132 lines
6.5 KiB

#include "src/solver/NativeLinearEquationSolver.h"
#include <utility>
#include "src/settings/SettingsManager.h"
#include "src/utility/vector.h"
#include "src/exceptions/InvalidStateException.h"
namespace storm {
namespace solver {
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, SolutionMethod method, double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : A(A), method(method), precision(precision), relative(relative), maximalNumberOfIterations(maximalNumberOfIterations) {
// Intentionally left empty.
}
template<typename ValueType>
NativeLinearEquationSolver<ValueType>::NativeLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A) : A(A) {
// Get the settings object to customize linear solving.
storm::settings::modules::NativeEquationSolverSettings const& settings = storm::settings::nativeEquationSolverSettings();
// Get appropriate settings.
maximalNumberOfIterations = settings.getMaximalIterationCount();
precision = settings.getPrecision();
relative = settings.getConvergenceCriterion() == storm::settings::modules::NativeEquationSolverSettings::ConvergenceCriterion::Relative;
// Determine the method to be used.
storm::settings::modules::NativeEquationSolverSettings::LinearEquationTechnique methodAsSetting = settings.getLinearEquationSystemTechnique();
if (methodAsSetting == storm::settings::modules::NativeEquationSolverSettings::LinearEquationTechnique::Jacobi) {
method = SolutionMethod::Jacobi;
}
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::solveEquationSystem(std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult) const {
// Get a Jacobi decomposition of the matrix A.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> jacobiDecomposition = A.getJacobiDecomposition();
// To avoid copying the contents of the vector in the loop, we create a temporary x to swap with.
bool multiplyResultProvided = true;
std::vector<ValueType>* nextX = multiplyResult;
if (nextX == nullptr) {
nextX = new std::vector<ValueType>(x.size());
multiplyResultProvided = false;
}
std::vector<ValueType> const* copyX = nextX;
std::vector<ValueType>* currentX = &x;
// Target vector for precision calculation.
std::vector<ValueType> tmpX(x.size());
// Set up additional environment variables.
uint_fast64_t iterationCount = 0;
bool converged = false;
while (!converged && iterationCount < maximalNumberOfIterations) {
// Compute D^-1 * (b - LU * x) and store result in nextX.
jacobiDecomposition.first.multiplyWithVector(*currentX, tmpX);
storm::utility::vector::subtractVectors(b, tmpX, tmpX);
storm::utility::vector::multiplyVectorsPointwise(jacobiDecomposition.second, tmpX, *nextX);
// Swap the two pointers as a preparation for the next iteration.
std::swap(nextX, currentX);
// Now check if the process already converged within our precision.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *nextX, precision, relative);
// Increase iteration count so we can abort if convergence is too slow.
++iterationCount;
}
// If the last iteration did not write to the original x we have to swap the contents, because the
// output has to be written to the input parameter x.
if (currentX == copyX) {
std::swap(x, *currentX);
}
// If the vector for the temporary multiplication result was not provided, we need to delete it.
if (!multiplyResultProvided) {
delete copyX;
}
}
template<typename ValueType>
void NativeLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(std::vector<ValueType>& x, std::vector<ValueType> const* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
// Set up some temporary variables so that we can just swap pointers instead of copying the result after
// each iteration.
std::vector<ValueType>* currentX = &x;
bool multiplyResultProvided = true;
std::vector<ValueType>* nextX = multiplyResult;
if (nextX == nullptr) {
nextX = new std::vector<ValueType>(x.size());
multiplyResultProvided = false;
}
std::vector<ValueType> const* copyX = nextX;
// Now perform matrix-vector multiplication as long as we meet the bound.
for (uint_fast64_t i = 0; i < n; ++i) {
A.multiplyWithVector(*currentX, *nextX);
std::swap(nextX, currentX);
// If requested, add an offset to the current result vector.
if (b != nullptr) {
storm::utility::vector::addVectors(*currentX, *b, *currentX);
}
}
// If we performed an odd number of repetitions, we need to swap the contents of currentVector and x,
// because the output is supposed to be stored in the input vector x.
if (currentX == copyX) {
std::swap(x, *currentX);
}
// If the vector for the temporary multiplication result was not provided, we need to delete it.
if (!multiplyResultProvided) {
delete copyX;
}
}
template<typename ValueType>
std::string NativeLinearEquationSolver<ValueType>::methodToString() const {
switch (method) {
case SolutionMethod::Jacobi: return "jacobi";
}
}
// Explicitly instantiate the linear equation solver.
template class NativeLinearEquationSolver<double>;
}
}