You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							72 lines
						
					
					
						
							2.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							72 lines
						
					
					
						
							2.1 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "lapack_common.h"
							 | 
						|
								#include <Eigen/Cholesky>
							 | 
						|
								
							 | 
						|
								// POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
							 | 
						|
								EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
							 | 
						|
								{
							 | 
						|
								  *info = 0;
							 | 
						|
								        if(UPLO(*uplo)==INVALID) *info = -1;
							 | 
						|
								  else  if(*n<0)                 *info = -2;
							 | 
						|
								  else  if(*lda<std::max(1,*n))  *info = -4;
							 | 
						|
								  if(*info!=0)
							 | 
						|
								  {
							 | 
						|
								    int e = -*info;
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar* a = reinterpret_cast<Scalar*>(pa);
							 | 
						|
								  MatrixType A(a,*n,*n,*lda);
							 | 
						|
								  int ret;
							 | 
						|
								  if(UPLO(*uplo)==UP) ret = internal::llt_inplace<Scalar, Upper>::blocked(A);
							 | 
						|
								  else                ret = internal::llt_inplace<Scalar, Lower>::blocked(A);
							 | 
						|
								
							 | 
						|
								  if(ret>=0)
							 | 
						|
								    *info = ret+1;
							 | 
						|
								  
							 | 
						|
								  return 0;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// POTRS solves a system of linear equations A*X = B with a symmetric
							 | 
						|
								// positive definite matrix A using the Cholesky factorization
							 | 
						|
								// A = U**T*U or A = L*L**T computed by DPOTRF.
							 | 
						|
								EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
							 | 
						|
								{
							 | 
						|
								  *info = 0;
							 | 
						|
								        if(UPLO(*uplo)==INVALID) *info = -1;
							 | 
						|
								  else  if(*n<0)                 *info = -2;
							 | 
						|
								  else  if(*nrhs<0)              *info = -3;
							 | 
						|
								  else  if(*lda<std::max(1,*n))  *info = -5;
							 | 
						|
								  else  if(*ldb<std::max(1,*n))  *info = -7;
							 | 
						|
								  if(*info!=0)
							 | 
						|
								  {
							 | 
						|
								    int e = -*info;
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar* a = reinterpret_cast<Scalar*>(pa);
							 | 
						|
								  Scalar* b = reinterpret_cast<Scalar*>(pb);
							 | 
						|
								  MatrixType A(a,*n,*n,*lda);
							 | 
						|
								  MatrixType B(b,*n,*nrhs,*ldb);
							 | 
						|
								
							 | 
						|
								  if(UPLO(*uplo)==UP)
							 | 
						|
								  {
							 | 
						|
								    A.triangularView<Upper>().adjoint().solveInPlace(B);
							 | 
						|
								    A.triangularView<Upper>().solveInPlace(B);
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    A.triangularView<Lower>().solveInPlace(B);
							 | 
						|
								    A.triangularView<Lower>().adjoint().solveInPlace(B);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  return 0;
							 | 
						|
								}
							 |