132 lines
6.5 KiB
132 lines
6.5 KiB
#include "src/solver/NativeLinearEquationSolver.h"
|
|
|
|
#include <utility>
|
|
|
|
#include "src/settings/SettingsManager.h"
|
|
#include "src/utility/vector.h"
|
|
#include "src/exceptions/InvalidStateException.h"
|
|
|
|
namespace storm {
|
|
namespace solver {
|
|
|
|
template<typename ValueType>
|
|
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, SolutionMethod method, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : A(A), method(method), precision(precision), relative(relative), maximalNumberOfIterations(maximalNumberOfIterations) {
|
|
// Intentionally left empty.
|
|
}
|
|
|
|
template<typename ValueType>
|
|
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A) : A(A) {
|
|
// Get the settings object to customize linear solving.
|
|
storm::settings::modules::NativeEquationSolverSettings const& settings = storm::settings::nativeEquationSolverSettings();
|
|
|
|
// Get appropriate settings.
|
|
maximalNumberOfIterations = settings.getMaximalIterationCount();
|
|
precision = settings.getPrecision();
|
|
relative = settings.getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative;
|
|
|
|
// Determine the method to be used.
|
|
storm::settings::modules::NativeEquationSolverSettings::LinearEquationTechnique methodAsSetting = settings.getLinearEquationSystemTechnique();
|
|
if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationTechnique::Jacobi) {
|
|
method = SolutionMethod::Jacobi;
|
|
}
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void NativeLinearEquationSolver<ValueType>::solveEquationSystem(std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult) const {
|
|
// Get a Jacobi decomposition of the matrix A.
|
|
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> jacobiDecomposition = A.getJacobiDecomposition();
|
|
|
|
// To avoid copying the contents of the vector in the loop, we create a temporary x to swap with.
|
|
bool multiplyResultProvided = true;
|
|
std::vector<ValueType>* nextX = multiplyResult;
|
|
if (nextX == nullptr) {
|
|
nextX = new std::vector<ValueType>(x.size());
|
|
multiplyResultProvided = false;
|
|
}
|
|
std::vector<ValueType> const* copyX = nextX;
|
|
std::vector<ValueType>* currentX = &x;
|
|
|
|
// Target vector for precision calculation.
|
|
std::vector<ValueType> tmpX(x.size());
|
|
|
|
// Set up additional environment variables.
|
|
uint_fast64_t iterationCount = 0;
|
|
bool converged = false;
|
|
|
|
while (!converged && iterationCount < maximalNumberOfIterations) {
|
|
// Compute D^-1 * (b - LU * x) and store result in nextX.
|
|
jacobiDecomposition.first.multiplyWithVector(*currentX, tmpX);
|
|
storm::utility::vector::subtractVectors(b, tmpX, tmpX);
|
|
storm::utility::vector::multiplyVectorsPointwise(jacobiDecomposition.second, tmpX, *nextX);
|
|
|
|
// Swap the two pointers as a preparation for the next iteration.
|
|
std::swap(nextX, currentX);
|
|
|
|
// Now check if the process already converged within our precision.
|
|
converged = storm::utility::vector::equalModuloPrecision(*currentX, *nextX, precision, relative);
|
|
|
|
// Increase iteration count so we can abort if convergence is too slow.
|
|
++iterationCount;
|
|
}
|
|
|
|
// If the last iteration did not write to the original x we have to swap the contents, because the
|
|
// output has to be written to the input parameter x.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
// If the vector for the temporary multiplication result was not provided, we need to delete it.
|
|
if (!multiplyResultProvided) {
|
|
delete copyX;
|
|
}
|
|
}
|
|
|
|
template<typename ValueType>
|
|
void NativeLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(std::vector<ValueType>& x, std::vector<ValueType> const* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
|
|
// Set up some temporary variables so that we can just swap pointers instead of copying the result after
|
|
// each iteration.
|
|
std::vector<ValueType>* currentX = &x;
|
|
|
|
bool multiplyResultProvided = true;
|
|
std::vector<ValueType>* nextX = multiplyResult;
|
|
if (nextX == nullptr) {
|
|
nextX = new std::vector<ValueType>(x.size());
|
|
multiplyResultProvided = false;
|
|
}
|
|
std::vector<ValueType> const* copyX = nextX;
|
|
|
|
// Now perform matrix-vector multiplication as long as we meet the bound.
|
|
for (uint_fast64_t i = 0; i < n; ++i) {
|
|
A.multiplyWithVector(*currentX, *nextX);
|
|
std::swap(nextX, currentX);
|
|
|
|
// If requested, add an offset to the current result vector.
|
|
if (b != nullptr) {
|
|
storm::utility::vector::addVectors(*currentX, *b, *currentX);
|
|
}
|
|
}
|
|
|
|
// If we performed an odd number of repetitions, we need to swap the contents of currentVector and x,
|
|
// because the output is supposed to be stored in the input vector x.
|
|
if (currentX == copyX) {
|
|
std::swap(x, *currentX);
|
|
}
|
|
|
|
// If the vector for the temporary multiplication result was not provided, we need to delete it.
|
|
if (!multiplyResultProvided) {
|
|
delete copyX;
|
|
}
|
|
}
|
|
|
|
|
|
template<typename ValueType>
|
|
std::string NativeLinearEquationSolver<ValueType>::methodToString() const {
|
|
switch (method) {
|
|
case SolutionMethod::Jacobi: return "jacobi";
|
|
}
|
|
}
|
|
|
|
// Explicitly instantiate the linear equation solver.
|
|
template class NativeLinearEquationSolver<double>;
|
|
}
|
|
}
|