1)){ | |
|       assert(!sl->threadid); | |
|       sl->threadid = CURRENT_THREAD; | |
|       sl->c = 1; | |
|       return 1; | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| #endif /* WIN32 */ | |
| #else /* USE_SPIN_LOCKS */ | |
|  | |
| #ifndef WIN32 | |
| /* pthreads-based locks */ | |
| 
 | |
| #define MLOCK_T               pthread_mutex_t | |
| #define CURRENT_THREAD        pthread_self() | |
| #define INITIAL_LOCK(sl)      pthread_init_lock(sl) | |
| #define ACQUIRE_LOCK(sl)      pthread_mutex_lock(sl) | |
| #define RELEASE_LOCK(sl)      pthread_mutex_unlock(sl) | |
| #define TRY_LOCK(sl)          (!pthread_mutex_trylock(sl)) | |
|  | |
| static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; | |
| 
 | |
| /* Cope with old-style linux recursive lock initialization by adding */ | |
| /* skipped internal declaration from pthread.h */ | |
| #ifdef linux | |
| #ifndef PTHREAD_MUTEX_RECURSIVE | |
| extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, | |
| 					   int __kind)); | |
| #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP | |
| #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) | |
| #endif | |
| #endif | |
|  | |
| static int pthread_init_lock (MLOCK_T *sl) { | |
|   pthread_mutexattr_t attr; | |
|   if (pthread_mutexattr_init(&attr)) return 1; | |
|   if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; | |
|   if (pthread_mutex_init(sl, &attr)) return 1; | |
|   if (pthread_mutexattr_destroy(&attr)) return 1; | |
|   return 0; | |
| } | |
| 
 | |
| #else /* WIN32 */ | |
| /* Win32 critical sections */ | |
| #define MLOCK_T               CRITICAL_SECTION | |
| #define CURRENT_THREAD        GetCurrentThreadId() | |
| #define INITIAL_LOCK(s)       (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000)) | |
| #define ACQUIRE_LOCK(s)       (EnterCriticalSection(sl), 0) | |
| #define RELEASE_LOCK(s)       LeaveCriticalSection(sl) | |
| #define TRY_LOCK(s)           TryEnterCriticalSection(sl) | |
| #define NEED_GLOBAL_LOCK_INIT | |
|  | |
| static MLOCK_T malloc_global_mutex; | |
| static volatile long malloc_global_mutex_status; | |
| 
 | |
| /* Use spin loop to initialize global lock */ | |
| static void init_malloc_global_mutex() { | |
|   for (;;) { | |
|     long stat = malloc_global_mutex_status; | |
|     if (stat > 0) | |
|       return; | |
|     /* transition to < 0 while initializing, then to > 0) */ | |
|     if (stat == 0 && | |
|         interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) { | |
|       InitializeCriticalSection(&malloc_global_mutex); | |
|       interlockedexchange(&malloc_global_mutex_status,1); | |
|       return; | |
|     } | |
|     SleepEx(0, FALSE); | |
|   } | |
| } | |
| 
 | |
| #endif /* WIN32 */ | |
| #endif /* USE_SPIN_LOCKS */ | |
| #endif /* USE_LOCKS == 1 */ | |
|  | |
| /* -----------------------  User-defined locks ------------------------ */ | |
| 
 | |
| #if USE_LOCKS > 1 | |
| /* Define your own lock implementation here */ | |
| /* #define INITIAL_LOCK(sl)  ... */ | |
| /* #define ACQUIRE_LOCK(sl)  ... */ | |
| /* #define RELEASE_LOCK(sl)  ... */ | |
| /* #define TRY_LOCK(sl) ... */ | |
| /* static MLOCK_T malloc_global_mutex = ... */ | |
| #endif /* USE_LOCKS > 1 */ | |
|  | |
| /* -----------------------  Lock-based state ------------------------ */ | |
| 
 | |
| #if USE_LOCKS | |
| #define USE_LOCK_BIT               (2U) | |
| #else  /* USE_LOCKS */ | |
| #define USE_LOCK_BIT               (0U) | |
| #define INITIAL_LOCK(l) | |
| #endif /* USE_LOCKS */ | |
|  | |
| #if USE_LOCKS | |
| #ifndef ACQUIRE_MALLOC_GLOBAL_LOCK | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK()  ACQUIRE_LOCK(&malloc_global_mutex); | |
| #endif | |
| #ifndef RELEASE_MALLOC_GLOBAL_LOCK | |
| #define RELEASE_MALLOC_GLOBAL_LOCK()  RELEASE_LOCK(&malloc_global_mutex); | |
| #endif | |
| #else  /* USE_LOCKS */ | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK() | |
| #define RELEASE_MALLOC_GLOBAL_LOCK() | |
| #endif /* USE_LOCKS */ | |
|  | |
| 
 | |
| /* -----------------------  Chunk representations ------------------------ */ | |
| 
 | |
| /* | |
|   (The following includes lightly edited explanations by Colin Plumb.) | |
|  | |
|   The malloc_chunk declaration below is misleading (but accurate and | |
|   necessary).  It declares a "view" into memory allowing access to | |
|   necessary fields at known offsets from a given base. | |
|  | |
|   Chunks of memory are maintained using a `boundary tag' method as | |
|   originally described by Knuth.  (See the paper by Paul Wilson | |
|   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such | |
|   techniques.)  Sizes of free chunks are stored both in the front of | |
|   each chunk and at the end.  This makes consolidating fragmented | |
|   chunks into bigger chunks fast.  The head fields also hold bits | |
|   representing whether chunks are free or in use. | |
|  | |
|   Here are some pictures to make it clearer.  They are "exploded" to | |
|   show that the state of a chunk can be thought of as extending from | |
|   the high 31 bits of the head field of its header through the | |
|   prev_foot and PINUSE_BIT bit of the following chunk header. | |
|  | |
|   A chunk that's in use looks like: | |
|  | |
|    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|            | Size of previous chunk (if P = 0)                             | | |
|            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | |
|          | Size of this chunk                                         1| +-+ | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          |                                                               | | |
|          +-                                                             -+ | |
|          |                                                               | | |
|          +-                                                             -+ | |
|          |                                                               : | |
|          +-      size - sizeof(size_t) available payload bytes          -+ | |
|          :                                                               | | |
|  chunk-> +-                                                             -+ | |
|          |                                                               | | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| | |
|        | Size of next chunk (may or may not be in use)               | +-+ | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|  | |
|     And if it's free, it looks like this: | |
|  | |
|    chunk-> +-                                                             -+ | |
|            | User payload (must be in use, or we would have merged!)       | | |
|            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | |
|          | Size of this chunk                                         0| +-+ | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          | Next pointer                                                  | | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          | Prev pointer                                                  | | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          |                                                               : | |
|          +-      size - sizeof(struct chunk) unused bytes               -+ | |
|          :                                                               | | |
|  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|          | Size of this chunk                                            | | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| | |
|        | Size of next chunk (must be in use, or we would have merged)| +-+ | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|        |                                                               : | |
|        +- User payload                                                -+ | |
|        :                                                               | | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|                                                                      |0| | |
|                                                                      +-+ | |
|   Note that since we always merge adjacent free chunks, the chunks | |
|   adjacent to a free chunk must be in use. | |
|  | |
|   Given a pointer to a chunk (which can be derived trivially from the | |
|   payload pointer) we can, in O(1) time, find out whether the adjacent | |
|   chunks are free, and if so, unlink them from the lists that they | |
|   are on and merge them with the current chunk. | |
|  | |
|   Chunks always begin on even word boundaries, so the mem portion | |
|   (which is returned to the user) is also on an even word boundary, and | |
|   thus at least double-word aligned. | |
|  | |
|   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the | |
|   chunk size (which is always a multiple of two words), is an in-use | |
|   bit for the *previous* chunk.  If that bit is *clear*, then the | |
|   word before the current chunk size contains the previous chunk | |
|   size, and can be used to find the front of the previous chunk. | |
|   The very first chunk allocated always has this bit set, preventing | |
|   access to non-existent (or non-owned) memory. If pinuse is set for | |
|   any given chunk, then you CANNOT determine the size of the | |
|   previous chunk, and might even get a memory addressing fault when | |
|   trying to do so. | |
|  | |
|   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of | |
|   the chunk size redundantly records whether the current chunk is | |
|   inuse (unless the chunk is mmapped). This redundancy enables usage | |
|   checks within free and realloc, and reduces indirection when freeing | |
|   and consolidating chunks. | |
|  | |
|   Each freshly allocated chunk must have both cinuse and pinuse set. | |
|   That is, each allocated chunk borders either a previously allocated | |
|   and still in-use chunk, or the base of its memory arena. This is | |
|   ensured by making all allocations from the the `lowest' part of any | |
|   found chunk.  Further, no free chunk physically borders another one, | |
|   so each free chunk is known to be preceded and followed by either | |
|   inuse chunks or the ends of memory. | |
|  | |
|   Note that the `foot' of the current chunk is actually represented | |
|   as the prev_foot of the NEXT chunk. This makes it easier to | |
|   deal with alignments etc but can be very confusing when trying | |
|   to extend or adapt this code. | |
|  | |
|   The exceptions to all this are | |
|  | |
|      1. The special chunk `top' is the top-most available chunk (i.e., | |
|         the one bordering the end of available memory). It is treated | |
|         specially.  Top is never included in any bin, is used only if | |
|         no other chunk is available, and is released back to the | |
|         system if it is very large (see M_TRIM_THRESHOLD).  In effect, | |
|         the top chunk is treated as larger (and thus less well | |
|         fitting) than any other available chunk.  The top chunk | |
|         doesn't update its trailing size field since there is no next | |
|         contiguous chunk that would have to index off it. However, | |
|         space is still allocated for it (TOP_FOOT_SIZE) to enable | |
|         separation or merging when space is extended. | |
|  | |
|      3. Chunks allocated via mmap, have both cinuse and pinuse bits | |
|         cleared in their head fields.  Because they are allocated | |
|         one-by-one, each must carry its own prev_foot field, which is | |
|         also used to hold the offset this chunk has within its mmapped | |
|         region, which is needed to preserve alignment. Each mmapped | |
|         chunk is trailed by the first two fields of a fake next-chunk | |
|         for sake of usage checks. | |
|  | |
| */ | |
| 
 | |
| struct malloc_chunk { | |
|   size_t               prev_foot;  /* Size of previous chunk (if free).  */ | |
|   size_t               head;       /* Size and inuse bits. */ | |
|   struct malloc_chunk* fd;         /* double links -- used only if free. */ | |
|   struct malloc_chunk* bk; | |
| }; | |
| 
 | |
| typedef struct malloc_chunk  mchunk; | |
| typedef struct malloc_chunk* mchunkptr; | |
| typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */ | |
| typedef unsigned int bindex_t;         /* Described below */ | |
| typedef unsigned int binmap_t;         /* Described below */ | |
| typedef unsigned int flag_t;           /* The type of various bit flag sets */ | |
| 
 | |
| /* ------------------- Chunks sizes and alignments ----------------------- */ | |
| 
 | |
| #define MCHUNK_SIZE         (sizeof(mchunk)) | |
|  | |
| #if FOOTERS | |
| #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES) | |
| #else /* FOOTERS */ | |
| #define CHUNK_OVERHEAD      (SIZE_T_SIZE) | |
| #endif /* FOOTERS */ | |
|  | |
| /* MMapped chunks need a second word of overhead ... */ | |
| #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) | |
| /* ... and additional padding for fake next-chunk at foot */ | |
| #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES) | |
|  | |
| /* The smallest size we can malloc is an aligned minimal chunk */ | |
| #define MIN_CHUNK_SIZE\ | |
|   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) | |
|  | |
| /* conversion from malloc headers to user pointers, and back */ | |
| #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES)) | |
| #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) | |
| /* chunk associated with aligned address A */ | |
| #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A))) | |
|  | |
| /* Bounds on request (not chunk) sizes. */ | |
| #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2) | |
| #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) | |
|  | |
| /* pad request bytes into a usable size */ | |
| #define pad_request(req) \ | |
|    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) | |
|  | |
| /* pad request, checking for minimum (but not maximum) */ | |
| #define request2size(req) \ | |
|   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) | |
|  | |
| 
 | |
| /* ------------------ Operations on head and foot fields ----------------- */ | |
| 
 | |
| /* | |
|   The head field of a chunk is or'ed with PINUSE_BIT when previous | |
|   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in | |
|   use, unless mmapped, in which case both bits are cleared. | |
|  | |
|   FLAG4_BIT is not used by this malloc, but might be useful in extensions. | |
| */ | |
| 
 | |
| #define PINUSE_BIT          (SIZE_T_ONE) | |
| #define CINUSE_BIT          (SIZE_T_TWO) | |
| #define FLAG4_BIT           (SIZE_T_FOUR) | |
| #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT) | |
| #define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) | |
|  | |
| /* Head value for fenceposts */ | |
| #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE) | |
|  | |
| /* extraction of fields from head words */ | |
| #define cinuse(p)           ((p)->head & CINUSE_BIT) | |
| #define pinuse(p)           ((p)->head & PINUSE_BIT) | |
| #define is_inuse(p)         (((p)->head & INUSE_BITS) != PINUSE_BIT) | |
| #define is_mmapped(p)       (((p)->head & INUSE_BITS) == 0) | |
|  | |
| #define chunksize(p)        ((p)->head & ~(FLAG_BITS)) | |
|  | |
| #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT) | |
|  | |
| /* Treat space at ptr +/- offset as a chunk */ | |
| #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s))) | |
| #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) | |
|  | |
| /* Ptr to next or previous physical malloc_chunk. */ | |
| #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) | |
| #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) | |
|  | |
| /* extract next chunk's pinuse bit */ | |
| #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT) | |
|  | |
| /* Get/set size at footer */ | |
| #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot) | |
| #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) | |
|  | |
| /* Set size, pinuse bit, and foot */ | |
| #define set_size_and_pinuse_of_free_chunk(p, s)\ | |
|   ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) | |
|  | |
| /* Set size, pinuse bit, foot, and clear next pinuse */ | |
| #define set_free_with_pinuse(p, s, n)\ | |
|   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) | |
|  | |
| /* Get the internal overhead associated with chunk p */ | |
| #define overhead_for(p)\ | |
|  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) | |
|  | |
| /* Return true if malloced space is not necessarily cleared */ | |
| #if MMAP_CLEARS | |
| #define calloc_must_clear(p) (!is_mmapped(p)) | |
| #else /* MMAP_CLEARS */ | |
| #define calloc_must_clear(p) (1) | |
| #endif /* MMAP_CLEARS */ | |
|  | |
| /* ---------------------- Overlaid data structures ----------------------- */ | |
| 
 | |
| /* | |
|   When chunks are not in use, they are treated as nodes of either | |
|   lists or trees. | |
|  | |
|   "Small"  chunks are stored in circular doubly-linked lists, and look | |
|   like this: | |
|  | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Size of previous chunk                            | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|     `head:' |             Size of chunk, in bytes                         |P| | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Forward pointer to next chunk in list             | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Back pointer to previous chunk in list            | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Unused space (may be 0 bytes long)                . | |
|             .                                                               . | |
|             .                                                               | | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|     `foot:' |             Size of chunk, in bytes                           | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|  | |
|   Larger chunks are kept in a form of bitwise digital trees (aka | |
|   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for | |
|   free chunks greater than 256 bytes, their size doesn't impose any | |
|   constraints on user chunk sizes.  Each node looks like: | |
|  | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Size of previous chunk                            | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|     `head:' |             Size of chunk, in bytes                         |P| | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Forward pointer to next chunk of same size        | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Back pointer to previous chunk of same size       | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Pointer to left child (child[0])                  | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Pointer to right child (child[1])                 | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Pointer to parent                                 | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             bin index of this chunk                           | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|             |             Unused space                                      . | |
|             .                                                               | | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|     `foot:' |             Size of chunk, in bytes                           | | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
|  | |
|   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks | |
|   of the same size are arranged in a circularly-linked list, with only | |
|   the oldest chunk (the next to be used, in our FIFO ordering) | |
|   actually in the tree.  (Tree members are distinguished by a non-null | |
|   parent pointer.)  If a chunk with the same size an an existing node | |
|   is inserted, it is linked off the existing node using pointers that | |
|   work in the same way as fd/bk pointers of small chunks. | |
|  | |
|   Each tree contains a power of 2 sized range of chunk sizes (the | |
|   smallest is 0x100 <= x < 0x180), which is is divided in half at each | |
|   tree level, with the chunks in the smaller half of the range (0x100 | |
|   <= x < 0x140 for the top nose) in the left subtree and the larger | |
|   half (0x140 <= x < 0x180) in the right subtree.  This is, of course, | |
|   done by inspecting individual bits. | |
|  | |
|   Using these rules, each node's left subtree contains all smaller | |
|   sizes than its right subtree.  However, the node at the root of each | |
|   subtree has no particular ordering relationship to either.  (The | |
|   dividing line between the subtree sizes is based on trie relation.) | |
|   If we remove the last chunk of a given size from the interior of the | |
|   tree, we need to replace it with a leaf node.  The tree ordering | |
|   rules permit a node to be replaced by any leaf below it. | |
|  | |
|   The smallest chunk in a tree (a common operation in a best-fit | |
|   allocator) can be found by walking a path to the leftmost leaf in | |
|   the tree.  Unlike a usual binary tree, where we follow left child | |
|   pointers until we reach a null, here we follow the right child | |
|   pointer any time the left one is null, until we reach a leaf with | |
|   both child pointers null. The smallest chunk in the tree will be | |
|   somewhere along that path. | |
|  | |
|   The worst case number of steps to add, find, or remove a node is | |
|   bounded by the number of bits differentiating chunks within | |
|   bins. Under current bin calculations, this ranges from 6 up to 21 | |
|   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case | |
|   is of course much better. | |
| */ | |
| 
 | |
| struct malloc_tree_chunk { | |
|   /* The first four fields must be compatible with malloc_chunk */ | |
|   size_t                    prev_foot; | |
|   size_t                    head; | |
|   struct malloc_tree_chunk* fd; | |
|   struct malloc_tree_chunk* bk; | |
| 
 | |
|   struct malloc_tree_chunk* child[2]; | |
|   struct malloc_tree_chunk* parent; | |
|   bindex_t                  index; | |
| }; | |
| 
 | |
| typedef struct malloc_tree_chunk  tchunk; | |
| typedef struct malloc_tree_chunk* tchunkptr; | |
| typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ | |
| 
 | |
| /* A little helper macro for trees */ | |
| #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) | |
|  | |
| /* ----------------------------- Segments -------------------------------- */ | |
| 
 | |
| /* | |
|   Each malloc space may include non-contiguous segments, held in a | |
|   list headed by an embedded malloc_segment record representing the | |
|   top-most space. Segments also include flags holding properties of | |
|   the space. Large chunks that are directly allocated by mmap are not | |
|   included in this list. They are instead independently created and | |
|   destroyed without otherwise keeping track of them. | |
|  | |
|   Segment management mainly comes into play for spaces allocated by | |
|   MMAP.  Any call to MMAP might or might not return memory that is | |
|   adjacent to an existing segment.  MORECORE normally contiguously | |
|   extends the current space, so this space is almost always adjacent, | |
|   which is simpler and faster to deal with. (This is why MORECORE is | |
|   used preferentially to MMAP when both are available -- see | |
|   sys_alloc.)  When allocating using MMAP, we don't use any of the | |
|   hinting mechanisms (inconsistently) supported in various | |
|   implementations of unix mmap, or distinguish reserving from | |
|   committing memory. Instead, we just ask for space, and exploit | |
|   contiguity when we get it.  It is probably possible to do | |
|   better than this on some systems, but no general scheme seems | |
|   to be significantly better. | |
|  | |
|   Management entails a simpler variant of the consolidation scheme | |
|   used for chunks to reduce fragmentation -- new adjacent memory is | |
|   normally prepended or appended to an existing segment. However, | |
|   there are limitations compared to chunk consolidation that mostly | |
|   reflect the fact that segment processing is relatively infrequent | |
|   (occurring only when getting memory from system) and that we | |
|   don't expect to have huge numbers of segments: | |
|  | |
|   * Segments are not indexed, so traversal requires linear scans.  (It | |
|     would be possible to index these, but is not worth the extra | |
|     overhead and complexity for most programs on most platforms.) | |
|   * New segments are only appended to old ones when holding top-most | |
|     memory; if they cannot be prepended to others, they are held in | |
|     different segments. | |
|  | |
|   Except for the top-most segment of an mstate, each segment record | |
|   is kept at the tail of its segment. Segments are added by pushing | |
|   segment records onto the list headed by &mstate.seg for the | |
|   containing mstate. | |
|  | |
|   Segment flags control allocation/merge/deallocation policies: | |
|   * If EXTERN_BIT set, then we did not allocate this segment, | |
|     and so should not try to deallocate or merge with others. | |
|     (This currently holds only for the initial segment passed | |
|     into create_mspace_with_base.) | |
|   * If USE_MMAP_BIT set, the segment may be merged with | |
|     other surrounding mmapped segments and trimmed/de-allocated | |
|     using munmap. | |
|   * If neither bit is set, then the segment was obtained using | |
|     MORECORE so can be merged with surrounding MORECORE'd segments | |
|     and deallocated/trimmed using MORECORE with negative arguments. | |
| */ | |
| 
 | |
| struct malloc_segment { | |
|   char*        base;             /* base address */ | |
|   size_t       size;             /* allocated size */ | |
|   struct malloc_segment* next;   /* ptr to next segment */ | |
|   flag_t       sflags;           /* mmap and extern flag */ | |
| }; | |
| 
 | |
| #define is_mmapped_segment(S)  ((S)->sflags & USE_MMAP_BIT) | |
| #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT) | |
|  | |
| typedef struct malloc_segment  msegment; | |
| typedef struct malloc_segment* msegmentptr; | |
| 
 | |
| /* ---------------------------- malloc_state ----------------------------- */ | |
| 
 | |
| /* | |
|    A malloc_state holds all of the bookkeeping for a space. | |
|    The main fields are: | |
|  | |
|   Top | |
|     The topmost chunk of the currently active segment. Its size is | |
|     cached in topsize.  The actual size of topmost space is | |
|     topsize+TOP_FOOT_SIZE, which includes space reserved for adding | |
|     fenceposts and segment records if necessary when getting more | |
|     space from the system.  The size at which to autotrim top is | |
|     cached from mparams in trim_check, except that it is disabled if | |
|     an autotrim fails. | |
|  | |
|   Designated victim (dv) | |
|     This is the preferred chunk for servicing small requests that | |
|     don't have exact fits.  It is normally the chunk split off most | |
|     recently to service another small request.  Its size is cached in | |
|     dvsize. The link fields of this chunk are not maintained since it | |
|     is not kept in a bin. | |
|  | |
|   SmallBins | |
|     An array of bin headers for free chunks.  These bins hold chunks | |
|     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains | |
|     chunks of all the same size, spaced 8 bytes apart.  To simplify | |
|     use in double-linked lists, each bin header acts as a malloc_chunk | |
|     pointing to the real first node, if it exists (else pointing to | |
|     itself).  This avoids special-casing for headers.  But to avoid | |
|     waste, we allocate only the fd/bk pointers of bins, and then use | |
|     repositioning tricks to treat these as the fields of a chunk. | |
|  | |
|   TreeBins | |
|     Treebins are pointers to the roots of trees holding a range of | |
|     sizes. There are 2 equally spaced treebins for each power of two | |
|     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything | |
|     larger. | |
|  | |
|   Bin maps | |
|     There is one bit map for small bins ("smallmap") and one for | |
|     treebins ("treemap).  Each bin sets its bit when non-empty, and | |
|     clears the bit when empty.  Bit operations are then used to avoid | |
|     bin-by-bin searching -- nearly all "search" is done without ever | |
|     looking at bins that won't be selected.  The bit maps | |
|     conservatively use 32 bits per map word, even if on 64bit system. | |
|     For a good description of some of the bit-based techniques used | |
|     here, see Henry S. Warren Jr's book "Hacker's Delight" (and | |
|     supplement at http://hackersdelight.org/). Many of these are | |
|     intended to reduce the branchiness of paths through malloc etc, as | |
|     well as to reduce the number of memory locations read or written. | |
|  | |
|   Segments | |
|     A list of segments headed by an embedded malloc_segment record | |
|     representing the initial space. | |
|  | |
|   Address check support | |
|     The least_addr field is the least address ever obtained from | |
|     MORECORE or MMAP. Attempted frees and reallocs of any address less | |
|     than this are trapped (unless INSECURE is defined). | |
|  | |
|   Magic tag | |
|     A cross-check field that should always hold same value as mparams.magic. | |
|  | |
|   Flags | |
|     Bits recording whether to use MMAP, locks, or contiguous MORECORE | |
|  | |
|   Statistics | |
|     Each space keeps track of current and maximum system memory | |
|     obtained via MORECORE or MMAP. | |
|  | |
|   Trim support | |
|     Fields holding the amount of unused topmost memory that should trigger | |
|     timming, and a counter to force periodic scanning to release unused | |
|     non-topmost segments. | |
|  | |
|   Locking | |
|     If USE_LOCKS is defined, the "mutex" lock is acquired and released | |
|     around every public call using this mspace. | |
|  | |
|   Extension support | |
|     A void* pointer and a size_t field that can be used to help implement | |
|     extensions to this malloc. | |
| */ | |
| 
 | |
| /* Bin types, widths and sizes */ | |
| #define NSMALLBINS        (32U) | |
| #define NTREEBINS         (32U) | |
| #define SMALLBIN_SHIFT    (3U) | |
| #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT) | |
| #define TREEBIN_SHIFT     (8U) | |
| #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT) | |
| #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE) | |
| #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) | |
|  | |
| struct malloc_state { | |
|   binmap_t   smallmap; | |
|   binmap_t   treemap; | |
|   size_t     dvsize; | |
|   size_t     topsize; | |
|   char*      least_addr; | |
|   mchunkptr  dv; | |
|   mchunkptr  top; | |
|   size_t     trim_check; | |
|   size_t     release_checks; | |
|   size_t     magic; | |
|   mchunkptr  smallbins[(NSMALLBINS+1)*2]; | |
|   tbinptr    treebins[NTREEBINS]; | |
|   size_t     footprint; | |
|   size_t     max_footprint; | |
|   flag_t     mflags; | |
| #if USE_LOCKS | |
|   MLOCK_T    mutex;     /* locate lock among fields that rarely change */ | |
| #endif /* USE_LOCKS */ | |
|   msegment   seg; | |
|   void*      extp;      /* Unused but available for extensions */ | |
|   size_t     exts; | |
| }; | |
| 
 | |
| typedef struct malloc_state*    mstate; | |
| 
 | |
| /* ------------- Global malloc_state and malloc_params ------------------- */ | |
| 
 | |
| /* | |
|   malloc_params holds global properties, including those that can be | |
|   dynamically set using mallopt. There is a single instance, mparams, | |
|   initialized in init_mparams. Note that the non-zeroness of "magic" | |
|   also serves as an initialization flag. | |
| */ | |
| 
 | |
| struct malloc_params { | |
|   volatile size_t magic; | |
|   size_t page_size; | |
|   size_t granularity; | |
|   size_t mmap_threshold; | |
|   size_t trim_threshold; | |
|   flag_t default_mflags; | |
| }; | |
| 
 | |
| static struct malloc_params mparams; | |
| 
 | |
| /* Ensure mparams initialized */ | |
| #define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) | |
|  | |
| #if !ONLY_MSPACES | |
|  | |
| /* The global malloc_state used for all non-"mspace" calls */ | |
| static struct malloc_state _gm_; | |
| #define gm                 (&_gm_) | |
| #define is_global(M)       ((M) == &_gm_) | |
|  | |
| #endif /* !ONLY_MSPACES */ | |
|  | |
| #define is_initialized(M)  ((M)->top != 0) | |
|  | |
| /* -------------------------- system alloc setup ------------------------- */ | |
| 
 | |
| /* Operations on mflags */ | |
| 
 | |
| #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT) | |
| #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT) | |
| #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT) | |
|  | |
| #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT) | |
| #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT) | |
| #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT) | |
|  | |
| #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT) | |
| #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT) | |
|  | |
| #define set_lock(M,L)\ | |
|  ((M)->mflags = (L)?\ | |
|   ((M)->mflags | USE_LOCK_BIT) :\ | |
|   ((M)->mflags & ~USE_LOCK_BIT)) | |
|  | |
| /* page-align a size */ | |
| #define page_align(S)\ | |
|  (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) | |
|  | |
| /* granularity-align a size */ | |
| #define granularity_align(S)\ | |
|   (((S) + (mparams.granularity - SIZE_T_ONE))\ | |
|    & ~(mparams.granularity - SIZE_T_ONE)) | |
|  | |
| 
 | |
| /* For mmap, use granularity alignment on windows, else page-align */ | |
| #ifdef WIN32 | |
| #define mmap_align(S) granularity_align(S) | |
| #else | |
| #define mmap_align(S) page_align(S) | |
| #endif | |
|  | |
| /* For sys_alloc, enough padding to ensure can malloc request on success */ | |
| #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) | |
|  | |
| #define is_page_aligned(S)\ | |
|    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) | |
| #define is_granularity_aligned(S)\ | |
|    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) | |
|  | |
| /*  True if segment S holds address A */ | |
| #define segment_holds(S, A)\ | |
|   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) | |
|  | |
| /* Return segment holding given address */ | |
| static msegmentptr segment_holding(mstate m, char* addr) { | |
|   msegmentptr sp = &m->seg; | |
|   for (;;) { | |
|     if (addr >= sp->base && addr < sp->base + sp->size) | |
|       return sp; | |
|     if ((sp = sp->next) == 0) | |
|       return 0; | |
|   } | |
| } | |
| 
 | |
| /* Return true if segment contains a segment link */ | |
| static int has_segment_link(mstate m, msegmentptr ss) { | |
|   msegmentptr sp = &m->seg; | |
|   for (;;) { | |
|     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) | |
|       return 1; | |
|     if ((sp = sp->next) == 0) | |
|       return 0; | |
|   } | |
| } | |
| 
 | |
| #ifndef MORECORE_CANNOT_TRIM | |
| #define should_trim(M,s)  ((s) > (M)->trim_check) | |
| #else  /* MORECORE_CANNOT_TRIM */ | |
| #define should_trim(M,s)  (0) | |
| #endif /* MORECORE_CANNOT_TRIM */ | |
|  | |
| /* | |
|   TOP_FOOT_SIZE is padding at the end of a segment, including space | |
|   that may be needed to place segment records and fenceposts when new | |
|   noncontiguous segments are added. | |
| */ | |
| #define TOP_FOOT_SIZE\ | |
|   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) | |
|  | |
| 
 | |
| /* -------------------------------  Hooks -------------------------------- */ | |
| 
 | |
| /* | |
|   PREACTION should be defined to return 0 on success, and nonzero on | |
|   failure. If you are not using locking, you can redefine these to do | |
|   anything you like. | |
| */ | |
| 
 | |
| #if USE_LOCKS | |
|  | |
| #define PREACTION(M)  ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) | |
| #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } | |
| #else /* USE_LOCKS */ | |
|  | |
| #ifndef PREACTION | |
| #define PREACTION(M) (0) | |
| #endif  /* PREACTION */ | |
|  | |
| #ifndef POSTACTION | |
| #define POSTACTION(M) | |
| #endif  /* POSTACTION */ | |
|  | |
| #endif /* USE_LOCKS */ | |
|  | |
| /* | |
|   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. | |
|   USAGE_ERROR_ACTION is triggered on detected bad frees and | |
|   reallocs. The argument p is an address that might have triggered the | |
|   fault. It is ignored by the two predefined actions, but might be | |
|   useful in custom actions that try to help diagnose errors. | |
| */ | |
| 
 | |
| #if PROCEED_ON_ERROR | |
|  | |
| /* A count of the number of corruption errors causing resets */ | |
| int malloc_corruption_error_count; | |
| 
 | |
| /* default corruption action */ | |
| static void reset_on_error(mstate m); | |
| 
 | |
| #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m) | |
| #define USAGE_ERROR_ACTION(m, p) | |
|  | |
| #else /* PROCEED_ON_ERROR */ | |
|  | |
| #ifndef CORRUPTION_ERROR_ACTION | |
| #define CORRUPTION_ERROR_ACTION(m) ABORT | |
| #endif /* CORRUPTION_ERROR_ACTION */ | |
|  | |
| #ifndef USAGE_ERROR_ACTION | |
| #define USAGE_ERROR_ACTION(m,p) ABORT | |
| #endif /* USAGE_ERROR_ACTION */ | |
|  | |
| #endif /* PROCEED_ON_ERROR */ | |
|  | |
| /* -------------------------- Debugging setup ---------------------------- */ | |
| 
 | |
| #if ! DEBUG | |
|  | |
| #define check_free_chunk(M,P) | |
| #define check_inuse_chunk(M,P) | |
| #define check_malloced_chunk(M,P,N) | |
| #define check_mmapped_chunk(M,P) | |
| #define check_malloc_state(M) | |
| #define check_top_chunk(M,P) | |
|  | |
| #else /* DEBUG */ | |
| #define check_free_chunk(M,P)       do_check_free_chunk(M,P) | |
| #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P) | |
| #define check_top_chunk(M,P)        do_check_top_chunk(M,P) | |
| #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) | |
| #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P) | |
| #define check_malloc_state(M)       do_check_malloc_state(M) | |
|  | |
| static void   do_check_any_chunk(mstate m, mchunkptr p); | |
| static void   do_check_top_chunk(mstate m, mchunkptr p); | |
| static void   do_check_mmapped_chunk(mstate m, mchunkptr p); | |
| static void   do_check_inuse_chunk(mstate m, mchunkptr p); | |
| static void   do_check_free_chunk(mstate m, mchunkptr p); | |
| static void   do_check_malloced_chunk(mstate m, void* mem, size_t s); | |
| static void   do_check_tree(mstate m, tchunkptr t); | |
| static void   do_check_treebin(mstate m, bindex_t i); | |
| static void   do_check_smallbin(mstate m, bindex_t i); | |
| static void   do_check_malloc_state(mstate m); | |
| static int    bin_find(mstate m, mchunkptr x); | |
| static size_t traverse_and_check(mstate m); | |
| #endif /* DEBUG */ | |
|  | |
| /* ---------------------------- Indexing Bins ---------------------------- */ | |
| 
 | |
| #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) | |
| #define small_index(s)      ((s)  >> SMALLBIN_SHIFT) | |
| #define small_index2size(i) ((i)  << SMALLBIN_SHIFT) | |
| #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE)) | |
|  | |
| /* addressing by index. See above about smallbin repositioning */ | |
| #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) | |
| #define treebin_at(M,i)     (&((M)->treebins[i])) | |
|  | |
| /* assign tree index for size S to variable I. Use x86 asm if possible  */ | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) | |
| #define compute_tree_index(S, I)\ | |
| {\ | |
|   unsigned int X = S >> TREEBIN_SHIFT;\ | |
|   if (X == 0)\ | |
|     I = 0;\ | |
|   else if (X > 0xFFFF)\ | |
|     I = NTREEBINS-1;\ | |
|   else {\ | |
|     unsigned int K;\ | |
|     __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g"  (X));\ | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | |
|   }\ | |
| } | |
|  | |
| #elif defined (__INTEL_COMPILER) | |
| #define compute_tree_index(S, I)\ | |
| {\ | |
|   size_t X = S >> TREEBIN_SHIFT;\ | |
|   if (X == 0)\ | |
|     I = 0;\ | |
|   else if (X > 0xFFFF)\ | |
|     I = NTREEBINS-1;\ | |
|   else {\ | |
|     unsigned int K = _bit_scan_reverse (X); \ | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | |
|   }\ | |
| } | |
|  | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300 | |
| #define compute_tree_index(S, I)\ | |
| {\ | |
|   size_t X = S >> TREEBIN_SHIFT;\ | |
|   if (X == 0)\ | |
|     I = 0;\ | |
|   else if (X > 0xFFFF)\ | |
|     I = NTREEBINS-1;\ | |
|   else {\ | |
|     unsigned int K;\ | |
|     _BitScanReverse((DWORD *) &K, X);\ | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ | |
|   }\ | |
| } | |
|  | |
| #else /* GNUC */ | |
| #define compute_tree_index(S, I)\ | |
| {\ | |
|   size_t X = S >> TREEBIN_SHIFT;\ | |
|   if (X == 0)\ | |
|     I = 0;\ | |
|   else if (X > 0xFFFF)\ | |
|     I = NTREEBINS-1;\ | |
|   else {\ | |
|     unsigned int Y = (unsigned int)X;\ | |
|     unsigned int N = ((Y - 0x100) >> 16) & 8;\ | |
|     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ | |
|     N += K;\ | |
|     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ | |
|     K = 14 - N + ((Y <<= K) >> 15);\ | |
|     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ | |
|   }\ | |
| } | |
| #endif /* GNUC */ | |
|  | |
| /* Bit representing maximum resolved size in a treebin at i */ | |
| #define bit_for_tree_index(i) \ | |
|    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) | |
|  | |
| /* Shift placing maximum resolved bit in a treebin at i as sign bit */ | |
| #define leftshift_for_tree_index(i) \ | |
|    ((i == NTREEBINS-1)? 0 : \ | |
|     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) | |
|  | |
| /* The size of the smallest chunk held in bin with index i */ | |
| #define minsize_for_tree_index(i) \ | |
|    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \ | |
|    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) | |
|  | |
| 
 | |
| /* ------------------------ Operations on bin maps ----------------------- */ | |
| 
 | |
| /* bit corresponding to given index */ | |
| #define idx2bit(i)              ((binmap_t)(1) << (i)) | |
|  | |
| /* Mark/Clear bits with given index */ | |
| #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i)) | |
| #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i)) | |
| #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i)) | |
|  | |
| #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i)) | |
| #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i)) | |
| #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i)) | |
|  | |
| /* isolate the least set bit of a bitmap */ | |
| #define least_bit(x)         ((x) & -(x)) | |
|  | |
| /* mask with all bits to left of least bit of x on */ | |
| #define left_bits(x)         ((x<<1) | -(x<<1)) | |
|  | |
| /* mask with all bits to left of or equal to least bit of x on */ | |
| #define same_or_left_bits(x) ((x) | -(x)) | |
|  | |
| /* index corresponding to given bit. Use x86 asm if possible */ | |
| 
 | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) | |
| #define compute_bit2idx(X, I)\ | |
| {\ | |
|   unsigned int J;\ | |
|   __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\ | |
|   I = (bindex_t)J;\ | |
| } | |
|  | |
| #elif defined (__INTEL_COMPILER) | |
| #define compute_bit2idx(X, I)\ | |
| {\ | |
|   unsigned int J;\ | |
|   J = _bit_scan_forward (X); \ | |
|   I = (bindex_t)J;\ | |
| } | |
|  | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300 | |
| #define compute_bit2idx(X, I)\ | |
| {\ | |
|   unsigned int J;\ | |
|   _BitScanForward((DWORD *) &J, X);\ | |
|   I = (bindex_t)J;\ | |
| } | |
|  | |
| #elif USE_BUILTIN_FFS | |
| #define compute_bit2idx(X, I) I = ffs(X)-1 | |
|  | |
| #else | |
| #define compute_bit2idx(X, I)\ | |
| {\ | |
|   unsigned int Y = X - 1;\ | |
|   unsigned int K = Y >> (16-4) & 16;\ | |
|   unsigned int N = K;        Y >>= K;\ | |
|   N += K = Y >> (8-3) &  8;  Y >>= K;\ | |
|   N += K = Y >> (4-2) &  4;  Y >>= K;\ | |
|   N += K = Y >> (2-1) &  2;  Y >>= K;\ | |
|   N += K = Y >> (1-0) &  1;  Y >>= K;\ | |
|   I = (bindex_t)(N + Y);\ | |
| } | |
| #endif /* GNUC */ | |
|  | |
| 
 | |
| /* ----------------------- Runtime Check Support ------------------------- */ | |
| 
 | |
| /* | |
|   For security, the main invariant is that malloc/free/etc never | |
|   writes to a static address other than malloc_state, unless static | |
|   malloc_state itself has been corrupted, which cannot occur via | |
|   malloc (because of these checks). In essence this means that we | |
|   believe all pointers, sizes, maps etc held in malloc_state, but | |
|   check all of those linked or offsetted from other embedded data | |
|   structures.  These checks are interspersed with main code in a way | |
|   that tends to minimize their run-time cost. | |
|  | |
|   When FOOTERS is defined, in addition to range checking, we also | |
|   verify footer fields of inuse chunks, which can be used guarantee | |
|   that the mstate controlling malloc/free is intact.  This is a | |
|   streamlined version of the approach described by William Robertson | |
|   et al in "Run-time Detection of Heap-based Overflows" LISA'03 | |
|   http://www.usenix.org/events/lisa03/tech/robertson.html The footer | |
|   of an inuse chunk holds the xor of its mstate and a random seed, | |
|   that is checked upon calls to free() and realloc().  This is | |
|   (probablistically) unguessable from outside the program, but can be | |
|   computed by any code successfully malloc'ing any chunk, so does not | |
|   itself provide protection against code that has already broken | |
|   security through some other means.  Unlike Robertson et al, we | |
|   always dynamically check addresses of all offset chunks (previous, | |
|   next, etc). This turns out to be cheaper than relying on hashes. | |
| */ | |
| 
 | |
| #if !INSECURE | |
| /* Check if address a is at least as high as any from MORECORE or MMAP */ | |
| #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) | |
| /* Check if address of next chunk n is higher than base chunk p */ | |
| #define ok_next(p, n)    ((char*)(p) < (char*)(n)) | |
| /* Check if p has inuse status */ | |
| #define ok_inuse(p)     is_inuse(p) | |
| /* Check if p has its pinuse bit on */ | |
| #define ok_pinuse(p)     pinuse(p) | |
|  | |
| #else /* !INSECURE */ | |
| #define ok_address(M, a) (1) | |
| #define ok_next(b, n)    (1) | |
| #define ok_inuse(p)      (1) | |
| #define ok_pinuse(p)     (1) | |
| #endif /* !INSECURE */ | |
|  | |
| #if (FOOTERS && !INSECURE) | |
| /* Check if (alleged) mstate m has expected magic field */ | |
| #define ok_magic(M)      ((M)->magic == mparams.magic) | |
| #else  /* (FOOTERS && !INSECURE) */ | |
| #define ok_magic(M)      (1) | |
| #endif /* (FOOTERS && !INSECURE) */ | |
|  | |
| 
 | |
| /* In gcc, use __builtin_expect to minimize impact of checks */ | |
| #if !INSECURE | |
| #if defined(__GNUC__) && __GNUC__ >= 3 | |
| #define RTCHECK(e)  __builtin_expect(e, 1) | |
| #else /* GNUC */ | |
| #define RTCHECK(e)  (e) | |
| #endif /* GNUC */ | |
| #else /* !INSECURE */ | |
| #define RTCHECK(e)  (1) | |
| #endif /* !INSECURE */ | |
|  | |
| /* macros to set up inuse chunks with or without footers */ | |
| 
 | |
| #if !FOOTERS | |
|  | |
| #define mark_inuse_foot(M,p,s) | |
|  | |
| /* Macros for setting head/foot of non-mmapped chunks */ | |
| 
 | |
| /* Set cinuse bit and pinuse bit of next chunk */ | |
| #define set_inuse(M,p,s)\ | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) | |
|  | |
| /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ | |
| #define set_inuse_and_pinuse(M,p,s)\ | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) | |
|  | |
| /* Set size, cinuse and pinuse bit of this chunk */ | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) | |
|  | |
| #else /* FOOTERS */ | |
|  | |
| /* Set foot of inuse chunk to be xor of mstate and seed */ | |
| #define mark_inuse_foot(M,p,s)\ | |
|   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) | |
|  | |
| #define get_mstate_for(p)\ | |
|   ((mstate)(((mchunkptr)((char*)(p) +\ | |
|     (chunksize(p))))->prev_foot ^ mparams.magic)) | |
|  | |
| #define set_inuse(M,p,s)\ | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ | |
|   mark_inuse_foot(M,p,s)) | |
|  | |
| #define set_inuse_and_pinuse(M,p,s)\ | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ | |
|  mark_inuse_foot(M,p,s)) | |
|  | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ | |
|   mark_inuse_foot(M, p, s)) | |
|  | |
| #endif /* !FOOTERS */ | |
|  | |
| /* ---------------------------- setting mparams -------------------------- */ | |
| 
 | |
| /* Initialize mparams */ | |
| static int init_mparams(void) { | |
| #ifdef NEED_GLOBAL_LOCK_INIT | |
|   if (malloc_global_mutex_status <= 0) | |
|     init_malloc_global_mutex(); | |
| #endif | |
|  | |
|   ACQUIRE_MALLOC_GLOBAL_LOCK(); | |
|   if (mparams.magic == 0) { | |
|     size_t magic; | |
|     size_t psize; | |
|     size_t gsize; | |
| 
 | |
| #ifndef WIN32 | |
|     psize = malloc_getpagesize; | |
|     gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); | |
| #else /* WIN32 */ | |
|     { | |
|       SYSTEM_INFO system_info; | |
|       GetSystemInfo(&system_info); | |
|       psize = system_info.dwPageSize; | |
|       gsize = ((DEFAULT_GRANULARITY != 0)? | |
|                DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); | |
|     } | |
| #endif /* WIN32 */ | |
|  | |
|     /* Sanity-check configuration: | |
|        size_t must be unsigned and as wide as pointer type. | |
|        ints must be at least 4 bytes. | |
|        alignment must be at least 8. | |
|        Alignment, min chunk size, and page size must all be powers of 2. | |
|     */ | |
|     if ((sizeof(size_t) != sizeof(char*)) || | |
|         (MAX_SIZE_T < MIN_CHUNK_SIZE)  || | |
|         (sizeof(int) < 4)  || | |
|         (MALLOC_ALIGNMENT < (size_t)8U) || | |
|         ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || | |
|         ((MCHUNK_SIZE      & (MCHUNK_SIZE-SIZE_T_ONE))      != 0) || | |
|         ((gsize            & (gsize-SIZE_T_ONE))            != 0) || | |
|         ((psize            & (psize-SIZE_T_ONE))            != 0)) | |
|       ABORT; | |
| 
 | |
|     mparams.granularity = gsize; | |
|     mparams.page_size = psize; | |
|     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
|     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
| #if MORECORE_CONTIGUOUS | |
|     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; | |
| #else  /* MORECORE_CONTIGUOUS */ | |
|     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; | |
| #endif /* MORECORE_CONTIGUOUS */ | |
|  | |
| #if !ONLY_MSPACES | |
|     /* Set up lock for main malloc area */ | |
|     gm->mflags = mparams.default_mflags; | |
|     INITIAL_LOCK(&gm->mutex); | |
| #endif | |
|  | |
|     { | |
| #if USE_DEV_RANDOM | |
|       int fd; | |
|       unsigned char buf[sizeof(size_t)]; | |
|       /* Try to use /dev/urandom, else fall back on using time */ | |
|       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && | |
|           read(fd, buf, sizeof(buf)) == sizeof(buf)) { | |
|         magic = *((size_t *) buf); | |
|         close(fd); | |
|       } | |
|       else | |
| #endif /* USE_DEV_RANDOM */ | |
| #ifdef WIN32 | |
|         magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); | |
| #else | |
|         magic = (size_t)(time(0) ^ (size_t)0x55555555U); | |
| #endif | |
|       magic |= (size_t)8U;    /* ensure nonzero */ | |
|       magic &= ~(size_t)7U;   /* improve chances of fault for bad values */ | |
|       mparams.magic = magic; | |
|     } | |
|   } | |
| 
 | |
|   RELEASE_MALLOC_GLOBAL_LOCK(); | |
|   return 1; | |
| } | |
| 
 | |
| /* support for mallopt */ | |
| static int change_mparam(int param_number, int value) { | |
|   size_t val; | |
|   ensure_initialization(); | |
|   val = (value == -1)? MAX_SIZE_T : (size_t)value; | |
|   switch(param_number) { | |
|   case M_TRIM_THRESHOLD: | |
|     mparams.trim_threshold = val; | |
|     return 1; | |
|   case M_GRANULARITY: | |
|     if (val >= mparams.page_size && ((val & (val-1)) == 0)) { | |
|       mparams.granularity = val; | |
|       return 1; | |
|     } | |
|     else | |
|       return 0; | |
|   case M_MMAP_THRESHOLD: | |
|     mparams.mmap_threshold = val; | |
|     return 1; | |
|   default: | |
|     return 0; | |
|   } | |
| } | |
| 
 | |
| #if DEBUG | |
| /* ------------------------- Debugging Support --------------------------- */ | |
| 
 | |
| /* Check properties of any chunk, whether free, inuse, mmapped etc  */ | |
| static void do_check_any_chunk(mstate m, mchunkptr p) { | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | |
|   assert(ok_address(m, p)); | |
| } | |
| 
 | |
| /* Check properties of top chunk */ | |
| static void do_check_top_chunk(mstate m, mchunkptr p) { | |
|   msegmentptr sp = segment_holding(m, (char*)p); | |
|   size_t  sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ | |
|   assert(sp != 0); | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | |
|   assert(ok_address(m, p)); | |
|   assert(sz == m->topsize); | |
|   assert(sz > 0); | |
|   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); | |
|   assert(pinuse(p)); | |
|   assert(!pinuse(chunk_plus_offset(p, sz))); | |
| } | |
| 
 | |
| /* Check properties of (inuse) mmapped chunks */ | |
| static void do_check_mmapped_chunk(mstate m, mchunkptr p) { | |
|   size_t  sz = chunksize(p); | |
|   size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); | |
|   assert(is_mmapped(p)); | |
|   assert(use_mmap(m)); | |
|   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); | |
|   assert(ok_address(m, p)); | |
|   assert(!is_small(sz)); | |
|   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); | |
|   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); | |
|   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); | |
| } | |
| 
 | |
| /* Check properties of inuse chunks */ | |
| static void do_check_inuse_chunk(mstate m, mchunkptr p) { | |
|   do_check_any_chunk(m, p); | |
|   assert(is_inuse(p)); | |
|   assert(next_pinuse(p)); | |
|   /* If not pinuse and not mmapped, previous chunk has OK offset */ | |
|   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); | |
|   if (is_mmapped(p)) | |
|     do_check_mmapped_chunk(m, p); | |
| } | |
| 
 | |
| /* Check properties of free chunks */ | |
| static void do_check_free_chunk(mstate m, mchunkptr p) { | |
|   size_t sz = chunksize(p); | |
|   mchunkptr next = chunk_plus_offset(p, sz); | |
|   do_check_any_chunk(m, p); | |
|   assert(!is_inuse(p)); | |
|   assert(!next_pinuse(p)); | |
|   assert (!is_mmapped(p)); | |
|   if (p != m->dv && p != m->top) { | |
|     if (sz >= MIN_CHUNK_SIZE) { | |
|       assert((sz & CHUNK_ALIGN_MASK) == 0); | |
|       assert(is_aligned(chunk2mem(p))); | |
|       assert(next->prev_foot == sz); | |
|       assert(pinuse(p)); | |
|       assert (next == m->top || is_inuse(next)); | |
|       assert(p->fd->bk == p); | |
|       assert(p->bk->fd == p); | |
|     } | |
|     else  /* markers are always of size SIZE_T_SIZE */ | |
|       assert(sz == SIZE_T_SIZE); | |
|   } | |
| } | |
| 
 | |
| /* Check properties of malloced chunks at the point they are malloced */ | |
| static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { | |
|   if (mem != 0) { | |
|     mchunkptr p = mem2chunk(mem); | |
|     size_t sz = p->head & ~INUSE_BITS; | |
|     do_check_inuse_chunk(m, p); | |
|     assert((sz & CHUNK_ALIGN_MASK) == 0); | |
|     assert(sz >= MIN_CHUNK_SIZE); | |
|     assert(sz >= s); | |
|     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ | |
|     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); | |
|   } | |
| } | |
| 
 | |
| /* Check a tree and its subtrees.  */ | |
| static void do_check_tree(mstate m, tchunkptr t) { | |
|   tchunkptr head = 0; | |
|   tchunkptr u = t; | |
|   bindex_t tindex = t->index; | |
|   size_t tsize = chunksize(t); | |
|   bindex_t idx; | |
|   compute_tree_index(tsize, idx); | |
|   assert(tindex == idx); | |
|   assert(tsize >= MIN_LARGE_SIZE); | |
|   assert(tsize >= minsize_for_tree_index(idx)); | |
|   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); | |
| 
 | |
|   do { /* traverse through chain of same-sized nodes */ | |
|     do_check_any_chunk(m, ((mchunkptr)u)); | |
|     assert(u->index == tindex); | |
|     assert(chunksize(u) == tsize); | |
|     assert(!is_inuse(u)); | |
|     assert(!next_pinuse(u)); | |
|     assert(u->fd->bk == u); | |
|     assert(u->bk->fd == u); | |
|     if (u->parent == 0) { | |
|       assert(u->child[0] == 0); | |
|       assert(u->child[1] == 0); | |
|     } | |
|     else { | |
|       assert(head == 0); /* only one node on chain has parent */ | |
|       head = u; | |
|       assert(u->parent != u); | |
|       assert (u->parent->child[0] == u || | |
|               u->parent->child[1] == u || | |
|               *((tbinptr*)(u->parent)) == u); | |
|       if (u->child[0] != 0) { | |
|         assert(u->child[0]->parent == u); | |
|         assert(u->child[0] != u); | |
|         do_check_tree(m, u->child[0]); | |
|       } | |
|       if (u->child[1] != 0) { | |
|         assert(u->child[1]->parent == u); | |
|         assert(u->child[1] != u); | |
|         do_check_tree(m, u->child[1]); | |
|       } | |
|       if (u->child[0] != 0 && u->child[1] != 0) { | |
|         assert(chunksize(u->child[0]) < chunksize(u->child[1])); | |
|       } | |
|     } | |
|     u = u->fd; | |
|   } while (u != t); | |
|   assert(head != 0); | |
| } | |
| 
 | |
| /*  Check all the chunks in a treebin.  */ | |
| static void do_check_treebin(mstate m, bindex_t i) { | |
|   tbinptr* tb = treebin_at(m, i); | |
|   tchunkptr t = *tb; | |
|   int empty = (m->treemap & (1U << i)) == 0; | |
|   if (t == 0) | |
|     assert(empty); | |
|   if (!empty) | |
|     do_check_tree(m, t); | |
| } | |
| 
 | |
| /*  Check all the chunks in a smallbin.  */ | |
| static void do_check_smallbin(mstate m, bindex_t i) { | |
|   sbinptr b = smallbin_at(m, i); | |
|   mchunkptr p = b->bk; | |
|   unsigned int empty = (m->smallmap & (1U << i)) == 0; | |
|   if (p == b) | |
|     assert(empty); | |
|   if (!empty) { | |
|     for (; p != b; p = p->bk) { | |
|       size_t size = chunksize(p); | |
|       mchunkptr q; | |
|       /* each chunk claims to be free */ | |
|       do_check_free_chunk(m, p); | |
|       /* chunk belongs in bin */ | |
|       assert(small_index(size) == i); | |
|       assert(p->bk == b || chunksize(p->bk) == chunksize(p)); | |
|       /* chunk is followed by an inuse chunk */ | |
|       q = next_chunk(p); | |
|       if (q->head != FENCEPOST_HEAD) | |
|         do_check_inuse_chunk(m, q); | |
|     } | |
|   } | |
| } | |
| 
 | |
| /* Find x in a bin. Used in other check functions. */ | |
| static int bin_find(mstate m, mchunkptr x) { | |
|   size_t size = chunksize(x); | |
|   if (is_small(size)) { | |
|     bindex_t sidx = small_index(size); | |
|     sbinptr b = smallbin_at(m, sidx); | |
|     if (smallmap_is_marked(m, sidx)) { | |
|       mchunkptr p = b; | |
|       do { | |
|         if (p == x) | |
|           return 1; | |
|       } while ((p = p->fd) != b); | |
|     } | |
|   } | |
|   else { | |
|     bindex_t tidx; | |
|     compute_tree_index(size, tidx); | |
|     if (treemap_is_marked(m, tidx)) { | |
|       tchunkptr t = *treebin_at(m, tidx); | |
|       size_t sizebits = size << leftshift_for_tree_index(tidx); | |
|       while (t != 0 && chunksize(t) != size) { | |
|         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; | |
|         sizebits <<= 1; | |
|       } | |
|       if (t != 0) { | |
|         tchunkptr u = t; | |
|         do { | |
|           if (u == (tchunkptr)x) | |
|             return 1; | |
|         } while ((u = u->fd) != t); | |
|       } | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* Traverse each chunk and check it; return total */ | |
| static size_t traverse_and_check(mstate m) { | |
|   size_t sum = 0; | |
|   if (is_initialized(m)) { | |
|     msegmentptr s = &m->seg; | |
|     sum += m->topsize + TOP_FOOT_SIZE; | |
|     while (s != 0) { | |
|       mchunkptr q = align_as_chunk(s->base); | |
|       mchunkptr lastq = 0; | |
|       assert(pinuse(q)); | |
|       while (segment_holds(s, q) && | |
|              q != m->top && q->head != FENCEPOST_HEAD) { | |
|         sum += chunksize(q); | |
|         if (is_inuse(q)) { | |
|           assert(!bin_find(m, q)); | |
|           do_check_inuse_chunk(m, q); | |
|         } | |
|         else { | |
|           assert(q == m->dv || bin_find(m, q)); | |
|           assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ | |
|           do_check_free_chunk(m, q); | |
|         } | |
|         lastq = q; | |
|         q = next_chunk(q); | |
|       } | |
|       s = s->next; | |
|     } | |
|   } | |
|   return sum; | |
| } | |
| 
 | |
| /* Check all properties of malloc_state. */ | |
| static void do_check_malloc_state(mstate m) { | |
|   bindex_t i; | |
|   size_t total; | |
|   /* check bins */ | |
|   for (i = 0; i < NSMALLBINS; ++i) | |
|     do_check_smallbin(m, i); | |
|   for (i = 0; i < NTREEBINS; ++i) | |
|     do_check_treebin(m, i); | |
| 
 | |
|   if (m->dvsize != 0) { /* check dv chunk */ | |
|     do_check_any_chunk(m, m->dv); | |
|     assert(m->dvsize == chunksize(m->dv)); | |
|     assert(m->dvsize >= MIN_CHUNK_SIZE); | |
|     assert(bin_find(m, m->dv) == 0); | |
|   } | |
| 
 | |
|   if (m->top != 0) {   /* check top chunk */ | |
|     do_check_top_chunk(m, m->top); | |
|     /*assert(m->topsize == chunksize(m->top)); redundant */ | |
|     assert(m->topsize > 0); | |
|     assert(bin_find(m, m->top) == 0); | |
|   } | |
| 
 | |
|   total = traverse_and_check(m); | |
|   assert(total <= m->footprint); | |
|   assert(m->footprint <= m->max_footprint); | |
| } | |
| #endif /* DEBUG */ | |
|  | |
| /* ----------------------------- statistics ------------------------------ */ | |
| 
 | |
| #if !NO_MALLINFO | |
| static struct mallinfo internal_mallinfo(mstate m) { | |
|   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
|   ensure_initialization(); | |
|   if (!PREACTION(m)) { | |
|     check_malloc_state(m); | |
|     if (is_initialized(m)) { | |
|       size_t nfree = SIZE_T_ONE; /* top always free */ | |
|       size_t mfree = m->topsize + TOP_FOOT_SIZE; | |
|       size_t sum = mfree; | |
|       msegmentptr s = &m->seg; | |
|       while (s != 0) { | |
|         mchunkptr q = align_as_chunk(s->base); | |
|         while (segment_holds(s, q) && | |
|                q != m->top && q->head != FENCEPOST_HEAD) { | |
|           size_t sz = chunksize(q); | |
|           sum += sz; | |
|           if (!is_inuse(q)) { | |
|             mfree += sz; | |
|             ++nfree; | |
|           } | |
|           q = next_chunk(q); | |
|         } | |
|         s = s->next; | |
|       } | |
| 
 | |
|       nm.arena    = sum; | |
|       nm.ordblks  = nfree; | |
|       nm.hblkhd   = m->footprint - sum; | |
|       nm.usmblks  = m->max_footprint; | |
|       nm.uordblks = m->footprint - mfree; | |
|       nm.fordblks = mfree; | |
|       nm.keepcost = m->topsize; | |
|     } | |
| 
 | |
|     POSTACTION(m); | |
|   } | |
|   return nm; | |
| } | |
| #endif /* !NO_MALLINFO */ | |
|  | |
| static void internal_malloc_stats(mstate m) { | |
|   ensure_initialization(); | |
|   if (!PREACTION(m)) { | |
|     size_t maxfp = 0; | |
|     size_t fp = 0; | |
|     size_t used = 0; | |
|     check_malloc_state(m); | |
|     if (is_initialized(m)) { | |
|       msegmentptr s = &m->seg; | |
|       maxfp = m->max_footprint; | |
|       fp = m->footprint; | |
|       used = fp - (m->topsize + TOP_FOOT_SIZE); | |
| 
 | |
|       while (s != 0) { | |
|         mchunkptr q = align_as_chunk(s->base); | |
|         while (segment_holds(s, q) && | |
|                q != m->top && q->head != FENCEPOST_HEAD) { | |
|           if (!is_inuse(q)) | |
|             used -= chunksize(q); | |
|           q = next_chunk(q); | |
|         } | |
|         s = s->next; | |
|       } | |
|     } | |
| 
 | |
|     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); | |
|     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp)); | |
|     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used)); | |
| 
 | |
|     POSTACTION(m); | |
|   } | |
| } | |
| 
 | |
| /* ----------------------- Operations on smallbins ----------------------- */ | |
| 
 | |
| /* | |
|   Various forms of linking and unlinking are defined as macros.  Even | |
|   the ones for trees, which are very long but have very short typical | |
|   paths.  This is ugly but reduces reliance on inlining support of | |
|   compilers. | |
| */ | |
| 
 | |
| /* Link a free chunk into a smallbin  */ | |
| #define insert_small_chunk(M, P, S) {\ | |
|   bindex_t I  = small_index(S);\ | |
|   mchunkptr B = smallbin_at(M, I);\ | |
|   mchunkptr F = B;\ | |
|   assert(S >= MIN_CHUNK_SIZE);\ | |
|   if (!smallmap_is_marked(M, I))\ | |
|     mark_smallmap(M, I);\ | |
|   else if (RTCHECK(ok_address(M, B->fd)))\ | |
|     F = B->fd;\ | |
|   else {\ | |
|     CORRUPTION_ERROR_ACTION(M);\ | |
|   }\ | |
|   B->fd = P;\ | |
|   F->bk = P;\ | |
|   P->fd = F;\ | |
|   P->bk = B;\ | |
| } | |
|  | |
| /* Unlink a chunk from a smallbin  */ | |
| #define unlink_small_chunk(M, P, S) {\ | |
|   mchunkptr F = P->fd;\ | |
|   mchunkptr B = P->bk;\ | |
|   bindex_t I = small_index(S);\ | |
|   assert(P != B);\ | |
|   assert(P != F);\ | |
|   assert(chunksize(P) == small_index2size(I));\ | |
|   if (F == B)\ | |
|     clear_smallmap(M, I);\ | |
|   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ | |
|                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\ | |
|     F->bk = B;\ | |
|     B->fd = F;\ | |
|   }\ | |
|   else {\ | |
|     CORRUPTION_ERROR_ACTION(M);\ | |
|   }\ | |
| } | |
|  | |
| /* Unlink the first chunk from a smallbin */ | |
| #define unlink_first_small_chunk(M, B, P, I) {\ | |
|   mchunkptr F = P->fd;\ | |
|   assert(P != B);\ | |
|   assert(P != F);\ | |
|   assert(chunksize(P) == small_index2size(I));\ | |
|   if (B == F)\ | |
|     clear_smallmap(M, I);\ | |
|   else if (RTCHECK(ok_address(M, F))) {\ | |
|     B->fd = F;\ | |
|     F->bk = B;\ | |
|   }\ | |
|   else {\ | |
|     CORRUPTION_ERROR_ACTION(M);\ | |
|   }\ | |
| } | |
|  | |
| 
 | |
| 
 | |
| /* Replace dv node, binning the old one */ | |
| /* Used only when dvsize known to be small */ | |
| #define replace_dv(M, P, S) {\ | |
|   size_t DVS = M->dvsize;\ | |
|   if (DVS != 0) {\ | |
|     mchunkptr DV = M->dv;\ | |
|     assert(is_small(DVS));\ | |
|     insert_small_chunk(M, DV, DVS);\ | |
|   }\ | |
|   M->dvsize = S;\ | |
|   M->dv = P;\ | |
| } | |
|  | |
| /* ------------------------- Operations on trees ------------------------- */ | |
| 
 | |
| /* Insert chunk into tree */ | |
| #define insert_large_chunk(M, X, S) {\ | |
|   tbinptr* H;\ | |
|   bindex_t I;\ | |
|   compute_tree_index(S, I);\ | |
|   H = treebin_at(M, I);\ | |
|   X->index = I;\ | |
|   X->child[0] = X->child[1] = 0;\ | |
|   if (!treemap_is_marked(M, I)) {\ | |
|     mark_treemap(M, I);\ | |
|     *H = X;\ | |
|     X->parent = (tchunkptr)H;\ | |
|     X->fd = X->bk = X;\ | |
|   }\ | |
|   else {\ | |
|     tchunkptr T = *H;\ | |
|     size_t K = S << leftshift_for_tree_index(I);\ | |
|     for (;;) {\ | |
|       if (chunksize(T) != S) {\ | |
|         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ | |
|         K <<= 1;\ | |
|         if (*C != 0)\ | |
|           T = *C;\ | |
|         else if (RTCHECK(ok_address(M, C))) {\ | |
|           *C = X;\ | |
|           X->parent = T;\ | |
|           X->fd = X->bk = X;\ | |
|           break;\ | |
|         }\ | |
|         else {\ | |
|           CORRUPTION_ERROR_ACTION(M);\ | |
|           break;\ | |
|         }\ | |
|       }\ | |
|       else {\ | |
|         tchunkptr F = T->fd;\ | |
|         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ | |
|           T->fd = F->bk = X;\ | |
|           X->fd = F;\ | |
|           X->bk = T;\ | |
|           X->parent = 0;\ | |
|           break;\ | |
|         }\ | |
|         else {\ | |
|           CORRUPTION_ERROR_ACTION(M);\ | |
|           break;\ | |
|         }\ | |
|       }\ | |
|     }\ | |
|   }\ | |
| } | |
|  | |
| /* | |
|   Unlink steps: | |
|  | |
|   1. If x is a chained node, unlink it from its same-sized fd/bk links | |
|      and choose its bk node as its replacement. | |
|   2. If x was the last node of its size, but not a leaf node, it must | |
|      be replaced with a leaf node (not merely one with an open left or | |
|      right), to make sure that lefts and rights of descendents | |
|      correspond properly to bit masks.  We use the rightmost descendent | |
|      of x.  We could use any other leaf, but this is easy to locate and | |
|      tends to counteract removal of leftmosts elsewhere, and so keeps | |
|      paths shorter than minimally guaranteed.  This doesn't loop much | |
|      because on average a node in a tree is near the bottom. | |
|   3. If x is the base of a chain (i.e., has parent links) relink | |
|      x's parent and children to x's replacement (or null if none). | |
| */ | |
| 
 | |
| #define unlink_large_chunk(M, X) {\ | |
|   tchunkptr XP = X->parent;\ | |
|   tchunkptr R;\ | |
|   if (X->bk != X) {\ | |
|     tchunkptr F = X->fd;\ | |
|     R = X->bk;\ | |
|     if (RTCHECK(ok_address(M, F))) {\ | |
|       F->bk = R;\ | |
|       R->fd = F;\ | |
|     }\ | |
|     else {\ | |
|       CORRUPTION_ERROR_ACTION(M);\ | |
|     }\ | |
|   }\ | |
|   else {\ | |
|     tchunkptr* RP;\ | |
|     if (((R = *(RP = &(X->child[1]))) != 0) ||\ | |
|         ((R = *(RP = &(X->child[0]))) != 0)) {\ | |
|       tchunkptr* CP;\ | |
|       while ((*(CP = &(R->child[1])) != 0) ||\ | |
|              (*(CP = &(R->child[0])) != 0)) {\ | |
|         R = *(RP = CP);\ | |
|       }\ | |
|       if (RTCHECK(ok_address(M, RP)))\ | |
|         *RP = 0;\ | |
|       else {\ | |
|         CORRUPTION_ERROR_ACTION(M);\ | |
|       }\ | |
|     }\ | |
|   }\ | |
|   if (XP != 0) {\ | |
|     tbinptr* H = treebin_at(M, X->index);\ | |
|     if (X == *H) {\ | |
|       if ((*H = R) == 0) \ | |
|         clear_treemap(M, X->index);\ | |
|     }\ | |
|     else if (RTCHECK(ok_address(M, XP))) {\ | |
|       if (XP->child[0] == X) \ | |
|         XP->child[0] = R;\ | |
|       else \ | |
|         XP->child[1] = R;\ | |
|     }\ | |
|     else\ | |
|       CORRUPTION_ERROR_ACTION(M);\ | |
|     if (R != 0) {\ | |
|       if (RTCHECK(ok_address(M, R))) {\ | |
|         tchunkptr C0, C1;\ | |
|         R->parent = XP;\ | |
|         if ((C0 = X->child[0]) != 0) {\ | |
|           if (RTCHECK(ok_address(M, C0))) {\ | |
|             R->child[0] = C0;\ | |
|             C0->parent = R;\ | |
|           }\ | |
|           else\ | |
|             CORRUPTION_ERROR_ACTION(M);\ | |
|         }\ | |
|         if ((C1 = X->child[1]) != 0) {\ | |
|           if (RTCHECK(ok_address(M, C1))) {\ | |
|             R->child[1] = C1;\ | |
|             C1->parent = R;\ | |
|           }\ | |
|           else\ | |
|             CORRUPTION_ERROR_ACTION(M);\ | |
|         }\ | |
|       }\ | |
|       else\ | |
|         CORRUPTION_ERROR_ACTION(M);\ | |
|     }\ | |
|   }\ | |
| } | |
|  | |
| /* Relays to large vs small bin operations */ | |
| 
 | |
| #define insert_chunk(M, P, S)\ | |
|   if (is_small(S)) insert_small_chunk(M, P, S)\ | |
|   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } | |
|  | |
| #define unlink_chunk(M, P, S)\ | |
|   if (is_small(S)) unlink_small_chunk(M, P, S)\ | |
|   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } | |
|  | |
| 
 | |
| /* Relays to internal calls to malloc/free from realloc, memalign etc */ | |
| 
 | |
| #if ONLY_MSPACES | |
| #define internal_malloc(m, b) mspace_malloc(m, b) | |
| #define internal_free(m, mem) mspace_free(m,mem); | |
| #else /* ONLY_MSPACES */ | |
| #if MSPACES | |
| #define internal_malloc(m, b)\ | |
|    (m == gm)? dlmalloc(b) : mspace_malloc(m, b) | |
| #define internal_free(m, mem)\ | |
|    if (m == gm) dlfree(mem); else mspace_free(m,mem); | |
| #else /* MSPACES */ | |
| #define internal_malloc(m, b) dlmalloc(b) | |
| #define internal_free(m, mem) dlfree(mem) | |
| #endif /* MSPACES */ | |
| #endif /* ONLY_MSPACES */ | |
|  | |
| /* -----------------------  Direct-mmapping chunks ----------------------- */ | |
| 
 | |
| /* | |
|   Directly mmapped chunks are set up with an offset to the start of | |
|   the mmapped region stored in the prev_foot field of the chunk. This | |
|   allows reconstruction of the required argument to MUNMAP when freed, | |
|   and also allows adjustment of the returned chunk to meet alignment | |
|   requirements (especially in memalign). | |
| */ | |
| 
 | |
| /* Malloc using mmap */ | |
| static void* mmap_alloc(mstate m, size_t nb) { | |
|   size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | |
|   if (mmsize > nb) {     /* Check for wrap around 0 */ | |
|     char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); | |
|     if (mm != CMFAIL) { | |
|       size_t offset = align_offset(chunk2mem(mm)); | |
|       size_t psize = mmsize - offset - MMAP_FOOT_PAD; | |
|       mchunkptr p = (mchunkptr)(mm + offset); | |
|       p->prev_foot = offset; | |
|       p->head = psize; | |
|       mark_inuse_foot(m, p, psize); | |
|       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; | |
|       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; | |
| 
 | |
|       if (m->least_addr == 0 || mm < m->least_addr) | |
|         m->least_addr = mm; | |
|       if ((m->footprint += mmsize) > m->max_footprint) | |
|         m->max_footprint = m->footprint; | |
|       assert(is_aligned(chunk2mem(p))); | |
|       check_mmapped_chunk(m, p); | |
|       return chunk2mem(p); | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* Realloc using mmap */ | |
| static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { | |
|   size_t oldsize = chunksize(oldp); | |
|   if (is_small(nb)) /* Can't shrink mmap regions below small size */ | |
|     return 0; | |
|   /* Keep old chunk if big enough but not too big */ | |
|   if (oldsize >= nb + SIZE_T_SIZE && | |
|       (oldsize - nb) <= (mparams.granularity << 1)) | |
|     return oldp; | |
|   else { | |
|     size_t offset = oldp->prev_foot; | |
|     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; | |
|     size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | |
|     char* cp = (char*)CALL_MREMAP((char*)oldp - offset, | |
|                                   oldmmsize, newmmsize, 1); | |
|     if (cp != CMFAIL) { | |
|       mchunkptr newp = (mchunkptr)(cp + offset); | |
|       size_t psize = newmmsize - offset - MMAP_FOOT_PAD; | |
|       newp->head = psize; | |
|       mark_inuse_foot(m, newp, psize); | |
|       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; | |
|       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; | |
| 
 | |
|       if (cp < m->least_addr) | |
|         m->least_addr = cp; | |
|       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) | |
|         m->max_footprint = m->footprint; | |
|       check_mmapped_chunk(m, newp); | |
|       return newp; | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* -------------------------- mspace management -------------------------- */ | |
| 
 | |
| /* Initialize top chunk and its size */ | |
| static void init_top(mstate m, mchunkptr p, size_t psize) { | |
|   /* Ensure alignment */ | |
|   size_t offset = align_offset(chunk2mem(p)); | |
|   p = (mchunkptr)((char*)p + offset); | |
|   psize -= offset; | |
| 
 | |
|   m->top = p; | |
|   m->topsize = psize; | |
|   p->head = psize | PINUSE_BIT; | |
|   /* set size of fake trailing chunk holding overhead space only once */ | |
|   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; | |
|   m->trim_check = mparams.trim_threshold; /* reset on each update */ | |
| } | |
| 
 | |
| /* Initialize bins for a new mstate that is otherwise zeroed out */ | |
| static void init_bins(mstate m) { | |
|   /* Establish circular links for smallbins */ | |
|   bindex_t i; | |
|   for (i = 0; i < NSMALLBINS; ++i) { | |
|     sbinptr bin = smallbin_at(m,i); | |
|     bin->fd = bin->bk = bin; | |
|   } | |
| } | |
| 
 | |
| #if PROCEED_ON_ERROR | |
|  | |
| /* default corruption action */ | |
| static void reset_on_error(mstate m) { | |
|   int i; | |
|   ++malloc_corruption_error_count; | |
|   /* Reinitialize fields to forget about all memory */ | |
|   m->smallbins = m->treebins = 0; | |
|   m->dvsize = m->topsize = 0; | |
|   m->seg.base = 0; | |
|   m->seg.size = 0; | |
|   m->seg.next = 0; | |
|   m->top = m->dv = 0; | |
|   for (i = 0; i < NTREEBINS; ++i) | |
|     *treebin_at(m, i) = 0; | |
|   init_bins(m); | |
| } | |
| #endif /* PROCEED_ON_ERROR */ | |
|  | |
| /* Allocate chunk and prepend remainder with chunk in successor base. */ | |
| static void* prepend_alloc(mstate m, char* newbase, char* oldbase, | |
|                            size_t nb) { | |
|   mchunkptr p = align_as_chunk(newbase); | |
|   mchunkptr oldfirst = align_as_chunk(oldbase); | |
|   size_t psize = (char*)oldfirst - (char*)p; | |
|   mchunkptr q = chunk_plus_offset(p, nb); | |
|   size_t qsize = psize - nb; | |
|   set_size_and_pinuse_of_inuse_chunk(m, p, nb); | |
| 
 | |
|   assert((char*)oldfirst > (char*)q); | |
|   assert(pinuse(oldfirst)); | |
|   assert(qsize >= MIN_CHUNK_SIZE); | |
| 
 | |
|   /* consolidate remainder with first chunk of old base */ | |
|   if (oldfirst == m->top) { | |
|     size_t tsize = m->topsize += qsize; | |
|     m->top = q; | |
|     q->head = tsize | PINUSE_BIT; | |
|     check_top_chunk(m, q); | |
|   } | |
|   else if (oldfirst == m->dv) { | |
|     size_t dsize = m->dvsize += qsize; | |
|     m->dv = q; | |
|     set_size_and_pinuse_of_free_chunk(q, dsize); | |
|   } | |
|   else { | |
|     if (!is_inuse(oldfirst)) { | |
|       size_t nsize = chunksize(oldfirst); | |
|       unlink_chunk(m, oldfirst, nsize); | |
|       oldfirst = chunk_plus_offset(oldfirst, nsize); | |
|       qsize += nsize; | |
|     } | |
|     set_free_with_pinuse(q, qsize, oldfirst); | |
|     insert_chunk(m, q, qsize); | |
|     check_free_chunk(m, q); | |
|   } | |
| 
 | |
|   check_malloced_chunk(m, chunk2mem(p), nb); | |
|   return chunk2mem(p); | |
| } | |
| 
 | |
| /* Add a segment to hold a new noncontiguous region */ | |
| static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { | |
|   /* Determine locations and sizes of segment, fenceposts, old top */ | |
|   char* old_top = (char*)m->top; | |
|   msegmentptr oldsp = segment_holding(m, old_top); | |
|   char* old_end = oldsp->base + oldsp->size; | |
|   size_t ssize = pad_request(sizeof(struct malloc_segment)); | |
|   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); | |
|   size_t offset = align_offset(chunk2mem(rawsp)); | |
|   char* asp = rawsp + offset; | |
|   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; | |
|   mchunkptr sp = (mchunkptr)csp; | |
|   msegmentptr ss = (msegmentptr)(chunk2mem(sp)); | |
|   mchunkptr tnext = chunk_plus_offset(sp, ssize); | |
|   mchunkptr p = tnext; | |
|   int nfences = 0; | |
| 
 | |
|   /* reset top to new space */ | |
|   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); | |
| 
 | |
|   /* Set up segment record */ | |
|   assert(is_aligned(ss)); | |
|   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); | |
|   *ss = m->seg; /* Push current record */ | |
|   m->seg.base = tbase; | |
|   m->seg.size = tsize; | |
|   m->seg.sflags = mmapped; | |
|   m->seg.next = ss; | |
| 
 | |
|   /* Insert trailing fenceposts */ | |
|   for (;;) { | |
|     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); | |
|     p->head = FENCEPOST_HEAD; | |
|     ++nfences; | |
|     if ((char*)(&(nextp->head)) < old_end) | |
|       p = nextp; | |
|     else | |
|       break; | |
|   } | |
|   assert(nfences >= 2); | |
| 
 | |
|   /* Insert the rest of old top into a bin as an ordinary free chunk */ | |
|   if (csp != old_top) { | |
|     mchunkptr q = (mchunkptr)old_top; | |
|     size_t psize = csp - old_top; | |
|     mchunkptr tn = chunk_plus_offset(q, psize); | |
|     set_free_with_pinuse(q, psize, tn); | |
|     insert_chunk(m, q, psize); | |
|   } | |
| 
 | |
|   check_top_chunk(m, m->top); | |
| } | |
| 
 | |
| /* -------------------------- System allocation -------------------------- */ | |
| 
 | |
| /* Get memory from system using MORECORE or MMAP */ | |
| static void* sys_alloc(mstate m, size_t nb) { | |
|   char* tbase = CMFAIL; | |
|   size_t tsize = 0; | |
|   flag_t mmap_flag = 0; | |
| 
 | |
|   ensure_initialization(); | |
| 
 | |
|   /* Directly map large chunks, but only if already initialized */ | |
|   if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { | |
|     void* mem = mmap_alloc(m, nb); | |
|     if (mem != 0) | |
|       return mem; | |
|   } | |
| 
 | |
|   /* | |
|     Try getting memory in any of three ways (in most-preferred to | |
|     least-preferred order): | |
|     1. A call to MORECORE that can normally contiguously extend memory. | |
|        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or | |
|        or main space is mmapped or a previous contiguous call failed) | |
|     2. A call to MMAP new space (disabled if not HAVE_MMAP). | |
|        Note that under the default settings, if MORECORE is unable to | |
|        fulfill a request, and HAVE_MMAP is true, then mmap is | |
|        used as a noncontiguous system allocator. This is a useful backup | |
|        strategy for systems with holes in address spaces -- in this case | |
|        sbrk cannot contiguously expand the heap, but mmap may be able to | |
|        find space. | |
|     3. A call to MORECORE that cannot usually contiguously extend memory. | |
|        (disabled if not HAVE_MORECORE) | |
|  | |
|    In all cases, we need to request enough bytes from system to ensure | |
|    we can malloc nb bytes upon success, so pad with enough space for | |
|    top_foot, plus alignment-pad to make sure we don't lose bytes if | |
|    not on boundary, and round this up to a granularity unit. | |
|   */ | |
| 
 | |
|   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { | |
|     char* br = CMFAIL; | |
|     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); | |
|     size_t asize = 0; | |
|     ACQUIRE_MALLOC_GLOBAL_LOCK(); | |
| 
 | |
|     if (ss == 0) {  /* First time through or recovery */ | |
|       char* base = (char*)CALL_MORECORE(0); | |
|       if (base != CMFAIL) { | |
|         asize = granularity_align(nb + SYS_ALLOC_PADDING); | |
|         /* Adjust to end on a page boundary */ | |
|         if (!is_page_aligned(base)) | |
|           asize += (page_align((size_t)base) - (size_t)base); | |
|         /* Can't call MORECORE if size is negative when treated as signed */ | |
|         if (asize < HALF_MAX_SIZE_T && | |
|             (br = (char*)(CALL_MORECORE(asize))) == base) { | |
|           tbase = base; | |
|           tsize = asize; | |
|         } | |
|       } | |
|     } | |
|     else { | |
|       /* Subtract out existing available top space from MORECORE request. */ | |
|       asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); | |
|       /* Use mem here only if it did continuously extend old space */ | |
|       if (asize < HALF_MAX_SIZE_T && | |
|           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { | |
|         tbase = br; | |
|         tsize = asize; | |
|       } | |
|     } | |
| 
 | |
|     if (tbase == CMFAIL) {    /* Cope with partial failure */ | |
|       if (br != CMFAIL) {    /* Try to use/extend the space we did get */ | |
|         if (asize < HALF_MAX_SIZE_T && | |
|             asize < nb + SYS_ALLOC_PADDING) { | |
|           size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize); | |
|           if (esize < HALF_MAX_SIZE_T) { | |
|             char* end = (char*)CALL_MORECORE(esize); | |
|             if (end != CMFAIL) | |
|               asize += esize; | |
|             else {            /* Can't use; try to release */ | |
|               (void) CALL_MORECORE(-asize); | |
|               br = CMFAIL; | |
|             } | |
|           } | |
|         } | |
|       } | |
|       if (br != CMFAIL) {    /* Use the space we did get */ | |
|         tbase = br; | |
|         tsize = asize; | |
|       } | |
|       else | |
|         disable_contiguous(m); /* Don't try contiguous path in the future */ | |
|     } | |
| 
 | |
|     RELEASE_MALLOC_GLOBAL_LOCK(); | |
|   } | |
| 
 | |
|   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */ | |
|     size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING); | |
|     if (rsize > nb) { /* Fail if wraps around zero */ | |
|       char* mp = (char*)(CALL_MMAP(rsize)); | |
|       if (mp != CMFAIL) { | |
|         tbase = mp; | |
|         tsize = rsize; | |
|         mmap_flag = USE_MMAP_BIT; | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ | |
|     size_t asize = granularity_align(nb + SYS_ALLOC_PADDING); | |
|     if (asize < HALF_MAX_SIZE_T) { | |
|       char* br = CMFAIL; | |
|       char* end = CMFAIL; | |
|       ACQUIRE_MALLOC_GLOBAL_LOCK(); | |
|       br = (char*)(CALL_MORECORE(asize)); | |
|       end = (char*)(CALL_MORECORE(0)); | |
|       RELEASE_MALLOC_GLOBAL_LOCK(); | |
|       if (br != CMFAIL && end != CMFAIL && br < end) { | |
|         size_t ssize = end - br; | |
|         if (ssize > nb + TOP_FOOT_SIZE) { | |
|           tbase = br; | |
|           tsize = ssize; | |
|         } | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   if (tbase != CMFAIL) { | |
| 
 | |
|     if ((m->footprint += tsize) > m->max_footprint) | |
|       m->max_footprint = m->footprint; | |
| 
 | |
|     if (!is_initialized(m)) { /* first-time initialization */ | |
|       if (m->least_addr == 0 || tbase < m->least_addr) | |
|         m->least_addr = tbase; | |
|       m->seg.base = tbase; | |
|       m->seg.size = tsize; | |
|       m->seg.sflags = mmap_flag; | |
|       m->magic = mparams.magic; | |
|       m->release_checks = MAX_RELEASE_CHECK_RATE; | |
|       init_bins(m); | |
| #if !ONLY_MSPACES | |
|       if (is_global(m)) | |
|         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); | |
|       else | |
| #endif | |
|       { | |
|         /* Offset top by embedded malloc_state */ | |
|         mchunkptr mn = next_chunk(mem2chunk(m)); | |
|         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); | |
|       } | |
|     } | |
| 
 | |
|     else { | |
|       /* Try to merge with an existing segment */ | |
|       msegmentptr sp = &m->seg; | |
|       /* Only consider most recent segment if traversal suppressed */ | |
|       while (sp != 0 && tbase != sp->base + sp->size) | |
|         sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; | |
|       if (sp != 0 && | |
|           !is_extern_segment(sp) && | |
|           (sp->sflags & USE_MMAP_BIT) == mmap_flag && | |
|           segment_holds(sp, m->top)) { /* append */ | |
|         sp->size += tsize; | |
|         init_top(m, m->top, m->topsize + tsize); | |
|       } | |
|       else { | |
|         if (tbase < m->least_addr) | |
|           m->least_addr = tbase; | |
|         sp = &m->seg; | |
|         while (sp != 0 && sp->base != tbase + tsize) | |
|           sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; | |
|         if (sp != 0 && | |
|             !is_extern_segment(sp) && | |
|             (sp->sflags & USE_MMAP_BIT) == mmap_flag) { | |
|           char* oldbase = sp->base; | |
|           sp->base = tbase; | |
|           sp->size += tsize; | |
|           return prepend_alloc(m, tbase, oldbase, nb); | |
|         } | |
|         else | |
|           add_segment(m, tbase, tsize, mmap_flag); | |
|       } | |
|     } | |
| 
 | |
|     if (nb < m->topsize) { /* Allocate from new or extended top space */ | |
|       size_t rsize = m->topsize -= nb; | |
|       mchunkptr p = m->top; | |
|       mchunkptr r = m->top = chunk_plus_offset(p, nb); | |
|       r->head = rsize | PINUSE_BIT; | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, nb); | |
|       check_top_chunk(m, m->top); | |
|       check_malloced_chunk(m, chunk2mem(p), nb); | |
|       return chunk2mem(p); | |
|     } | |
|   } | |
| 
 | |
|   MALLOC_FAILURE_ACTION; | |
|   return 0; | |
| } | |
| 
 | |
| /* -----------------------  system deallocation -------------------------- */ | |
| 
 | |
| /* Unmap and unlink any mmapped segments that don't contain used chunks */ | |
| static size_t release_unused_segments(mstate m) { | |
|   size_t released = 0; | |
|   int nsegs = 0; | |
|   msegmentptr pred = &m->seg; | |
|   msegmentptr sp = pred->next; | |
|   while (sp != 0) { | |
|     char* base = sp->base; | |
|     size_t size = sp->size; | |
|     msegmentptr next = sp->next; | |
|     ++nsegs; | |
|     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { | |
|       mchunkptr p = align_as_chunk(base); | |
|       size_t psize = chunksize(p); | |
|       /* Can unmap if first chunk holds entire segment and not pinned */ | |
|       if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { | |
|         tchunkptr tp = (tchunkptr)p; | |
|         assert(segment_holds(sp, (char*)sp)); | |
|         if (p == m->dv) { | |
|           m->dv = 0; | |
|           m->dvsize = 0; | |
|         } | |
|         else { | |
|           unlink_large_chunk(m, tp); | |
|         } | |
|         if (CALL_MUNMAP(base, size) == 0) { | |
|           released += size; | |
|           m->footprint -= size; | |
|           /* unlink obsoleted record */ | |
|           sp = pred; | |
|           sp->next = next; | |
|         } | |
|         else { /* back out if cannot unmap */ | |
|           insert_large_chunk(m, tp, psize); | |
|         } | |
|       } | |
|     } | |
|     if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ | |
|       break; | |
|     pred = sp; | |
|     sp = next; | |
|   } | |
|   /* Reset check counter */ | |
|   m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? | |
|                        nsegs : MAX_RELEASE_CHECK_RATE); | |
|   return released; | |
| } | |
| 
 | |
| static int sys_trim(mstate m, size_t pad) { | |
|   size_t released = 0; | |
|   ensure_initialization(); | |
|   if (pad < MAX_REQUEST && is_initialized(m)) { | |
|     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ | |
| 
 | |
|     if (m->topsize > pad) { | |
|       /* Shrink top space in granularity-size units, keeping at least one */ | |
|       size_t unit = mparams.granularity; | |
|       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - | |
|                       SIZE_T_ONE) * unit; | |
|       msegmentptr sp = segment_holding(m, (char*)m->top); | |
| 
 | |
|       if (!is_extern_segment(sp)) { | |
|         if (is_mmapped_segment(sp)) { | |
|           if (HAVE_MMAP && | |
|               sp->size >= extra && | |
|               !has_segment_link(m, sp)) { /* can't shrink if pinned */ | |
|             size_t newsize = sp->size - extra; | |
|             /* Prefer mremap, fall back to munmap */ | |
|             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || | |
|                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { | |
|               released = extra; | |
|             } | |
|           } | |
|         } | |
|         else if (HAVE_MORECORE) { | |
|           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ | |
|             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; | |
|           ACQUIRE_MALLOC_GLOBAL_LOCK(); | |
|           { | |
|             /* Make sure end of memory is where we last set it. */ | |
|             char* old_br = (char*)(CALL_MORECORE(0)); | |
|             if (old_br == sp->base + sp->size) { | |
|               char* rel_br = (char*)(CALL_MORECORE(-extra)); | |
|               char* new_br = (char*)(CALL_MORECORE(0)); | |
|               if (rel_br != CMFAIL && new_br < old_br) | |
|                 released = old_br - new_br; | |
|             } | |
|           } | |
|           RELEASE_MALLOC_GLOBAL_LOCK(); | |
|         } | |
|       } | |
| 
 | |
|       if (released != 0) { | |
|         sp->size -= released; | |
|         m->footprint -= released; | |
|         init_top(m, m->top, m->topsize - released); | |
|         check_top_chunk(m, m->top); | |
|       } | |
|     } | |
| 
 | |
|     /* Unmap any unused mmapped segments */ | |
|     if (HAVE_MMAP) | |
|       released += release_unused_segments(m); | |
| 
 | |
|     /* On failure, disable autotrim to avoid repeated failed future calls */ | |
|     if (released == 0 && m->topsize > m->trim_check) | |
|       m->trim_check = MAX_SIZE_T; | |
|   } | |
| 
 | |
|   return (released != 0)? 1 : 0; | |
| } | |
| 
 | |
| 
 | |
| /* ---------------------------- malloc support --------------------------- */ | |
| 
 | |
| /* allocate a large request from the best fitting chunk in a treebin */ | |
| static void* tmalloc_large(mstate m, size_t nb) { | |
|   tchunkptr v = 0; | |
|   size_t rsize = -nb; /* Unsigned negation */ | |
|   tchunkptr t; | |
|   bindex_t idx; | |
|   compute_tree_index(nb, idx); | |
|   if ((t = *treebin_at(m, idx)) != 0) { | |
|     /* Traverse tree for this bin looking for node with size == nb */ | |
|     size_t sizebits = nb << leftshift_for_tree_index(idx); | |
|     tchunkptr rst = 0;  /* The deepest untaken right subtree */ | |
|     for (;;) { | |
|       tchunkptr rt; | |
|       size_t trem = chunksize(t) - nb; | |
|       if (trem < rsize) { | |
|         v = t; | |
|         if ((rsize = trem) == 0) | |
|           break; | |
|       } | |
|       rt = t->child[1]; | |
|       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; | |
|       if (rt != 0 && rt != t) | |
|         rst = rt; | |
|       if (t == 0) { | |
|         t = rst; /* set t to least subtree holding sizes > nb */ | |
|         break; | |
|       } | |
|       sizebits <<= 1; | |
|     } | |
|   } | |
|   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ | |
|     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; | |
|     if (leftbits != 0) { | |
|       bindex_t i; | |
|       binmap_t leastbit = least_bit(leftbits); | |
|       compute_bit2idx(leastbit, i); | |
|       t = *treebin_at(m, i); | |
|     } | |
|   } | |
| 
 | |
|   while (t != 0) { /* find smallest of tree or subtree */ | |
|     size_t trem = chunksize(t) - nb; | |
|     if (trem < rsize) { | |
|       rsize = trem; | |
|       v = t; | |
|     } | |
|     t = leftmost_child(t); | |
|   } | |
| 
 | |
|   /*  If dv is a better fit, return 0 so malloc will use it */ | |
|   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { | |
|     if (RTCHECK(ok_address(m, v))) { /* split */ | |
|       mchunkptr r = chunk_plus_offset(v, nb); | |
|       assert(chunksize(v) == rsize + nb); | |
|       if (RTCHECK(ok_next(v, r))) { | |
|         unlink_large_chunk(m, v); | |
|         if (rsize < MIN_CHUNK_SIZE) | |
|           set_inuse_and_pinuse(m, v, (rsize + nb)); | |
|         else { | |
|           set_size_and_pinuse_of_inuse_chunk(m, v, nb); | |
|           set_size_and_pinuse_of_free_chunk(r, rsize); | |
|           insert_chunk(m, r, rsize); | |
|         } | |
|         return chunk2mem(v); | |
|       } | |
|     } | |
|     CORRUPTION_ERROR_ACTION(m); | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* allocate a small request from the best fitting chunk in a treebin */ | |
| static void* tmalloc_small(mstate m, size_t nb) { | |
|   tchunkptr t, v; | |
|   size_t rsize; | |
|   bindex_t i; | |
|   binmap_t leastbit = least_bit(m->treemap); | |
|   compute_bit2idx(leastbit, i); | |
|   v = t = *treebin_at(m, i); | |
|   rsize = chunksize(t) - nb; | |
| 
 | |
|   while ((t = leftmost_child(t)) != 0) { | |
|     size_t trem = chunksize(t) - nb; | |
|     if (trem < rsize) { | |
|       rsize = trem; | |
|       v = t; | |
|     } | |
|   } | |
| 
 | |
|   if (RTCHECK(ok_address(m, v))) { | |
|     mchunkptr r = chunk_plus_offset(v, nb); | |
|     assert(chunksize(v) == rsize + nb); | |
|     if (RTCHECK(ok_next(v, r))) { | |
|       unlink_large_chunk(m, v); | |
|       if (rsize < MIN_CHUNK_SIZE) | |
|         set_inuse_and_pinuse(m, v, (rsize + nb)); | |
|       else { | |
|         set_size_and_pinuse_of_inuse_chunk(m, v, nb); | |
|         set_size_and_pinuse_of_free_chunk(r, rsize); | |
|         replace_dv(m, r, rsize); | |
|       } | |
|       return chunk2mem(v); | |
|     } | |
|   } | |
| 
 | |
|   CORRUPTION_ERROR_ACTION(m); | |
|   return 0; | |
| } | |
| 
 | |
| /* --------------------------- realloc support --------------------------- */ | |
| 
 | |
| static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { | |
|   if (bytes >= MAX_REQUEST) { | |
|     MALLOC_FAILURE_ACTION; | |
|     return 0; | |
|   } | |
|   if (!PREACTION(m)) { | |
|     mchunkptr oldp = mem2chunk(oldmem); | |
|     size_t oldsize = chunksize(oldp); | |
|     mchunkptr next = chunk_plus_offset(oldp, oldsize); | |
|     mchunkptr newp = 0; | |
|     void* extra = 0; | |
| 
 | |
|     /* Try to either shrink or extend into top. Else malloc-copy-free */ | |
| 
 | |
|     if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) && | |
|                 ok_next(oldp, next) && ok_pinuse(next))) { | |
|       size_t nb = request2size(bytes); | |
|       if (is_mmapped(oldp)) | |
|         newp = mmap_resize(m, oldp, nb); | |
|       else if (oldsize >= nb) { /* already big enough */ | |
|         size_t rsize = oldsize - nb; | |
|         newp = oldp; | |
|         if (rsize >= MIN_CHUNK_SIZE) { | |
|           mchunkptr remainder = chunk_plus_offset(newp, nb); | |
|           set_inuse(m, newp, nb); | |
|           set_inuse_and_pinuse(m, remainder, rsize); | |
|           extra = chunk2mem(remainder); | |
|         } | |
|       } | |
|       else if (next == m->top && oldsize + m->topsize > nb) { | |
|         /* Expand into top */ | |
|         size_t newsize = oldsize + m->topsize; | |
|         size_t newtopsize = newsize - nb; | |
|         mchunkptr newtop = chunk_plus_offset(oldp, nb); | |
|         set_inuse(m, oldp, nb); | |
|         newtop->head = newtopsize |PINUSE_BIT; | |
|         m->top = newtop; | |
|         m->topsize = newtopsize; | |
|         newp = oldp; | |
|       } | |
|     } | |
|     else { | |
|       USAGE_ERROR_ACTION(m, oldmem); | |
|       POSTACTION(m); | |
|       return 0; | |
|     } | |
| #if DEBUG | |
|     if (newp != 0) { | |
|       check_inuse_chunk(m, newp); /* Check requires lock */ | |
|     } | |
| #endif | |
|  | |
|     POSTACTION(m); | |
| 
 | |
|     if (newp != 0) { | |
|       if (extra != 0) { | |
|         internal_free(m, extra); | |
|       } | |
|       return chunk2mem(newp); | |
|     } | |
|     else { | |
|       void* newmem = internal_malloc(m, bytes); | |
|       if (newmem != 0) { | |
|         size_t oc = oldsize - overhead_for(oldp); | |
|         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); | |
|         internal_free(m, oldmem); | |
|       } | |
|       return newmem; | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* --------------------------- memalign support -------------------------- */ | |
| 
 | |
| static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { | |
|   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */ | |
|     return internal_malloc(m, bytes); | |
|   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ | |
|     alignment = MIN_CHUNK_SIZE; | |
|   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ | |
|     size_t a = MALLOC_ALIGNMENT << 1; | |
|     while (a < alignment) a <<= 1; | |
|     alignment = a; | |
|   } | |
| 
 | |
|   if (bytes >= MAX_REQUEST - alignment) { | |
|     if (m != 0)  { /* Test isn't needed but avoids compiler warning */ | |
|       MALLOC_FAILURE_ACTION; | |
|     } | |
|   } | |
|   else { | |
|     size_t nb = request2size(bytes); | |
|     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; | |
|     char* mem = (char*)internal_malloc(m, req); | |
|     if (mem != 0) { | |
|       void* leader = 0; | |
|       void* trailer = 0; | |
|       mchunkptr p = mem2chunk(mem); | |
| 
 | |
|       if (PREACTION(m)) return 0; | |
|       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ | |
|         /* | |
|           Find an aligned spot inside chunk.  Since we need to give | |
|           back leading space in a chunk of at least MIN_CHUNK_SIZE, if | |
|           the first calculation places us at a spot with less than | |
|           MIN_CHUNK_SIZE leader, we can move to the next aligned spot. | |
|           We've allocated enough total room so that this is always | |
|           possible. | |
|         */ | |
|         char* br = (char*)mem2chunk((size_t)(((size_t)(mem + | |
|                                                        alignment - | |
|                                                        SIZE_T_ONE)) & | |
|                                              -alignment)); | |
|         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? | |
|           br : br+alignment; | |
|         mchunkptr newp = (mchunkptr)pos; | |
|         size_t leadsize = pos - (char*)(p); | |
|         size_t newsize = chunksize(p) - leadsize; | |
| 
 | |
|         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ | |
|           newp->prev_foot = p->prev_foot + leadsize; | |
|           newp->head = newsize; | |
|         } | |
|         else { /* Otherwise, give back leader, use the rest */ | |
|           set_inuse(m, newp, newsize); | |
|           set_inuse(m, p, leadsize); | |
|           leader = chunk2mem(p); | |
|         } | |
|         p = newp; | |
|       } | |
| 
 | |
|       /* Give back spare room at the end */ | |
|       if (!is_mmapped(p)) { | |
|         size_t size = chunksize(p); | |
|         if (size > nb + MIN_CHUNK_SIZE) { | |
|           size_t remainder_size = size - nb; | |
|           mchunkptr remainder = chunk_plus_offset(p, nb); | |
|           set_inuse(m, p, nb); | |
|           set_inuse(m, remainder, remainder_size); | |
|           trailer = chunk2mem(remainder); | |
|         } | |
|       } | |
| 
 | |
|       assert (chunksize(p) >= nb); | |
|       assert((((size_t)(chunk2mem(p))) % alignment) == 0); | |
|       check_inuse_chunk(m, p); | |
|       POSTACTION(m); | |
|       if (leader != 0) { | |
|         internal_free(m, leader); | |
|       } | |
|       if (trailer != 0) { | |
|         internal_free(m, trailer); | |
|       } | |
|       return chunk2mem(p); | |
|     } | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* ------------------------ comalloc/coalloc support --------------------- */ | |
| 
 | |
| static void** ialloc(mstate m, | |
|                      size_t n_elements, | |
|                      size_t* sizes, | |
|                      int opts, | |
|                      void* chunks[]) { | |
|   /* | |
|     This provides common support for independent_X routines, handling | |
|     all of the combinations that can result. | |
|  | |
|     The opts arg has: | |
|     bit 0 set if all elements are same size (using sizes[0]) | |
|     bit 1 set if elements should be zeroed | |
|   */ | |
| 
 | |
|   size_t    element_size;   /* chunksize of each element, if all same */ | |
|   size_t    contents_size;  /* total size of elements */ | |
|   size_t    array_size;     /* request size of pointer array */ | |
|   void*     mem;            /* malloced aggregate space */ | |
|   mchunkptr p;              /* corresponding chunk */ | |
|   size_t    remainder_size; /* remaining bytes while splitting */ | |
|   void**    marray;         /* either "chunks" or malloced ptr array */ | |
|   mchunkptr array_chunk;    /* chunk for malloced ptr array */ | |
|   flag_t    was_enabled;    /* to disable mmap */ | |
|   size_t    size; | |
|   size_t    i; | |
| 
 | |
|   ensure_initialization(); | |
|   /* compute array length, if needed */ | |
|   if (chunks != 0) { | |
|     if (n_elements == 0) | |
|       return chunks; /* nothing to do */ | |
|     marray = chunks; | |
|     array_size = 0; | |
|   } | |
|   else { | |
|     /* if empty req, must still return chunk representing empty array */ | |
|     if (n_elements == 0) | |
|       return (void**)internal_malloc(m, 0); | |
|     marray = 0; | |
|     array_size = request2size(n_elements * (sizeof(void*))); | |
|   } | |
| 
 | |
|   /* compute total element size */ | |
|   if (opts & 0x1) { /* all-same-size */ | |
|     element_size = request2size(*sizes); | |
|     contents_size = n_elements * element_size; | |
|   } | |
|   else { /* add up all the sizes */ | |
|     element_size = 0; | |
|     contents_size = 0; | |
|     for (i = 0; i != n_elements; ++i) | |
|       contents_size += request2size(sizes[i]); | |
|   } | |
| 
 | |
|   size = contents_size + array_size; | |
| 
 | |
|   /* | |
|      Allocate the aggregate chunk.  First disable direct-mmapping so | |
|      malloc won't use it, since we would not be able to later | |
|      free/realloc space internal to a segregated mmap region. | |
|   */ | |
|   was_enabled = use_mmap(m); | |
|   disable_mmap(m); | |
|   mem = internal_malloc(m, size - CHUNK_OVERHEAD); | |
|   if (was_enabled) | |
|     enable_mmap(m); | |
|   if (mem == 0) | |
|     return 0; | |
| 
 | |
|   if (PREACTION(m)) return 0; | |
|   p = mem2chunk(mem); | |
|   remainder_size = chunksize(p); | |
| 
 | |
|   assert(!is_mmapped(p)); | |
| 
 | |
|   if (opts & 0x2) {       /* optionally clear the elements */ | |
|     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); | |
|   } | |
| 
 | |
|   /* If not provided, allocate the pointer array as final part of chunk */ | |
|   if (marray == 0) { | |
|     size_t  array_chunk_size; | |
|     array_chunk = chunk_plus_offset(p, contents_size); | |
|     array_chunk_size = remainder_size - contents_size; | |
|     marray = (void**) (chunk2mem(array_chunk)); | |
|     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); | |
|     remainder_size = contents_size; | |
|   } | |
| 
 | |
|   /* split out elements */ | |
|   for (i = 0; ; ++i) { | |
|     marray[i] = chunk2mem(p); | |
|     if (i != n_elements-1) { | |
|       if (element_size != 0) | |
|         size = element_size; | |
|       else | |
|         size = request2size(sizes[i]); | |
|       remainder_size -= size; | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, size); | |
|       p = chunk_plus_offset(p, size); | |
|     } | |
|     else { /* the final element absorbs any overallocation slop */ | |
|       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); | |
|       break; | |
|     } | |
|   } | |
| 
 | |
| #if DEBUG | |
|   if (marray != chunks) { | |
|     /* final element must have exactly exhausted chunk */ | |
|     if (element_size != 0) { | |
|       assert(remainder_size == element_size); | |
|     } | |
|     else { | |
|       assert(remainder_size == request2size(sizes[i])); | |
|     } | |
|     check_inuse_chunk(m, mem2chunk(marray)); | |
|   } | |
|   for (i = 0; i != n_elements; ++i) | |
|     check_inuse_chunk(m, mem2chunk(marray[i])); | |
| 
 | |
| #endif /* DEBUG */ | |
|  | |
|   POSTACTION(m); | |
|   return marray; | |
| } | |
| 
 | |
| 
 | |
| /* -------------------------- public routines ---------------------------- */ | |
| 
 | |
| #if !ONLY_MSPACES | |
|  | |
| void* dlmalloc(size_t bytes) { | |
|   /* | |
|      Basic algorithm: | |
|      If a small request (< 256 bytes minus per-chunk overhead): | |
|        1. If one exists, use a remainderless chunk in associated smallbin. | |
|           (Remainderless means that there are too few excess bytes to | |
|           represent as a chunk.) | |
|        2. If it is big enough, use the dv chunk, which is normally the | |
|           chunk adjacent to the one used for the most recent small request. | |
|        3. If one exists, split the smallest available chunk in a bin, | |
|           saving remainder in dv. | |
|        4. If it is big enough, use the top chunk. | |
|        5. If available, get memory from system and use it | |
|      Otherwise, for a large request: | |
|        1. Find the smallest available binned chunk that fits, and use it | |
|           if it is better fitting than dv chunk, splitting if necessary. | |
|        2. If better fitting than any binned chunk, use the dv chunk. | |
|        3. If it is big enough, use the top chunk. | |
|        4. If request size >= mmap threshold, try to directly mmap this chunk. | |
|        5. If available, get memory from system and use it | |
|  | |
|      The ugly goto's here ensure that postaction occurs along all paths. | |
|   */ | |
| 
 | |
| #if USE_LOCKS | |
|   ensure_initialization(); /* initialize in sys_alloc if not using locks */ | |
| #endif | |
|  | |
|   if (!PREACTION(gm)) { | |
|     void* mem; | |
|     size_t nb; | |
|     if (bytes <= MAX_SMALL_REQUEST) { | |
|       bindex_t idx; | |
|       binmap_t smallbits; | |
|       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); | |
|       idx = small_index(nb); | |
|       smallbits = gm->smallmap >> idx; | |
| 
 | |
|       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ | |
|         mchunkptr b, p; | |
|         idx += ~smallbits & 1;       /* Uses next bin if idx empty */ | |
|         b = smallbin_at(gm, idx); | |
|         p = b->fd; | |
|         assert(chunksize(p) == small_index2size(idx)); | |
|         unlink_first_small_chunk(gm, b, p, idx); | |
|         set_inuse_and_pinuse(gm, p, small_index2size(idx)); | |
|         mem = chunk2mem(p); | |
|         check_malloced_chunk(gm, mem, nb); | |
|         goto postaction; | |
|       } | |
| 
 | |
|       else if (nb > gm->dvsize) { | |
|         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ | |
|           mchunkptr b, p, r; | |
|           size_t rsize; | |
|           bindex_t i; | |
|           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); | |
|           binmap_t leastbit = least_bit(leftbits); | |
|           compute_bit2idx(leastbit, i); | |
|           b = smallbin_at(gm, i); | |
|           p = b->fd; | |
|           assert(chunksize(p) == small_index2size(i)); | |
|           unlink_first_small_chunk(gm, b, p, i); | |
|           rsize = small_index2size(i) - nb; | |
|           /* Fit here cannot be remainderless if 4byte sizes */ | |
|           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) | |
|             set_inuse_and_pinuse(gm, p, small_index2size(i)); | |
|           else { | |
|             set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | |
|             r = chunk_plus_offset(p, nb); | |
|             set_size_and_pinuse_of_free_chunk(r, rsize); | |
|             replace_dv(gm, r, rsize); | |
|           } | |
|           mem = chunk2mem(p); | |
|           check_malloced_chunk(gm, mem, nb); | |
|           goto postaction; | |
|         } | |
| 
 | |
|         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { | |
|           check_malloced_chunk(gm, mem, nb); | |
|           goto postaction; | |
|         } | |
|       } | |
|     } | |
|     else if (bytes >= MAX_REQUEST) | |
|       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ | |
|     else { | |
|       nb = pad_request(bytes); | |
|       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { | |
|         check_malloced_chunk(gm, mem, nb); | |
|         goto postaction; | |
|       } | |
|     } | |
| 
 | |
|     if (nb <= gm->dvsize) { | |
|       size_t rsize = gm->dvsize - nb; | |
|       mchunkptr p = gm->dv; | |
|       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ | |
|         mchunkptr r = gm->dv = chunk_plus_offset(p, nb); | |
|         gm->dvsize = rsize; | |
|         set_size_and_pinuse_of_free_chunk(r, rsize); | |
|         set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | |
|       } | |
|       else { /* exhaust dv */ | |
|         size_t dvs = gm->dvsize; | |
|         gm->dvsize = 0; | |
|         gm->dv = 0; | |
|         set_inuse_and_pinuse(gm, p, dvs); | |
|       } | |
|       mem = chunk2mem(p); | |
|       check_malloced_chunk(gm, mem, nb); | |
|       goto postaction; | |
|     } | |
| 
 | |
|     else if (nb < gm->topsize) { /* Split top */ | |
|       size_t rsize = gm->topsize -= nb; | |
|       mchunkptr p = gm->top; | |
|       mchunkptr r = gm->top = chunk_plus_offset(p, nb); | |
|       r->head = rsize | PINUSE_BIT; | |
|       set_size_and_pinuse_of_inuse_chunk(gm, p, nb); | |
|       mem = chunk2mem(p); | |
|       check_top_chunk(gm, gm->top); | |
|       check_malloced_chunk(gm, mem, nb); | |
|       goto postaction; | |
|     } | |
| 
 | |
|     mem = sys_alloc(gm, nb); | |
| 
 | |
|   postaction: | |
|     POSTACTION(gm); | |
|     return mem; | |
|   } | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| void dlfree(void* mem) { | |
|   /* | |
|      Consolidate freed chunks with preceeding or succeeding bordering | |
|      free chunks, if they exist, and then place in a bin.  Intermixed | |
|      with special cases for top, dv, mmapped chunks, and usage errors. | |
|   */ | |
| 
 | |
|   if (mem != 0) { | |
|     mchunkptr p  = mem2chunk(mem); | |
| #if FOOTERS | |
|     mstate fm = get_mstate_for(p); | |
|     if (!ok_magic(fm)) { | |
|       USAGE_ERROR_ACTION(fm, p); | |
|       return; | |
|     } | |
| #else /* FOOTERS */ | |
| #define fm gm | |
| #endif /* FOOTERS */ | |
|     if (!PREACTION(fm)) { | |
|       check_inuse_chunk(fm, p); | |
|       if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { | |
|         size_t psize = chunksize(p); | |
|         mchunkptr next = chunk_plus_offset(p, psize); | |
|         if (!pinuse(p)) { | |
|           size_t prevsize = p->prev_foot; | |
|           if (is_mmapped(p)) { | |
|             psize += prevsize + MMAP_FOOT_PAD; | |
|             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) | |
|               fm->footprint -= psize; | |
|             goto postaction; | |
|           } | |
|           else { | |
|             mchunkptr prev = chunk_minus_offset(p, prevsize); | |
|             psize += prevsize; | |
|             p = prev; | |
|             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ | |
|               if (p != fm->dv) { | |
|                 unlink_chunk(fm, p, prevsize); | |
|               } | |
|               else if ((next->head & INUSE_BITS) == INUSE_BITS) { | |
|                 fm->dvsize = psize; | |
|                 set_free_with_pinuse(p, psize, next); | |
|                 goto postaction; | |
|               } | |
|             } | |
|             else | |
|               goto erroraction; | |
|           } | |
|         } | |
| 
 | |
|         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { | |
|           if (!cinuse(next)) {  /* consolidate forward */ | |
|             if (next == fm->top) { | |
|               size_t tsize = fm->topsize += psize; | |
|               fm->top = p; | |
|               p->head = tsize | PINUSE_BIT; | |
|               if (p == fm->dv) { | |
|                 fm->dv = 0; | |
|                 fm->dvsize = 0; | |
|               } | |
|               if (should_trim(fm, tsize)) | |
|                 sys_trim(fm, 0); | |
|               goto postaction; | |
|             } | |
|             else if (next == fm->dv) { | |
|               size_t dsize = fm->dvsize += psize; | |
|               fm->dv = p; | |
|               set_size_and_pinuse_of_free_chunk(p, dsize); | |
|               goto postaction; | |
|             } | |
|             else { | |
|               size_t nsize = chunksize(next); | |
|               psize += nsize; | |
|               unlink_chunk(fm, next, nsize); | |
|               set_size_and_pinuse_of_free_chunk(p, psize); | |
|               if (p == fm->dv) { | |
|                 fm->dvsize = psize; | |
|                 goto postaction; | |
|               } | |
|             } | |
|           } | |
|           else | |
|             set_free_with_pinuse(p, psize, next); | |
| 
 | |
|           if (is_small(psize)) { | |
|             insert_small_chunk(fm, p, psize); | |
|             check_free_chunk(fm, p); | |
|           } | |
|           else { | |
|             tchunkptr tp = (tchunkptr)p; | |
|             insert_large_chunk(fm, tp, psize); | |
|             check_free_chunk(fm, p); | |
|             if (--fm->release_checks == 0) | |
|               release_unused_segments(fm); | |
|           } | |
|           goto postaction; | |
|         } | |
|       } | |
|     erroraction: | |
|       USAGE_ERROR_ACTION(fm, p); | |
|     postaction: | |
|       POSTACTION(fm); | |
|     } | |
|   } | |
| #if !FOOTERS | |
| #undef fm | |
| #endif /* FOOTERS */ | |
| } | |
| 
 | |
| void* dlcalloc(size_t n_elements, size_t elem_size) { | |
|   void* mem; | |
|   size_t req = 0; | |
|   if (n_elements != 0) { | |
|     req = n_elements * elem_size; | |
|     if (((n_elements | elem_size) & ~(size_t)0xffff) && | |
|         (req / n_elements != elem_size)) | |
|       req = MAX_SIZE_T; /* force downstream failure on overflow */ | |
|   } | |
|   mem = dlmalloc(req); | |
|   if (mem != 0 && calloc_must_clear(mem2chunk(mem))) | |
|     memset(mem, 0, req); | |
|   return mem; | |
| } | |
| 
 | |
| void* dlrealloc(void* oldmem, size_t bytes) { | |
|   if (oldmem == 0) | |
|     return dlmalloc(bytes); | |
| #ifdef REALLOC_ZERO_BYTES_FREES | |
|   if (bytes == 0) { | |
|     dlfree(oldmem); | |
|     return 0; | |
|   } | |
| #endif /* REALLOC_ZERO_BYTES_FREES */ | |
|   else { | |
| #if ! FOOTERS | |
|     mstate m = gm; | |
| #else /* FOOTERS */ | |
|     mstate m = get_mstate_for(mem2chunk(oldmem)); | |
|     if (!ok_magic(m)) { | |
|       USAGE_ERROR_ACTION(m, oldmem); | |
|       return 0; | |
|     } | |
| #endif /* FOOTERS */ | |
|     return internal_realloc(m, oldmem, bytes); | |
|   } | |
| } | |
| 
 | |
| void* dlmemalign(size_t alignment, size_t bytes) { | |
|   return internal_memalign(gm, alignment, bytes); | |
| } | |
| 
 | |
| void** dlindependent_calloc(size_t n_elements, size_t elem_size, | |
|                                  void* chunks[]) { | |
|   size_t sz = elem_size; /* serves as 1-element array */ | |
|   return ialloc(gm, n_elements, &sz, 3, chunks); | |
| } | |
| 
 | |
| void** dlindependent_comalloc(size_t n_elements, size_t sizes[], | |
|                                    void* chunks[]) { | |
|   return ialloc(gm, n_elements, sizes, 0, chunks); | |
| } | |
| 
 | |
| void* dlvalloc(size_t bytes) { | |
|   size_t pagesz; | |
|   ensure_initialization(); | |
|   pagesz = mparams.page_size; | |
|   return dlmemalign(pagesz, bytes); | |
| } | |
| 
 | |
| void* dlpvalloc(size_t bytes) { | |
|   size_t pagesz; | |
|   ensure_initialization(); | |
|   pagesz = mparams.page_size; | |
|   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); | |
| } | |
| 
 | |
| int dlmalloc_trim(size_t pad) { | |
|   int result = 0; | |
|   ensure_initialization(); | |
|   if (!PREACTION(gm)) { | |
|     result = sys_trim(gm, pad); | |
|     POSTACTION(gm); | |
|   } | |
|   return result; | |
| } | |
| 
 | |
| size_t dlmalloc_footprint(void) { | |
|   return gm->footprint; | |
| } | |
| 
 | |
| size_t dlmalloc_max_footprint(void) { | |
|   return gm->max_footprint; | |
| } | |
| 
 | |
| #if !NO_MALLINFO | |
| struct mallinfo dlmallinfo(void) { | |
|   return internal_mallinfo(gm); | |
| } | |
| #endif /* NO_MALLINFO */ | |
|  | |
| void dlmalloc_stats() { | |
|   internal_malloc_stats(gm); | |
| } | |
| 
 | |
| int dlmallopt(int param_number, int value) { | |
|   return change_mparam(param_number, value); | |
| } | |
| 
 | |
| #endif /* !ONLY_MSPACES */ | |
|  | |
| size_t dlmalloc_usable_size(void* mem) { | |
|   if (mem != 0) { | |
|     mchunkptr p = mem2chunk(mem); | |
|     if (is_inuse(p)) | |
|       return chunksize(p) - overhead_for(p); | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| /* ----------------------------- user mspaces ---------------------------- */ | |
| 
 | |
| #if MSPACES | |
|  | |
| static mstate init_user_mstate(char* tbase, size_t tsize) { | |
|   size_t msize = pad_request(sizeof(struct malloc_state)); | |
|   mchunkptr mn; | |
|   mchunkptr msp = align_as_chunk(tbase); | |
|   mstate m = (mstate)(chunk2mem(msp)); | |
|   memset(m, 0, msize); | |
|   INITIAL_LOCK(&m->mutex); | |
|   msp->head = (msize|INUSE_BITS); | |
|   m->seg.base = m->least_addr = tbase; | |
|   m->seg.size = m->footprint = m->max_footprint = tsize; | |
|   m->magic = mparams.magic; | |
|   m->release_checks = MAX_RELEASE_CHECK_RATE; | |
|   m->mflags = mparams.default_mflags; | |
|   m->extp = 0; | |
|   m->exts = 0; | |
|   disable_contiguous(m); | |
|   init_bins(m); | |
|   mn = next_chunk(mem2chunk(m)); | |
|   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); | |
|   check_top_chunk(m, m->top); | |
|   return m; | |
| } | |
| 
 | |
| mspace create_mspace(size_t capacity, int locked) { | |
|   mstate m = 0; | |
|   size_t msize; | |
|   ensure_initialization(); | |
|   msize = pad_request(sizeof(struct malloc_state)); | |
|   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { | |
|     size_t rs = ((capacity == 0)? mparams.granularity : | |
|                  (capacity + TOP_FOOT_SIZE + msize)); | |
|     size_t tsize = granularity_align(rs); | |
|     char* tbase = (char*)(CALL_MMAP(tsize)); | |
|     if (tbase != CMFAIL) { | |
|       m = init_user_mstate(tbase, tsize); | |
|       m->seg.sflags = USE_MMAP_BIT; | |
|       set_lock(m, locked); | |
|     } | |
|   } | |
|   return (mspace)m; | |
| } | |
| 
 | |
| mspace create_mspace_with_base(void* base, size_t capacity, int locked) { | |
|   mstate m = 0; | |
|   size_t msize; | |
|   ensure_initialization(); | |
|   msize = pad_request(sizeof(struct malloc_state)); | |
|   if (capacity > msize + TOP_FOOT_SIZE && | |
|       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { | |
|     m = init_user_mstate((char*)base, capacity); | |
|     m->seg.sflags = EXTERN_BIT; | |
|     set_lock(m, locked); | |
|   } | |
|   return (mspace)m; | |
| } | |
| 
 | |
| int mspace_track_large_chunks(mspace msp, int enable) { | |
|   int ret = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (!PREACTION(ms)) { | |
|     if (!use_mmap(ms)) | |
|       ret = 1; | |
|     if (!enable) | |
|       enable_mmap(ms); | |
|     else | |
|       disable_mmap(ms); | |
|     POSTACTION(ms); | |
|   } | |
|   return ret; | |
| } | |
| 
 | |
| size_t destroy_mspace(mspace msp) { | |
|   size_t freed = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (ok_magic(ms)) { | |
|     msegmentptr sp = &ms->seg; | |
|     while (sp != 0) { | |
|       char* base = sp->base; | |
|       size_t size = sp->size; | |
|       flag_t flag = sp->sflags; | |
|       sp = sp->next; | |
|       if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && | |
|           CALL_MUNMAP(base, size) == 0) | |
|         freed += size; | |
|     } | |
|   } | |
|   else { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
|   return freed; | |
| } | |
| 
 | |
| /* | |
|   mspace versions of routines are near-clones of the global | |
|   versions. This is not so nice but better than the alternatives. | |
| */ | |
| 
 | |
| 
 | |
| void* mspace_malloc(mspace msp, size_t bytes) { | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|     return 0; | |
|   } | |
|   if (!PREACTION(ms)) { | |
|     void* mem; | |
|     size_t nb; | |
|     if (bytes <= MAX_SMALL_REQUEST) { | |
|       bindex_t idx; | |
|       binmap_t smallbits; | |
|       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); | |
|       idx = small_index(nb); | |
|       smallbits = ms->smallmap >> idx; | |
| 
 | |
|       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ | |
|         mchunkptr b, p; | |
|         idx += ~smallbits & 1;       /* Uses next bin if idx empty */ | |
|         b = smallbin_at(ms, idx); | |
|         p = b->fd; | |
|         assert(chunksize(p) == small_index2size(idx)); | |
|         unlink_first_small_chunk(ms, b, p, idx); | |
|         set_inuse_and_pinuse(ms, p, small_index2size(idx)); | |
|         mem = chunk2mem(p); | |
|         check_malloced_chunk(ms, mem, nb); | |
|         goto postaction; | |
|       } | |
| 
 | |
|       else if (nb > ms->dvsize) { | |
|         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ | |
|           mchunkptr b, p, r; | |
|           size_t rsize; | |
|           bindex_t i; | |
|           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); | |
|           binmap_t leastbit = least_bit(leftbits); | |
|           compute_bit2idx(leastbit, i); | |
|           b = smallbin_at(ms, i); | |
|           p = b->fd; | |
|           assert(chunksize(p) == small_index2size(i)); | |
|           unlink_first_small_chunk(ms, b, p, i); | |
|           rsize = small_index2size(i) - nb; | |
|           /* Fit here cannot be remainderless if 4byte sizes */ | |
|           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) | |
|             set_inuse_and_pinuse(ms, p, small_index2size(i)); | |
|           else { | |
|             set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | |
|             r = chunk_plus_offset(p, nb); | |
|             set_size_and_pinuse_of_free_chunk(r, rsize); | |
|             replace_dv(ms, r, rsize); | |
|           } | |
|           mem = chunk2mem(p); | |
|           check_malloced_chunk(ms, mem, nb); | |
|           goto postaction; | |
|         } | |
| 
 | |
|         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { | |
|           check_malloced_chunk(ms, mem, nb); | |
|           goto postaction; | |
|         } | |
|       } | |
|     } | |
|     else if (bytes >= MAX_REQUEST) | |
|       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ | |
|     else { | |
|       nb = pad_request(bytes); | |
|       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { | |
|         check_malloced_chunk(ms, mem, nb); | |
|         goto postaction; | |
|       } | |
|     } | |
| 
 | |
|     if (nb <= ms->dvsize) { | |
|       size_t rsize = ms->dvsize - nb; | |
|       mchunkptr p = ms->dv; | |
|       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ | |
|         mchunkptr r = ms->dv = chunk_plus_offset(p, nb); | |
|         ms->dvsize = rsize; | |
|         set_size_and_pinuse_of_free_chunk(r, rsize); | |
|         set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | |
|       } | |
|       else { /* exhaust dv */ | |
|         size_t dvs = ms->dvsize; | |
|         ms->dvsize = 0; | |
|         ms->dv = 0; | |
|         set_inuse_and_pinuse(ms, p, dvs); | |
|       } | |
|       mem = chunk2mem(p); | |
|       check_malloced_chunk(ms, mem, nb); | |
|       goto postaction; | |
|     } | |
| 
 | |
|     else if (nb < ms->topsize) { /* Split top */ | |
|       size_t rsize = ms->topsize -= nb; | |
|       mchunkptr p = ms->top; | |
|       mchunkptr r = ms->top = chunk_plus_offset(p, nb); | |
|       r->head = rsize | PINUSE_BIT; | |
|       set_size_and_pinuse_of_inuse_chunk(ms, p, nb); | |
|       mem = chunk2mem(p); | |
|       check_top_chunk(ms, ms->top); | |
|       check_malloced_chunk(ms, mem, nb); | |
|       goto postaction; | |
|     } | |
| 
 | |
|     mem = sys_alloc(ms, nb); | |
| 
 | |
|   postaction: | |
|     POSTACTION(ms); | |
|     return mem; | |
|   } | |
| 
 | |
|   return 0; | |
| } | |
| 
 | |
| void mspace_free(mspace msp, void* mem) { | |
|   if (mem != 0) { | |
|     mchunkptr p  = mem2chunk(mem); | |
| #if FOOTERS | |
|     mstate fm = get_mstate_for(p); | |
|     msp = msp; /* placate people compiling -Wunused */ | |
| #else /* FOOTERS */ | |
|     mstate fm = (mstate)msp; | |
| #endif /* FOOTERS */ | |
|     if (!ok_magic(fm)) { | |
|       USAGE_ERROR_ACTION(fm, p); | |
|       return; | |
|     } | |
|     if (!PREACTION(fm)) { | |
|       check_inuse_chunk(fm, p); | |
|       if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { | |
|         size_t psize = chunksize(p); | |
|         mchunkptr next = chunk_plus_offset(p, psize); | |
|         if (!pinuse(p)) { | |
|           size_t prevsize = p->prev_foot; | |
|           if (is_mmapped(p)) { | |
|             psize += prevsize + MMAP_FOOT_PAD; | |
|             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) | |
|               fm->footprint -= psize; | |
|             goto postaction; | |
|           } | |
|           else { | |
|             mchunkptr prev = chunk_minus_offset(p, prevsize); | |
|             psize += prevsize; | |
|             p = prev; | |
|             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ | |
|               if (p != fm->dv) { | |
|                 unlink_chunk(fm, p, prevsize); | |
|               } | |
|               else if ((next->head & INUSE_BITS) == INUSE_BITS) { | |
|                 fm->dvsize = psize; | |
|                 set_free_with_pinuse(p, psize, next); | |
|                 goto postaction; | |
|               } | |
|             } | |
|             else | |
|               goto erroraction; | |
|           } | |
|         } | |
| 
 | |
|         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { | |
|           if (!cinuse(next)) {  /* consolidate forward */ | |
|             if (next == fm->top) { | |
|               size_t tsize = fm->topsize += psize; | |
|               fm->top = p; | |
|               p->head = tsize | PINUSE_BIT; | |
|               if (p == fm->dv) { | |
|                 fm->dv = 0; | |
|                 fm->dvsize = 0; | |
|               } | |
|               if (should_trim(fm, tsize)) | |
|                 sys_trim(fm, 0); | |
|               goto postaction; | |
|             } | |
|             else if (next == fm->dv) { | |
|               size_t dsize = fm->dvsize += psize; | |
|               fm->dv = p; | |
|               set_size_and_pinuse_of_free_chunk(p, dsize); | |
|               goto postaction; | |
|             } | |
|             else { | |
|               size_t nsize = chunksize(next); | |
|               psize += nsize; | |
|               unlink_chunk(fm, next, nsize); | |
|               set_size_and_pinuse_of_free_chunk(p, psize); | |
|               if (p == fm->dv) { | |
|                 fm->dvsize = psize; | |
|                 goto postaction; | |
|               } | |
|             } | |
|           } | |
|           else | |
|             set_free_with_pinuse(p, psize, next); | |
| 
 | |
|           if (is_small(psize)) { | |
|             insert_small_chunk(fm, p, psize); | |
|             check_free_chunk(fm, p); | |
|           } | |
|           else { | |
|             tchunkptr tp = (tchunkptr)p; | |
|             insert_large_chunk(fm, tp, psize); | |
|             check_free_chunk(fm, p); | |
|             if (--fm->release_checks == 0) | |
|               release_unused_segments(fm); | |
|           } | |
|           goto postaction; | |
|         } | |
|       } | |
|     erroraction: | |
|       USAGE_ERROR_ACTION(fm, p); | |
|     postaction: | |
|       POSTACTION(fm); | |
|     } | |
|   } | |
| } | |
| 
 | |
| void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { | |
|   void* mem; | |
|   size_t req = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|     return 0; | |
|   } | |
|   if (n_elements != 0) { | |
|     req = n_elements * elem_size; | |
|     if (((n_elements | elem_size) & ~(size_t)0xffff) && | |
|         (req / n_elements != elem_size)) | |
|       req = MAX_SIZE_T; /* force downstream failure on overflow */ | |
|   } | |
|   mem = internal_malloc(ms, req); | |
|   if (mem != 0 && calloc_must_clear(mem2chunk(mem))) | |
|     memset(mem, 0, req); | |
|   return mem; | |
| } | |
| 
 | |
| void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { | |
|   if (oldmem == 0) | |
|     return mspace_malloc(msp, bytes); | |
| #ifdef REALLOC_ZERO_BYTES_FREES | |
|   if (bytes == 0) { | |
|     mspace_free(msp, oldmem); | |
|     return 0; | |
|   } | |
| #endif /* REALLOC_ZERO_BYTES_FREES */ | |
|   else { | |
| #if FOOTERS | |
|     mchunkptr p  = mem2chunk(oldmem); | |
|     mstate ms = get_mstate_for(p); | |
| #else /* FOOTERS */ | |
|     mstate ms = (mstate)msp; | |
| #endif /* FOOTERS */ | |
|     if (!ok_magic(ms)) { | |
|       USAGE_ERROR_ACTION(ms,ms); | |
|       return 0; | |
|     } | |
|     return internal_realloc(ms, oldmem, bytes); | |
|   } | |
| } | |
| 
 | |
| void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|     return 0; | |
|   } | |
|   return internal_memalign(ms, alignment, bytes); | |
| } | |
| 
 | |
| void** mspace_independent_calloc(mspace msp, size_t n_elements, | |
|                                  size_t elem_size, void* chunks[]) { | |
|   size_t sz = elem_size; /* serves as 1-element array */ | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|     return 0; | |
|   } | |
|   return ialloc(ms, n_elements, &sz, 3, chunks); | |
| } | |
| 
 | |
| void** mspace_independent_comalloc(mspace msp, size_t n_elements, | |
|                                    size_t sizes[], void* chunks[]) { | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|     return 0; | |
|   } | |
|   return ialloc(ms, n_elements, sizes, 0, chunks); | |
| } | |
| 
 | |
| int mspace_trim(mspace msp, size_t pad) { | |
|   int result = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (ok_magic(ms)) { | |
|     if (!PREACTION(ms)) { | |
|       result = sys_trim(ms, pad); | |
|       POSTACTION(ms); | |
|     } | |
|   } | |
|   else { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
|   return result; | |
| } | |
| 
 | |
| void mspace_malloc_stats(mspace msp) { | |
|   mstate ms = (mstate)msp; | |
|   if (ok_magic(ms)) { | |
|     internal_malloc_stats(ms); | |
|   } | |
|   else { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
| } | |
| 
 | |
| size_t mspace_footprint(mspace msp) { | |
|   size_t result = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (ok_magic(ms)) { | |
|     result = ms->footprint; | |
|   } | |
|   else { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
|   return result; | |
| } | |
| 
 | |
| 
 | |
| size_t mspace_max_footprint(mspace msp) { | |
|   size_t result = 0; | |
|   mstate ms = (mstate)msp; | |
|   if (ok_magic(ms)) { | |
|     result = ms->max_footprint; | |
|   } | |
|   else { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
|   return result; | |
| } | |
| 
 | |
| 
 | |
| #if !NO_MALLINFO | |
| struct mallinfo mspace_mallinfo(mspace msp) { | |
|   mstate ms = (mstate)msp; | |
|   if (!ok_magic(ms)) { | |
|     USAGE_ERROR_ACTION(ms,ms); | |
|   } | |
|   return internal_mallinfo(ms); | |
| } | |
| #endif /* NO_MALLINFO */ | |
|  | |
| size_t mspace_usable_size(void* mem) { | |
|   if (mem != 0) { | |
|     mchunkptr p = mem2chunk(mem); | |
|     if (is_inuse(p)) | |
|       return chunksize(p) - overhead_for(p); | |
|   } | |
|   return 0; | |
| } | |
| 
 | |
| int mspace_mallopt(int param_number, int value) { | |
|   return change_mparam(param_number, value); | |
| } | |
| 
 | |
| #endif /* MSPACES */ | |
|  | |
| 
 | |
| /* -------------------- Alternative MORECORE functions ------------------- */ | |
| 
 | |
| /* | |
|   Guidelines for creating a custom version of MORECORE: | |
|  | |
|   * For best performance, MORECORE should allocate in multiples of pagesize. | |
|   * MORECORE may allocate more memory than requested. (Or even less, | |
|       but this will usually result in a malloc failure.) | |
|   * MORECORE must not allocate memory when given argument zero, but | |
|       instead return one past the end address of memory from previous | |
|       nonzero call. | |
|   * For best performance, consecutive calls to MORECORE with positive | |
|       arguments should return increasing addresses, indicating that | |
|       space has been contiguously extended. | |
|   * Even though consecutive calls to MORECORE need not return contiguous | |
|       addresses, it must be OK for malloc'ed chunks to span multiple | |
|       regions in those cases where they do happen to be contiguous. | |
|   * MORECORE need not handle negative arguments -- it may instead | |
|       just return MFAIL when given negative arguments. | |
|       Negative arguments are always multiples of pagesize. MORECORE | |
|       must not misinterpret negative args as large positive unsigned | |
|       args. You can suppress all such calls from even occurring by defining | |
|       MORECORE_CANNOT_TRIM, | |
|  | |
|   As an example alternative MORECORE, here is a custom allocator | |
|   kindly contributed for pre-OSX macOS.  It uses virtually but not | |
|   necessarily physically contiguous non-paged memory (locked in, | |
|   present and won't get swapped out).  You can use it by uncommenting | |
|   this section, adding some #includes, and setting up the appropriate | |
|   defines above: | |
|  | |
|       #define MORECORE osMoreCore | |
|  | |
|   There is also a shutdown routine that should somehow be called for | |
|   cleanup upon program exit. | |
|  | |
|   #define MAX_POOL_ENTRIES 100 | |
|   #define MINIMUM_MORECORE_SIZE  (64 * 1024U) | |
|   static int next_os_pool; | |
|   void *our_os_pools[MAX_POOL_ENTRIES]; | |
|  | |
|   void *osMoreCore(int size) | |
|   { | |
|     void *ptr = 0; | |
|     static void *sbrk_top = 0; | |
|  | |
|     if (size > 0) | |
|     { | |
|       if (size < MINIMUM_MORECORE_SIZE) | |
|          size = MINIMUM_MORECORE_SIZE; | |
|       if (CurrentExecutionLevel() == kTaskLevel) | |
|          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); | |
|       if (ptr == 0) | |
|       { | |
|         return (void *) MFAIL; | |
|       } | |
|       // save ptrs so they can be freed during cleanup | |
|       our_os_pools[next_os_pool] = ptr; | |
|       next_os_pool++; | |
|       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); | |
|       sbrk_top = (char *) ptr + size; | |
|       return ptr; | |
|     } | |
|     else if (size < 0) | |
|     { | |
|       // we don't currently support shrink behavior | |
|       return (void *) MFAIL; | |
|     } | |
|     else | |
|     { | |
|       return sbrk_top; | |
|     } | |
|   } | |
|  | |
|   // cleanup any allocated memory pools | |
|   // called as last thing before shutting down driver | |
|  | |
|   void osCleanupMem(void) | |
|   { | |
|     void **ptr; | |
|  | |
|     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) | |
|       if (*ptr) | |
|       { | |
|          PoolDeallocate(*ptr); | |
|          *ptr = 0; | |
|       } | |
|   } | |
|  | |
| */ | |
| 
 | |
| 
 | |
| /* ----------------------------------------------------------------------- | |
| History: | |
|     V2.8.4 Wed May 27 09:56:23 2009  Doug Lea  (dl at gee) | |
|       * Use zeros instead of prev foot for is_mmapped | |
|       * Add mspace_track_large_chunks; thanks to Jean Brouwers | |
|       * Fix set_inuse in internal_realloc; thanks to Jean Brouwers | |
|       * Fix insufficient sys_alloc padding when using 16byte alignment | |
|       * Fix bad error check in mspace_footprint | |
|       * Adaptations for ptmalloc; thanks to Wolfram Gloger. | |
|       * Reentrant spin locks; thanks to Earl Chew and others | |
|       * Win32 improvements; thanks to Niall Douglas and Earl Chew | |
|       * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options | |
|       * Extension hook in malloc_state | |
|       * Various small adjustments to reduce warnings on some compilers | |
|       * Various configuration extensions/changes for more platforms. Thanks | |
|          to all who contributed these. | |
|  | |
|     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee) | |
|       * Add max_footprint functions | |
|       * Ensure all appropriate literals are size_t | |
|       * Fix conditional compilation problem for some #define settings | |
|       * Avoid concatenating segments with the one provided | |
|         in create_mspace_with_base | |
|       * Rename some variables to avoid compiler shadowing warnings | |
|       * Use explicit lock initialization. | |
|       * Better handling of sbrk interference. | |
|       * Simplify and fix segment insertion, trimming and mspace_destroy | |
|       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x | |
|       * Thanks especially to Dennis Flanagan for help on these. | |
|  | |
|     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee) | |
|       * Fix memalign brace error. | |
|  | |
|     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee) | |
|       * Fix improper #endif nesting in C++ | |
|       * Add explicit casts needed for C++ | |
|  | |
|     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee) | |
|       * Use trees for large bins | |
|       * Support mspaces | |
|       * Use segments to unify sbrk-based and mmap-based system allocation, | |
|         removing need for emulation on most platforms without sbrk. | |
|       * Default safety checks | |
|       * Optional footer checks. Thanks to William Robertson for the idea. | |
|       * Internal code refactoring | |
|       * Incorporate suggestions and platform-specific changes. | |
|         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, | |
|         Aaron Bachmann,  Emery Berger, and others. | |
|       * Speed up non-fastbin processing enough to remove fastbins. | |
|       * Remove useless cfree() to avoid conflicts with other apps. | |
|       * Remove internal memcpy, memset. Compilers handle builtins better. | |
|       * Remove some options that no one ever used and rename others. | |
|  | |
|     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee) | |
|       * Fix malloc_state bitmap array misdeclaration | |
|  | |
|     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee) | |
|       * Allow tuning of FIRST_SORTED_BIN_SIZE | |
|       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. | |
|       * Better detection and support for non-contiguousness of MORECORE. | |
|         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger | |
|       * Bypass most of malloc if no frees. Thanks To Emery Berger. | |
|       * Fix freeing of old top non-contiguous chunk im sysmalloc. | |
|       * Raised default trim and map thresholds to 256K. | |
|       * Fix mmap-related #defines. Thanks to Lubos Lunak. | |
|       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. | |
|       * Branch-free bin calculation | |
|       * Default trim and mmap thresholds now 256K. | |
|  | |
|     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee) | |
|       * Introduce independent_comalloc and independent_calloc. | |
|         Thanks to Michael Pachos for motivation and help. | |
|       * Make optional .h file available | |
|       * Allow > 2GB requests on 32bit systems. | |
|       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. | |
|         Thanks also to Andreas Mueller <a.mueller at paradatec.de>, | |
|         and Anonymous. | |
|       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for | |
|         helping test this.) | |
|       * memalign: check alignment arg | |
|       * realloc: don't try to shift chunks backwards, since this | |
|         leads to  more fragmentation in some programs and doesn't | |
|         seem to help in any others. | |
|       * Collect all cases in malloc requiring system memory into sysmalloc | |
|       * Use mmap as backup to sbrk | |
|       * Place all internal state in malloc_state | |
|       * Introduce fastbins (although similar to 2.5.1) | |
|       * Many minor tunings and cosmetic improvements | |
|       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK | |
|       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS | |
|         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. | |
|       * Include errno.h to support default failure action. | |
|  | |
|     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee) | |
|       * return null for negative arguments | |
|       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> | |
|          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' | |
|           (e.g. WIN32 platforms) | |
|          * Cleanup header file inclusion for WIN32 platforms | |
|          * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
|          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
|            memory allocation routines | |
|          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
|          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
|            usage of 'assert' in non-WIN32 code | |
|          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to | |
|            avoid infinite loop | |
|       * Always call 'fREe()' rather than 'free()' | |
|  | |
|     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee) | |
|       * Fixed ordering problem with boundary-stamping | |
|  | |
|     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee) | |
|       * Added pvalloc, as recommended by H.J. Liu | |
|       * Added 64bit pointer support mainly from Wolfram Gloger | |
|       * Added anonymously donated WIN32 sbrk emulation | |
|       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
|       * malloc_extend_top: fix mask error that caused wastage after | |
|         foreign sbrks | |
|       * Add linux mremap support code from HJ Liu | |
|  | |
|     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee) | |
|       * Integrated most documentation with the code. | |
|       * Add support for mmap, with help from | |
|         Wolfram Gloger (Gloger@lrz.uni-muenchen.de). | |
|       * Use last_remainder in more cases. | |
|       * Pack bins using idea from  colin@nyx10.cs.du.edu | |
|       * Use ordered bins instead of best-fit threshhold | |
|       * Eliminate block-local decls to simplify tracing and debugging. | |
|       * Support another case of realloc via move into top | |
|       * Fix error occuring when initial sbrk_base not word-aligned. | |
|       * Rely on page size for units instead of SBRK_UNIT to | |
|         avoid surprises about sbrk alignment conventions. | |
|       * Add mallinfo, mallopt. Thanks to Raymond Nijssen | |
|         (raymond@es.ele.tue.nl) for the suggestion. | |
|       * Add `pad' argument to malloc_trim and top_pad mallopt parameter. | |
|       * More precautions for cases where other routines call sbrk, | |
|         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). | |
|       * Added macros etc., allowing use in linux libc from | |
|         H.J. Lu (hjl@gnu.ai.mit.edu) | |
|       * Inverted this history list | |
|  | |
|     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee) | |
|       * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
|       * Removed all preallocation code since under current scheme | |
|         the work required to undo bad preallocations exceeds | |
|         the work saved in good cases for most test programs. | |
|       * No longer use return list or unconsolidated bins since | |
|         no scheme using them consistently outperforms those that don't | |
|         given above changes. | |
|       * Use best fit for very large chunks to prevent some worst-cases. | |
|       * Added some support for debugging | |
|  | |
|     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee) | |
|       * Removed footers when chunks are in use. Thanks to | |
|         Paul Wilson (wilson@cs.texas.edu) for the suggestion. | |
|  | |
|     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee) | |
|       * Added malloc_trim, with help from Wolfram Gloger | |
|         (wmglo@Dent.MED.Uni-Muenchen.DE). | |
|  | |
|     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g) | |
|  | |
|     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g) | |
|       * realloc: try to expand in both directions | |
|       * malloc: swap order of clean-bin strategy; | |
|       * realloc: only conditionally expand backwards | |
|       * Try not to scavenge used bins | |
|       * Use bin counts as a guide to preallocation | |
|       * Occasionally bin return list chunks in first scan | |
|       * Add a few optimizations from colin@nyx10.cs.du.edu | |
|  | |
|     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g) | |
|       * faster bin computation & slightly different binning | |
|       * merged all consolidations to one part of malloc proper | |
|          (eliminating old malloc_find_space & malloc_clean_bin) | |
|       * Scan 2 returns chunks (not just 1) | |
|       * Propagate failure in realloc if malloc returns 0 | |
|       * Add stuff to allow compilation on non-ANSI compilers | |
|           from kpv@research.att.com | |
|  | |
|     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu) | |
|       * removed potential for odd address access in prev_chunk | |
|       * removed dependency on getpagesize.h | |
|       * misc cosmetics and a bit more internal documentation | |
|       * anticosmetics: mangled names in macros to evade debugger strangeness | |
|       * tested on sparc, hp-700, dec-mips, rs6000 | |
|           with gcc & native cc (hp, dec only) allowing | |
|           Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
|  | |
|     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu) | |
|       * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
|          structure of old version,  but most details differ.) | |
|  | |
| */ | |
| 
 |