You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							7337 lines
						
					
					
						
							228 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							7337 lines
						
					
					
						
							228 KiB
						
					
					
				| // Copyright 2005, Google Inc. | |
| // All rights reserved. | |
| // | |
| // Redistribution and use in source and binary forms, with or without | |
| // modification, are permitted provided that the following conditions are | |
| // met: | |
| // | |
| //     * Redistributions of source code must retain the above copyright | |
| // notice, this list of conditions and the following disclaimer. | |
| //     * Redistributions in binary form must reproduce the above | |
| // copyright notice, this list of conditions and the following disclaimer | |
| // in the documentation and/or other materials provided with the | |
| // distribution. | |
| //     * Neither the name of Google Inc. nor the names of its | |
| // contributors may be used to endorse or promote products derived from | |
| // this software without specific prior written permission. | |
| // | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| // | |
| // Author: wan@google.com (Zhanyong Wan) | |
| // | |
| // Tests for Google Test itself.  This verifies that the basic constructs of | |
| // Google Test work. | |
|  | |
| #include "gtest/gtest.h" | |
| #include <vector> | |
| #include <ostream> | |
|  | |
| // Verifies that the command line flag variables can be accessed | |
| // in code once <gtest/gtest.h> has been #included. | |
| // Do not move it after other #includes. | |
| TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) { | |
|   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) | |
|       || testing::GTEST_FLAG(break_on_failure) | |
|       || testing::GTEST_FLAG(catch_exceptions) | |
|       || testing::GTEST_FLAG(color) != "unknown" | |
|       || testing::GTEST_FLAG(filter) != "unknown" | |
|       || testing::GTEST_FLAG(list_tests) | |
|       || testing::GTEST_FLAG(output) != "unknown" | |
|       || testing::GTEST_FLAG(print_time) | |
|       || testing::GTEST_FLAG(random_seed) | |
|       || testing::GTEST_FLAG(repeat) > 0 | |
|       || testing::GTEST_FLAG(show_internal_stack_frames) | |
|       || testing::GTEST_FLAG(shuffle) | |
|       || testing::GTEST_FLAG(stack_trace_depth) > 0 | |
|       || testing::GTEST_FLAG(stream_result_to) != "unknown" | |
|       || testing::GTEST_FLAG(throw_on_failure); | |
|   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused. | |
| } | |
| 
 | |
| #include "gtest/gtest-spi.h" | |
|  | |
| // Indicates that this translation unit is part of Google Test's | |
| // implementation.  It must come before gtest-internal-inl.h is | |
| // included, or there will be a compiler error.  This trick is to | |
| // prevent a user from accidentally including gtest-internal-inl.h in | |
| // his code. | |
| #define GTEST_IMPLEMENTATION_ 1 | |
| #include "src/gtest-internal-inl.h" | |
| #undef GTEST_IMPLEMENTATION_ | |
|  | |
| #include <limits.h>  // For INT_MAX. | |
| #include <stdlib.h> | |
| #include <time.h> | |
|  | |
| #include <map> | |
|  | |
| namespace testing { | |
| namespace internal { | |
| 
 | |
| // Provides access to otherwise private parts of the TestEventListeners class | |
| // that are needed to test it. | |
| class TestEventListenersAccessor { | |
|  public: | |
|   static TestEventListener* GetRepeater(TestEventListeners* listeners) { | |
|     return listeners->repeater(); | |
|   } | |
| 
 | |
|   static void SetDefaultResultPrinter(TestEventListeners* listeners, | |
|                                       TestEventListener* listener) { | |
|     listeners->SetDefaultResultPrinter(listener); | |
|   } | |
|   static void SetDefaultXmlGenerator(TestEventListeners* listeners, | |
|                                      TestEventListener* listener) { | |
|     listeners->SetDefaultXmlGenerator(listener); | |
|   } | |
| 
 | |
|   static bool EventForwardingEnabled(const TestEventListeners& listeners) { | |
|     return listeners.EventForwardingEnabled(); | |
|   } | |
| 
 | |
|   static void SuppressEventForwarding(TestEventListeners* listeners) { | |
|     listeners->SuppressEventForwarding(); | |
|   } | |
| }; | |
| 
 | |
| }  // namespace internal | |
| }  // namespace testing | |
|  | |
| using testing::AssertionFailure; | |
| using testing::AssertionResult; | |
| using testing::AssertionSuccess; | |
| using testing::DoubleLE; | |
| using testing::EmptyTestEventListener; | |
| using testing::FloatLE; | |
| using testing::GTEST_FLAG(also_run_disabled_tests); | |
| using testing::GTEST_FLAG(break_on_failure); | |
| using testing::GTEST_FLAG(catch_exceptions); | |
| using testing::GTEST_FLAG(color); | |
| using testing::GTEST_FLAG(death_test_use_fork); | |
| using testing::GTEST_FLAG(filter); | |
| using testing::GTEST_FLAG(list_tests); | |
| using testing::GTEST_FLAG(output); | |
| using testing::GTEST_FLAG(print_time); | |
| using testing::GTEST_FLAG(random_seed); | |
| using testing::GTEST_FLAG(repeat); | |
| using testing::GTEST_FLAG(show_internal_stack_frames); | |
| using testing::GTEST_FLAG(shuffle); | |
| using testing::GTEST_FLAG(stack_trace_depth); | |
| using testing::GTEST_FLAG(stream_result_to); | |
| using testing::GTEST_FLAG(throw_on_failure); | |
| using testing::IsNotSubstring; | |
| using testing::IsSubstring; | |
| using testing::Message; | |
| using testing::ScopedFakeTestPartResultReporter; | |
| using testing::StaticAssertTypeEq; | |
| using testing::Test; | |
| using testing::TestCase; | |
| using testing::TestEventListeners; | |
| using testing::TestPartResult; | |
| using testing::TestPartResultArray; | |
| using testing::TestProperty; | |
| using testing::TestResult; | |
| using testing::UnitTest; | |
| using testing::kMaxStackTraceDepth; | |
| using testing::internal::AddReference; | |
| using testing::internal::AlwaysFalse; | |
| using testing::internal::AlwaysTrue; | |
| using testing::internal::AppendUserMessage; | |
| using testing::internal::ArrayAwareFind; | |
| using testing::internal::ArrayEq; | |
| using testing::internal::CodePointToUtf8; | |
| using testing::internal::CompileAssertTypesEqual; | |
| using testing::internal::CopyArray; | |
| using testing::internal::CountIf; | |
| using testing::internal::EqFailure; | |
| using testing::internal::FloatingPoint; | |
| using testing::internal::ForEach; | |
| using testing::internal::FormatTimeInMillisAsSeconds; | |
| using testing::internal::GTestFlagSaver; | |
| using testing::internal::GetCurrentOsStackTraceExceptTop; | |
| using testing::internal::GetElementOr; | |
| using testing::internal::GetNextRandomSeed; | |
| using testing::internal::GetRandomSeedFromFlag; | |
| using testing::internal::GetTestTypeId; | |
| using testing::internal::GetTypeId; | |
| using testing::internal::GetUnitTestImpl; | |
| using testing::internal::ImplicitlyConvertible; | |
| using testing::internal::Int32; | |
| using testing::internal::Int32FromEnvOrDie; | |
| using testing::internal::IsAProtocolMessage; | |
| using testing::internal::IsContainer; | |
| using testing::internal::IsContainerTest; | |
| using testing::internal::IsNotContainer; | |
| using testing::internal::NativeArray; | |
| using testing::internal::ParseInt32Flag; | |
| using testing::internal::RemoveConst; | |
| using testing::internal::RemoveReference; | |
| using testing::internal::ShouldRunTestOnShard; | |
| using testing::internal::ShouldShard; | |
| using testing::internal::ShouldUseColor; | |
| using testing::internal::Shuffle; | |
| using testing::internal::ShuffleRange; | |
| using testing::internal::SkipPrefix; | |
| using testing::internal::StreamableToString; | |
| using testing::internal::String; | |
| using testing::internal::TestEventListenersAccessor; | |
| using testing::internal::TestResultAccessor; | |
| using testing::internal::UInt32; | |
| using testing::internal::WideStringToUtf8; | |
| using testing::internal::kCopy; | |
| using testing::internal::kMaxRandomSeed; | |
| using testing::internal::kReference; | |
| using testing::internal::kTestTypeIdInGoogleTest; | |
| using testing::internal::scoped_ptr; | |
| 
 | |
| #if GTEST_HAS_STREAM_REDIRECTION | |
| using testing::internal::CaptureStdout; | |
| using testing::internal::GetCapturedStdout; | |
| #endif | |
|  | |
| #if GTEST_IS_THREADSAFE | |
| using testing::internal::ThreadWithParam; | |
| #endif | |
|  | |
| class TestingVector : public std::vector<int> { | |
| }; | |
| 
 | |
| ::std::ostream& operator<<(::std::ostream& os, | |
|                            const TestingVector& vector) { | |
|   os << "{ "; | |
|   for (size_t i = 0; i < vector.size(); i++) { | |
|     os << vector[i] << " "; | |
|   } | |
|   os << "}"; | |
|   return os; | |
| } | |
| 
 | |
| // This line tests that we can define tests in an unnamed namespace. | |
| namespace { | |
| 
 | |
| TEST(GetRandomSeedFromFlagTest, HandlesZero) { | |
|   const int seed = GetRandomSeedFromFlag(0); | |
|   EXPECT_LE(1, seed); | |
|   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed)); | |
| } | |
| 
 | |
| TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) { | |
|   EXPECT_EQ(1, GetRandomSeedFromFlag(1)); | |
|   EXPECT_EQ(2, GetRandomSeedFromFlag(2)); | |
|   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1)); | |
|   EXPECT_EQ(static_cast<int>(kMaxRandomSeed), | |
|             GetRandomSeedFromFlag(kMaxRandomSeed)); | |
| } | |
| 
 | |
| TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) { | |
|   const int seed1 = GetRandomSeedFromFlag(-1); | |
|   EXPECT_LE(1, seed1); | |
|   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed)); | |
| 
 | |
|   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1); | |
|   EXPECT_LE(1, seed2); | |
|   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed)); | |
| } | |
| 
 | |
| TEST(GetNextRandomSeedTest, WorksForValidInput) { | |
|   EXPECT_EQ(2, GetNextRandomSeed(1)); | |
|   EXPECT_EQ(3, GetNextRandomSeed(2)); | |
|   EXPECT_EQ(static_cast<int>(kMaxRandomSeed), | |
|             GetNextRandomSeed(kMaxRandomSeed - 1)); | |
|   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed)); | |
| 
 | |
|   // We deliberately don't test GetNextRandomSeed() with invalid | |
|   // inputs, as that requires death tests, which are expensive.  This | |
|   // is fine as GetNextRandomSeed() is internal and has a | |
|   // straightforward definition. | |
| } | |
| 
 | |
| static void ClearCurrentTestPartResults() { | |
|   TestResultAccessor::ClearTestPartResults( | |
|       GetUnitTestImpl()->current_test_result()); | |
| } | |
| 
 | |
| // Tests GetTypeId. | |
|  | |
| TEST(GetTypeIdTest, ReturnsSameValueForSameType) { | |
|   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>()); | |
|   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>()); | |
| } | |
| 
 | |
| class SubClassOfTest : public Test {}; | |
| class AnotherSubClassOfTest : public Test {}; | |
| 
 | |
| TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) { | |
|   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>()); | |
|   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>()); | |
|   EXPECT_NE(GetTypeId<int>(), GetTestTypeId()); | |
|   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId()); | |
|   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId()); | |
|   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>()); | |
| } | |
| 
 | |
| // Verifies that GetTestTypeId() returns the same value, no matter it | |
| // is called from inside Google Test or outside of it. | |
| TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) { | |
|   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId()); | |
| } | |
| 
 | |
| // Tests FormatTimeInMillisAsSeconds(). | |
|  | |
| TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { | |
|   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0)); | |
| } | |
| 
 | |
| TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { | |
|   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3)); | |
|   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10)); | |
|   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200)); | |
|   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200)); | |
|   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000)); | |
| } | |
| 
 | |
| TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { | |
|   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3)); | |
|   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10)); | |
|   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200)); | |
|   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); | |
|   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000)); | |
| } | |
| 
 | |
| #if GTEST_CAN_COMPARE_NULL | |
|  | |
| # ifdef __BORLANDC__ | |
| // Silences warnings: "Condition is always true", "Unreachable code" | |
| #  pragma option push -w-ccc -w-rch | |
| # endif | |
|  | |
| // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null | |
| // pointer literal. | |
| TEST(NullLiteralTest, IsTrueForNullLiterals) { | |
|   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL)); | |
|   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0)); | |
|   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U)); | |
|   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L)); | |
| 
 | |
| # ifndef __BORLANDC__ | |
|  | |
|   // Some compilers may fail to detect some null pointer literals; | |
|   // as long as users of the framework don't use such literals, this | |
|   // is harmless. | |
|   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1)); | |
| 
 | |
| # endif | |
| } | |
| 
 | |
| // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null | |
| // pointer literal. | |
| TEST(NullLiteralTest, IsFalseForNonNullLiterals) { | |
|   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1)); | |
|   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0)); | |
|   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a')); | |
|   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL))); | |
| } | |
| 
 | |
| # ifdef __BORLANDC__ | |
| // Restores warnings after previous "#pragma option push" suppressed them. | |
| #  pragma option pop | |
| # endif | |
|  | |
| #endif  // GTEST_CAN_COMPARE_NULL | |
| // | |
| // Tests CodePointToUtf8(). | |
|  | |
| // Tests that the NUL character L'\0' is encoded correctly. | |
| TEST(CodePointToUtf8Test, CanEncodeNul) { | |
|   char buffer[32]; | |
|   EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer)); | |
| } | |
| 
 | |
| // Tests that ASCII characters are encoded correctly. | |
| TEST(CodePointToUtf8Test, CanEncodeAscii) { | |
|   char buffer[32]; | |
|   EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer)); | |
|   EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer)); | |
|   EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer)); | |
|   EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer)); | |
| } | |
| 
 | |
| // Tests that Unicode code-points that have 8 to 11 bits are encoded | |
| // as 110xxxxx 10xxxxxx. | |
| TEST(CodePointToUtf8Test, CanEncode8To11Bits) { | |
|   char buffer[32]; | |
|   // 000 1101 0011 => 110-00011 10-010011 | |
|   EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer)); | |
| 
 | |
|   // 101 0111 0110 => 110-10101 10-110110 | |
|   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints | |
|   // in wide strings and wide chars. In order to accomodate them, we have to | |
|   // introduce such character constants as integers. | |
|   EXPECT_STREQ("\xD5\xB6", | |
|                CodePointToUtf8(static_cast<wchar_t>(0x576), buffer)); | |
| } | |
| 
 | |
| // Tests that Unicode code-points that have 12 to 16 bits are encoded | |
| // as 1110xxxx 10xxxxxx 10xxxxxx. | |
| TEST(CodePointToUtf8Test, CanEncode12To16Bits) { | |
|   char buffer[32]; | |
|   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 | |
|   EXPECT_STREQ("\xE0\xA3\x93", | |
|                CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer)); | |
| 
 | |
|   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 | |
|   EXPECT_STREQ("\xEC\x9D\x8D", | |
|                CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer)); | |
| } | |
| 
 | |
| #if !GTEST_WIDE_STRING_USES_UTF16_ | |
| // Tests in this group require a wchar_t to hold > 16 bits, and thus | |
| // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is | |
| // 16-bit wide. This code may not compile on those systems. | |
|  | |
| // Tests that Unicode code-points that have 17 to 21 bits are encoded | |
| // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. | |
| TEST(CodePointToUtf8Test, CanEncode17To21Bits) { | |
|   char buffer[32]; | |
|   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 | |
|   EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer)); | |
| 
 | |
|   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000 | |
|   EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer)); | |
| 
 | |
|   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 | |
|   EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer)); | |
| } | |
| 
 | |
| // Tests that encoding an invalid code-point generates the expected result. | |
| TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { | |
|   char buffer[32]; | |
|   EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)", | |
|                CodePointToUtf8(L'\x1234ABCD', buffer)); | |
| } | |
| 
 | |
| #endif  // !GTEST_WIDE_STRING_USES_UTF16_ | |
|  | |
| // Tests WideStringToUtf8(). | |
|  | |
| // Tests that the NUL character L'\0' is encoded correctly. | |
| TEST(WideStringToUtf8Test, CanEncodeNul) { | |
|   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); | |
|   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); | |
| } | |
| 
 | |
| // Tests that ASCII strings are encoded correctly. | |
| TEST(WideStringToUtf8Test, CanEncodeAscii) { | |
|   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); | |
|   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); | |
|   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); | |
|   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); | |
| } | |
| 
 | |
| // Tests that Unicode code-points that have 8 to 11 bits are encoded | |
| // as 110xxxxx 10xxxxxx. | |
| TEST(WideStringToUtf8Test, CanEncode8To11Bits) { | |
|   // 000 1101 0011 => 110-00011 10-010011 | |
|   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); | |
|   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str()); | |
| 
 | |
|   // 101 0111 0110 => 110-10101 10-110110 | |
|   const wchar_t s[] = { 0x576, '\0' }; | |
|   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str()); | |
|   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str()); | |
| } | |
| 
 | |
| // Tests that Unicode code-points that have 12 to 16 bits are encoded | |
| // as 1110xxxx 10xxxxxx 10xxxxxx. | |
| TEST(WideStringToUtf8Test, CanEncode12To16Bits) { | |
|   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 | |
|   const wchar_t s1[] = { 0x8D3, '\0' }; | |
|   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str()); | |
|   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str()); | |
| 
 | |
|   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 | |
|   const wchar_t s2[] = { 0xC74D, '\0' }; | |
|   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str()); | |
|   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str()); | |
| } | |
| 
 | |
| // Tests that the conversion stops when the function encounters \0 character. | |
| TEST(WideStringToUtf8Test, StopsOnNulCharacter) { | |
|   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); | |
| } | |
| 
 | |
| // Tests that the conversion stops when the function reaches the limit | |
| // specified by the 'length' parameter. | |
| TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { | |
|   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); | |
| } | |
| 
 | |
| #if !GTEST_WIDE_STRING_USES_UTF16_ | |
| // Tests that Unicode code-points that have 17 to 21 bits are encoded | |
| // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile | |
| // on the systems using UTF-16 encoding. | |
| TEST(WideStringToUtf8Test, CanEncode17To21Bits) { | |
|   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 | |
|   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); | |
|   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str()); | |
| 
 | |
|   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 | |
|   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); | |
|   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); | |
| } | |
| 
 | |
| // Tests that encoding an invalid code-point generates the expected result. | |
| TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { | |
|   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", | |
|                WideStringToUtf8(L"\xABCDFF", -1).c_str()); | |
| } | |
| #else  // !GTEST_WIDE_STRING_USES_UTF16_ | |
| // Tests that surrogate pairs are encoded correctly on the systems using | |
| // UTF-16 encoding in the wide strings. | |
| TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { | |
|   const wchar_t s[] = { 0xD801, 0xDC00, '\0' }; | |
|   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str()); | |
| } | |
| 
 | |
| // Tests that encoding an invalid UTF-16 surrogate pair | |
| // generates the expected result. | |
| TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { | |
|   // Leading surrogate is at the end of the string. | |
|   const wchar_t s1[] = { 0xD800, '\0' }; | |
|   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str()); | |
|   // Leading surrogate is not followed by the trailing surrogate. | |
|   const wchar_t s2[] = { 0xD800, 'M', '\0' }; | |
|   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str()); | |
|   // Trailing surrogate appearas without a leading surrogate. | |
|   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' }; | |
|   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str()); | |
| } | |
| #endif  // !GTEST_WIDE_STRING_USES_UTF16_ | |
|  | |
| // Tests that codepoint concatenation works correctly. | |
| #if !GTEST_WIDE_STRING_USES_UTF16_ | |
| TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { | |
|   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'}; | |
|   EXPECT_STREQ( | |
|       "\xF4\x88\x98\xB4" | |
|           "\xEC\x9D\x8D" | |
|           "\n" | |
|           "\xD5\xB6" | |
|           "\xE0\xA3\x93" | |
|           "\xF4\x88\x98\xB4", | |
|       WideStringToUtf8(s, -1).c_str()); | |
| } | |
| #else | |
| TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { | |
|   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'}; | |
|   EXPECT_STREQ( | |
|       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", | |
|       WideStringToUtf8(s, -1).c_str()); | |
| } | |
| #endif  // !GTEST_WIDE_STRING_USES_UTF16_ | |
|  | |
| // Tests the Random class. | |
|  | |
| TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) { | |
|   testing::internal::Random random(42); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       random.Generate(0), | |
|       "Cannot generate a number in the range \\[0, 0\\)"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       random.Generate(testing::internal::Random::kMaxRange + 1), | |
|       "Generation of a number in \\[0, 2147483649\\) was requested, " | |
|       "but this can only generate numbers in \\[0, 2147483648\\)"); | |
| } | |
| 
 | |
| TEST(RandomTest, GeneratesNumbersWithinRange) { | |
|   const UInt32 kRange = 10000; | |
|   testing::internal::Random random(12345); | |
|   for (int i = 0; i < 10; i++) { | |
|     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i; | |
|   } | |
| 
 | |
|   testing::internal::Random random2(testing::internal::Random::kMaxRange); | |
|   for (int i = 0; i < 10; i++) { | |
|     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i; | |
|   } | |
| } | |
| 
 | |
| TEST(RandomTest, RepeatsWhenReseeded) { | |
|   const int kSeed = 123; | |
|   const int kArraySize = 10; | |
|   const UInt32 kRange = 10000; | |
|   UInt32 values[kArraySize]; | |
| 
 | |
|   testing::internal::Random random(kSeed); | |
|   for (int i = 0; i < kArraySize; i++) { | |
|     values[i] = random.Generate(kRange); | |
|   } | |
| 
 | |
|   random.Reseed(kSeed); | |
|   for (int i = 0; i < kArraySize; i++) { | |
|     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i; | |
|   } | |
| } | |
| 
 | |
| // Tests STL container utilities. | |
|  | |
| // Tests CountIf(). | |
|  | |
| static bool IsPositive(int n) { return n > 0; } | |
| 
 | |
| TEST(ContainerUtilityTest, CountIf) { | |
|   std::vector<int> v; | |
|   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container. | |
|  | |
|   v.push_back(-1); | |
|   v.push_back(0); | |
|   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies. | |
|  | |
|   v.push_back(2); | |
|   v.push_back(-10); | |
|   v.push_back(10); | |
|   EXPECT_EQ(2, CountIf(v, IsPositive)); | |
| } | |
| 
 | |
| // Tests ForEach(). | |
|  | |
| static int g_sum = 0; | |
| static void Accumulate(int n) { g_sum += n; } | |
| 
 | |
| TEST(ContainerUtilityTest, ForEach) { | |
|   std::vector<int> v; | |
|   g_sum = 0; | |
|   ForEach(v, Accumulate); | |
|   EXPECT_EQ(0, g_sum);  // Works for an empty container; | |
|  | |
|   g_sum = 0; | |
|   v.push_back(1); | |
|   ForEach(v, Accumulate); | |
|   EXPECT_EQ(1, g_sum);  // Works for a container with one element. | |
|  | |
|   g_sum = 0; | |
|   v.push_back(20); | |
|   v.push_back(300); | |
|   ForEach(v, Accumulate); | |
|   EXPECT_EQ(321, g_sum); | |
| } | |
| 
 | |
| // Tests GetElementOr(). | |
| TEST(ContainerUtilityTest, GetElementOr) { | |
|   std::vector<char> a; | |
|   EXPECT_EQ('x', GetElementOr(a, 0, 'x')); | |
| 
 | |
|   a.push_back('a'); | |
|   a.push_back('b'); | |
|   EXPECT_EQ('a', GetElementOr(a, 0, 'x')); | |
|   EXPECT_EQ('b', GetElementOr(a, 1, 'x')); | |
|   EXPECT_EQ('x', GetElementOr(a, -2, 'x')); | |
|   EXPECT_EQ('x', GetElementOr(a, 2, 'x')); | |
| } | |
| 
 | |
| TEST(ContainerUtilityDeathTest, ShuffleRange) { | |
|   std::vector<int> a; | |
|   a.push_back(0); | |
|   a.push_back(1); | |
|   a.push_back(2); | |
|   testing::internal::Random random(1); | |
| 
 | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       ShuffleRange(&random, -1, 1, &a), | |
|       "Invalid shuffle range start -1: must be in range \\[0, 3\\]"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       ShuffleRange(&random, 4, 4, &a), | |
|       "Invalid shuffle range start 4: must be in range \\[0, 3\\]"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       ShuffleRange(&random, 3, 2, &a), | |
|       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       ShuffleRange(&random, 3, 4, &a), | |
|       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]"); | |
| } | |
| 
 | |
| class VectorShuffleTest : public Test { | |
|  protected: | |
|   static const int kVectorSize = 20; | |
| 
 | |
|   VectorShuffleTest() : random_(1) { | |
|     for (int i = 0; i < kVectorSize; i++) { | |
|       vector_.push_back(i); | |
|     } | |
|   } | |
| 
 | |
|   static bool VectorIsCorrupt(const TestingVector& vector) { | |
|     if (kVectorSize != static_cast<int>(vector.size())) { | |
|       return true; | |
|     } | |
| 
 | |
|     bool found_in_vector[kVectorSize] = { false }; | |
|     for (size_t i = 0; i < vector.size(); i++) { | |
|       const int e = vector[i]; | |
|       if (e < 0 || e >= kVectorSize || found_in_vector[e]) { | |
|         return true; | |
|       } | |
|       found_in_vector[e] = true; | |
|     } | |
| 
 | |
|     // Vector size is correct, elements' range is correct, no | |
|     // duplicate elements.  Therefore no corruption has occurred. | |
|     return false; | |
|   } | |
| 
 | |
|   static bool VectorIsNotCorrupt(const TestingVector& vector) { | |
|     return !VectorIsCorrupt(vector); | |
|   } | |
| 
 | |
|   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) { | |
|     for (int i = begin; i < end; i++) { | |
|       if (i != vector[i]) { | |
|         return true; | |
|       } | |
|     } | |
|     return false; | |
|   } | |
| 
 | |
|   static bool RangeIsUnshuffled( | |
|       const TestingVector& vector, int begin, int end) { | |
|     return !RangeIsShuffled(vector, begin, end); | |
|   } | |
| 
 | |
|   static bool VectorIsShuffled(const TestingVector& vector) { | |
|     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size())); | |
|   } | |
| 
 | |
|   static bool VectorIsUnshuffled(const TestingVector& vector) { | |
|     return !VectorIsShuffled(vector); | |
|   } | |
| 
 | |
|   testing::internal::Random random_; | |
|   TestingVector vector_; | |
| };  // class VectorShuffleTest | |
|  | |
| const int VectorShuffleTest::kVectorSize; | |
| 
 | |
| TEST_F(VectorShuffleTest, HandlesEmptyRange) { | |
|   // Tests an empty range at the beginning... | |
|   ShuffleRange(&random_, 0, 0, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| 
 | |
|   // ...in the middle... | |
|   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| 
 | |
|   // ...at the end... | |
|   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| 
 | |
|   // ...and past the end. | |
|   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| } | |
| 
 | |
| TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) { | |
|   // Tests a size one range at the beginning... | |
|   ShuffleRange(&random_, 0, 1, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| 
 | |
|   // ...in the middle... | |
|   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| 
 | |
|   // ...and at the end. | |
|   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
| } | |
| 
 | |
| // Because we use our own random number generator and a fixed seed, | |
| // we can guarantee that the following "random" tests will succeed. | |
|  | |
| TEST_F(VectorShuffleTest, ShufflesEntireVector) { | |
|   Shuffle(&random_, &vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_; | |
| 
 | |
|   // Tests the first and last elements in particular to ensure that | |
|   // there are no off-by-one problems in our shuffle algorithm. | |
|   EXPECT_NE(0, vector_[0]); | |
|   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]); | |
| } | |
| 
 | |
| TEST_F(VectorShuffleTest, ShufflesStartOfVector) { | |
|   const int kRangeSize = kVectorSize/2; | |
| 
 | |
|   ShuffleRange(&random_, 0, kRangeSize, &vector_); | |
| 
 | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize); | |
|   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize); | |
| } | |
| 
 | |
| TEST_F(VectorShuffleTest, ShufflesEndOfVector) { | |
|   const int kRangeSize = kVectorSize / 2; | |
|   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_); | |
| 
 | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); | |
|   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize); | |
| } | |
| 
 | |
| TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) { | |
|   int kRangeSize = kVectorSize/3; | |
|   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_); | |
| 
 | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); | |
|   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize); | |
|   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize); | |
| } | |
| 
 | |
| TEST_F(VectorShuffleTest, ShufflesRepeatably) { | |
|   TestingVector vector2; | |
|   for (int i = 0; i < kVectorSize; i++) { | |
|     vector2.push_back(i); | |
|   } | |
| 
 | |
|   random_.Reseed(1234); | |
|   Shuffle(&random_, &vector_); | |
|   random_.Reseed(1234); | |
|   Shuffle(&random_, &vector2); | |
| 
 | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
|   ASSERT_PRED1(VectorIsNotCorrupt, vector2); | |
| 
 | |
|   for (int i = 0; i < kVectorSize; i++) { | |
|     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i; | |
|   } | |
| } | |
| 
 | |
| // Tests the size of the AssertHelper class. | |
|  | |
| TEST(AssertHelperTest, AssertHelperIsSmall) { | |
|   // To avoid breaking clients that use lots of assertions in one | |
|   // function, we cannot grow the size of AssertHelper. | |
|   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*)); | |
| } | |
| 
 | |
| // Tests the String class. | |
|  | |
| // Tests String's constructors. | |
| TEST(StringTest, Constructors) { | |
|   // Default ctor. | |
|   String s1; | |
|   // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing | |
|   // pointers with NULL isn't supported on all platforms. | |
|   EXPECT_EQ(0U, s1.length()); | |
|   EXPECT_TRUE(NULL == s1.c_str()); | |
| 
 | |
|   // Implicitly constructs from a C-string. | |
|   String s2 = "Hi"; | |
|   EXPECT_EQ(2U, s2.length()); | |
|   EXPECT_STREQ("Hi", s2.c_str()); | |
| 
 | |
|   // Constructs from a C-string and a length. | |
|   String s3("hello", 3); | |
|   EXPECT_EQ(3U, s3.length()); | |
|   EXPECT_STREQ("hel", s3.c_str()); | |
| 
 | |
|   // The empty String should be created when String is constructed with | |
|   // a NULL pointer and length 0. | |
|   EXPECT_EQ(0U, String(NULL, 0).length()); | |
|   EXPECT_FALSE(String(NULL, 0).c_str() == NULL); | |
| 
 | |
|   // Constructs a String that contains '\0'. | |
|   String s4("a\0bcd", 4); | |
|   EXPECT_EQ(4U, s4.length()); | |
|   EXPECT_EQ('a', s4.c_str()[0]); | |
|   EXPECT_EQ('\0', s4.c_str()[1]); | |
|   EXPECT_EQ('b', s4.c_str()[2]); | |
|   EXPECT_EQ('c', s4.c_str()[3]); | |
| 
 | |
|   // Copy ctor where the source is NULL. | |
|   const String null_str; | |
|   String s5 = null_str; | |
|   EXPECT_TRUE(s5.c_str() == NULL); | |
| 
 | |
|   // Copy ctor where the source isn't NULL. | |
|   String s6 = s3; | |
|   EXPECT_EQ(3U, s6.length()); | |
|   EXPECT_STREQ("hel", s6.c_str()); | |
| 
 | |
|   // Copy ctor where the source contains '\0'. | |
|   String s7 = s4; | |
|   EXPECT_EQ(4U, s7.length()); | |
|   EXPECT_EQ('a', s7.c_str()[0]); | |
|   EXPECT_EQ('\0', s7.c_str()[1]); | |
|   EXPECT_EQ('b', s7.c_str()[2]); | |
|   EXPECT_EQ('c', s7.c_str()[3]); | |
| } | |
| 
 | |
| TEST(StringTest, ConvertsFromStdString) { | |
|   // An empty std::string. | |
|   const std::string src1(""); | |
|   const String dest1 = src1; | |
|   EXPECT_EQ(0U, dest1.length()); | |
|   EXPECT_STREQ("", dest1.c_str()); | |
| 
 | |
|   // A normal std::string. | |
|   const std::string src2("Hi"); | |
|   const String dest2 = src2; | |
|   EXPECT_EQ(2U, dest2.length()); | |
|   EXPECT_STREQ("Hi", dest2.c_str()); | |
| 
 | |
|   // An std::string with an embedded NUL character. | |
|   const char src3[] = "a\0b"; | |
|   const String dest3 = std::string(src3, sizeof(src3)); | |
|   EXPECT_EQ(sizeof(src3), dest3.length()); | |
|   EXPECT_EQ('a', dest3.c_str()[0]); | |
|   EXPECT_EQ('\0', dest3.c_str()[1]); | |
|   EXPECT_EQ('b', dest3.c_str()[2]); | |
| } | |
| 
 | |
| TEST(StringTest, ConvertsToStdString) { | |
|   // An empty String. | |
|   const String src1(""); | |
|   const std::string dest1 = src1; | |
|   EXPECT_EQ("", dest1); | |
| 
 | |
|   // A normal String. | |
|   const String src2("Hi"); | |
|   const std::string dest2 = src2; | |
|   EXPECT_EQ("Hi", dest2); | |
| 
 | |
|   // A String containing a '\0'. | |
|   const String src3("x\0y", 3); | |
|   const std::string dest3 = src3; | |
|   EXPECT_EQ(std::string("x\0y", 3), dest3); | |
| } | |
| 
 | |
| #if GTEST_HAS_GLOBAL_STRING | |
|  | |
| TEST(StringTest, ConvertsFromGlobalString) { | |
|   // An empty ::string. | |
|   const ::string src1(""); | |
|   const String dest1 = src1; | |
|   EXPECT_EQ(0U, dest1.length()); | |
|   EXPECT_STREQ("", dest1.c_str()); | |
| 
 | |
|   // A normal ::string. | |
|   const ::string src2("Hi"); | |
|   const String dest2 = src2; | |
|   EXPECT_EQ(2U, dest2.length()); | |
|   EXPECT_STREQ("Hi", dest2.c_str()); | |
| 
 | |
|   // An ::string with an embedded NUL character. | |
|   const char src3[] = "x\0y"; | |
|   const String dest3 = ::string(src3, sizeof(src3)); | |
|   EXPECT_EQ(sizeof(src3), dest3.length()); | |
|   EXPECT_EQ('x', dest3.c_str()[0]); | |
|   EXPECT_EQ('\0', dest3.c_str()[1]); | |
|   EXPECT_EQ('y', dest3.c_str()[2]); | |
| } | |
| 
 | |
| TEST(StringTest, ConvertsToGlobalString) { | |
|   // An empty String. | |
|   const String src1(""); | |
|   const ::string dest1 = src1; | |
|   EXPECT_EQ("", dest1); | |
| 
 | |
|   // A normal String. | |
|   const String src2("Hi"); | |
|   const ::string dest2 = src2; | |
|   EXPECT_EQ("Hi", dest2); | |
| 
 | |
|   const String src3("x\0y", 3); | |
|   const ::string dest3 = src3; | |
|   EXPECT_EQ(::string("x\0y", 3), dest3); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_GLOBAL_STRING | |
|  | |
| // Tests String::ShowCStringQuoted(). | |
| TEST(StringTest, ShowCStringQuoted) { | |
|   EXPECT_STREQ("(null)", | |
|                String::ShowCStringQuoted(NULL).c_str()); | |
|   EXPECT_STREQ("\"\"", | |
|                String::ShowCStringQuoted("").c_str()); | |
|   EXPECT_STREQ("\"foo\"", | |
|                String::ShowCStringQuoted("foo").c_str()); | |
| } | |
| 
 | |
| // Tests String::empty(). | |
| TEST(StringTest, Empty) { | |
|   EXPECT_TRUE(String("").empty()); | |
|   EXPECT_FALSE(String().empty()); | |
|   EXPECT_FALSE(String(NULL).empty()); | |
|   EXPECT_FALSE(String("a").empty()); | |
|   EXPECT_FALSE(String("\0", 1).empty()); | |
| } | |
| 
 | |
| // Tests String::Compare(). | |
| TEST(StringTest, Compare) { | |
|   // NULL vs NULL. | |
|   EXPECT_EQ(0, String().Compare(String())); | |
| 
 | |
|   // NULL vs non-NULL. | |
|   EXPECT_EQ(-1, String().Compare(String(""))); | |
| 
 | |
|   // Non-NULL vs NULL. | |
|   EXPECT_EQ(1, String("").Compare(String())); | |
| 
 | |
|   // The following covers non-NULL vs non-NULL. | |
|  | |
|   // "" vs "". | |
|   EXPECT_EQ(0, String("").Compare(String(""))); | |
| 
 | |
|   // "" vs non-"". | |
|   EXPECT_EQ(-1, String("").Compare(String("\0", 1))); | |
|   EXPECT_EQ(-1, String("").Compare(" ")); | |
| 
 | |
|   // Non-"" vs "". | |
|   EXPECT_EQ(1, String("a").Compare(String(""))); | |
| 
 | |
|   // The following covers non-"" vs non-"". | |
|  | |
|   // Same length and equal. | |
|   EXPECT_EQ(0, String("a").Compare(String("a"))); | |
| 
 | |
|   // Same length and different. | |
|   EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3))); | |
|   EXPECT_EQ(1, String("b").Compare(String("a"))); | |
| 
 | |
|   // Different lengths. | |
|   EXPECT_EQ(-1, String("a").Compare(String("ab"))); | |
|   EXPECT_EQ(-1, String("a").Compare(String("a\0", 2))); | |
|   EXPECT_EQ(1, String("abc").Compare(String("aacd"))); | |
| } | |
| 
 | |
| // Tests String::operator==(). | |
| TEST(StringTest, Equals) { | |
|   const String null(NULL); | |
|   EXPECT_TRUE(null == NULL);  // NOLINT | |
|   EXPECT_FALSE(null == "");  // NOLINT | |
|   EXPECT_FALSE(null == "bar");  // NOLINT | |
|  | |
|   const String empty(""); | |
|   EXPECT_FALSE(empty == NULL);  // NOLINT | |
|   EXPECT_TRUE(empty == "");  // NOLINT | |
|   EXPECT_FALSE(empty == "bar");  // NOLINT | |
|  | |
|   const String foo("foo"); | |
|   EXPECT_FALSE(foo == NULL);  // NOLINT | |
|   EXPECT_FALSE(foo == "");  // NOLINT | |
|   EXPECT_FALSE(foo == "bar");  // NOLINT | |
|   EXPECT_TRUE(foo == "foo");  // NOLINT | |
|  | |
|   const String bar("x\0y", 3); | |
|   EXPECT_FALSE(bar == "x"); | |
| } | |
| 
 | |
| // Tests String::operator!=(). | |
| TEST(StringTest, NotEquals) { | |
|   const String null(NULL); | |
|   EXPECT_FALSE(null != NULL);  // NOLINT | |
|   EXPECT_TRUE(null != "");  // NOLINT | |
|   EXPECT_TRUE(null != "bar");  // NOLINT | |
|  | |
|   const String empty(""); | |
|   EXPECT_TRUE(empty != NULL);  // NOLINT | |
|   EXPECT_FALSE(empty != "");  // NOLINT | |
|   EXPECT_TRUE(empty != "bar");  // NOLINT | |
|  | |
|   const String foo("foo"); | |
|   EXPECT_TRUE(foo != NULL);  // NOLINT | |
|   EXPECT_TRUE(foo != "");  // NOLINT | |
|   EXPECT_TRUE(foo != "bar");  // NOLINT | |
|   EXPECT_FALSE(foo != "foo");  // NOLINT | |
|  | |
|   const String bar("x\0y", 3); | |
|   EXPECT_TRUE(bar != "x"); | |
| } | |
| 
 | |
| // Tests String::length(). | |
| TEST(StringTest, Length) { | |
|   EXPECT_EQ(0U, String().length()); | |
|   EXPECT_EQ(0U, String("").length()); | |
|   EXPECT_EQ(2U, String("ab").length()); | |
|   EXPECT_EQ(3U, String("a\0b", 3).length()); | |
| } | |
| 
 | |
| // Tests String::EndsWith(). | |
| TEST(StringTest, EndsWith) { | |
|   EXPECT_TRUE(String("foobar").EndsWith("bar")); | |
|   EXPECT_TRUE(String("foobar").EndsWith("")); | |
|   EXPECT_TRUE(String("").EndsWith("")); | |
| 
 | |
|   EXPECT_FALSE(String("foobar").EndsWith("foo")); | |
|   EXPECT_FALSE(String("").EndsWith("foo")); | |
| } | |
| 
 | |
| // Tests String::EndsWithCaseInsensitive(). | |
| TEST(StringTest, EndsWithCaseInsensitive) { | |
|   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR")); | |
|   EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar")); | |
|   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("")); | |
|   EXPECT_TRUE(String("").EndsWithCaseInsensitive("")); | |
| 
 | |
|   EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo")); | |
|   EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo")); | |
|   EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo")); | |
| } | |
| 
 | |
| // C++Builder's preprocessor is buggy; it fails to expand macros that | |
| // appear in macro parameters after wide char literals.  Provide an alias | |
| // for NULL as a workaround. | |
| static const wchar_t* const kNull = NULL; | |
| 
 | |
| // Tests String::CaseInsensitiveWideCStringEquals | |
| TEST(StringTest, CaseInsensitiveWideCStringEquals) { | |
|   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL)); | |
|   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"")); | |
|   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull)); | |
|   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar")); | |
|   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull)); | |
|   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); | |
|   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); | |
|   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); | |
| } | |
| 
 | |
| // Tests that NULL can be assigned to a String. | |
| TEST(StringTest, CanBeAssignedNULL) { | |
|   const String src(NULL); | |
|   String dest; | |
| 
 | |
|   dest = src; | |
|   EXPECT_STREQ(NULL, dest.c_str()); | |
| } | |
| 
 | |
| // Tests that the empty string "" can be assigned to a String. | |
| TEST(StringTest, CanBeAssignedEmpty) { | |
|   const String src(""); | |
|   String dest; | |
| 
 | |
|   dest = src; | |
|   EXPECT_STREQ("", dest.c_str()); | |
| } | |
| 
 | |
| // Tests that a non-empty string can be assigned to a String. | |
| TEST(StringTest, CanBeAssignedNonEmpty) { | |
|   const String src("hello"); | |
|   String dest; | |
|   dest = src; | |
|   EXPECT_EQ(5U, dest.length()); | |
|   EXPECT_STREQ("hello", dest.c_str()); | |
| 
 | |
|   const String src2("x\0y", 3); | |
|   String dest2; | |
|   dest2 = src2; | |
|   EXPECT_EQ(3U, dest2.length()); | |
|   EXPECT_EQ('x', dest2.c_str()[0]); | |
|   EXPECT_EQ('\0', dest2.c_str()[1]); | |
|   EXPECT_EQ('y', dest2.c_str()[2]); | |
| } | |
| 
 | |
| // Tests that a String can be assigned to itself. | |
| TEST(StringTest, CanBeAssignedSelf) { | |
|   String dest("hello"); | |
| 
 | |
|   // Use explicit function call notation here to suppress self-assign warning. | |
|   dest.operator=(dest); | |
|   EXPECT_STREQ("hello", dest.c_str()); | |
| } | |
| 
 | |
| // Sun Studio < 12 incorrectly rejects this code due to an overloading | |
| // ambiguity. | |
| #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590) | |
| // Tests streaming a String. | |
| TEST(StringTest, Streams) { | |
|   EXPECT_EQ(StreamableToString(String()), "(null)"); | |
|   EXPECT_EQ(StreamableToString(String("")), ""); | |
|   EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b"); | |
| } | |
| #endif | |
|  | |
| // Tests that String::Format() works. | |
| TEST(StringTest, FormatWorks) { | |
|   // Normal case: the format spec is valid, the arguments match the | |
|   // spec, and the result is < 4095 characters. | |
|   EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str()); | |
| 
 | |
|   // Edge case: the result is 4095 characters. | |
|   char buffer[4096]; | |
|   const size_t kSize = sizeof(buffer); | |
|   memset(buffer, 'a', kSize - 1); | |
|   buffer[kSize - 1] = '\0'; | |
|   EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str()); | |
| 
 | |
|   // The result needs to be 4096 characters, exceeding Format()'s limit. | |
|   EXPECT_STREQ("<formatting error or buffer exceeded>", | |
|                String::Format("x%s", buffer).c_str()); | |
| 
 | |
| #if GTEST_OS_LINUX | |
|   // On Linux, invalid format spec should lead to an error message. | |
|   // In other environment (e.g. MSVC on Windows), String::Format() may | |
|   // simply ignore a bad format spec, so this assertion is run on | |
|   // Linux only. | |
|   EXPECT_STREQ("<formatting error or buffer exceeded>", | |
|                String::Format("%").c_str()); | |
| #endif | |
| } | |
| 
 | |
| #if GTEST_OS_WINDOWS | |
|  | |
| // Tests String::ShowWideCString(). | |
| TEST(StringTest, ShowWideCString) { | |
|   EXPECT_STREQ("(null)", | |
|                String::ShowWideCString(NULL).c_str()); | |
|   EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); | |
|   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); | |
| } | |
| 
 | |
| // Tests String::ShowWideCStringQuoted(). | |
| TEST(StringTest, ShowWideCStringQuoted) { | |
|   EXPECT_STREQ("(null)", | |
|                String::ShowWideCStringQuoted(NULL).c_str()); | |
|   EXPECT_STREQ("L\"\"", | |
|                String::ShowWideCStringQuoted(L"").c_str()); | |
|   EXPECT_STREQ("L\"foo\"", | |
|                String::ShowWideCStringQuoted(L"foo").c_str()); | |
| } | |
| 
 | |
| # if GTEST_OS_WINDOWS_MOBILE | |
| TEST(StringTest, AnsiAndUtf16Null) { | |
|   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); | |
|   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); | |
| } | |
| 
 | |
| TEST(StringTest, AnsiAndUtf16ConvertBasic) { | |
|   const char* ansi = String::Utf16ToAnsi(L"str"); | |
|   EXPECT_STREQ("str", ansi); | |
|   delete [] ansi; | |
|   const WCHAR* utf16 = String::AnsiToUtf16("str"); | |
|   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3)); | |
|   delete [] utf16; | |
| } | |
| 
 | |
| TEST(StringTest, AnsiAndUtf16ConvertPathChars) { | |
|   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); | |
|   EXPECT_STREQ(".:\\ \"*?", ansi); | |
|   delete [] ansi; | |
|   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); | |
|   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3)); | |
|   delete [] utf16; | |
| } | |
| # endif  // GTEST_OS_WINDOWS_MOBILE | |
|  | |
| #endif  // GTEST_OS_WINDOWS | |
|  | |
| // Tests TestProperty construction. | |
| TEST(TestPropertyTest, StringValue) { | |
|   TestProperty property("key", "1"); | |
|   EXPECT_STREQ("key", property.key()); | |
|   EXPECT_STREQ("1", property.value()); | |
| } | |
| 
 | |
| // Tests TestProperty replacing a value. | |
| TEST(TestPropertyTest, ReplaceStringValue) { | |
|   TestProperty property("key", "1"); | |
|   EXPECT_STREQ("1", property.value()); | |
|   property.SetValue("2"); | |
|   EXPECT_STREQ("2", property.value()); | |
| } | |
| 
 | |
| // AddFatalFailure() and AddNonfatalFailure() must be stand-alone | |
| // functions (i.e. their definitions cannot be inlined at the call | |
| // sites), or C++Builder won't compile the code. | |
| static void AddFatalFailure() { | |
|   FAIL() << "Expected fatal failure."; | |
| } | |
| 
 | |
| static void AddNonfatalFailure() { | |
|   ADD_FAILURE() << "Expected non-fatal failure."; | |
| } | |
| 
 | |
| class ScopedFakeTestPartResultReporterTest : public Test { | |
|  public:  // Must be public and not protected due to a bug in g++ 3.4.2. | |
|   enum FailureMode { | |
|     FATAL_FAILURE, | |
|     NONFATAL_FAILURE | |
|   }; | |
|   static void AddFailure(FailureMode failure) { | |
|     if (failure == FATAL_FAILURE) { | |
|       AddFatalFailure(); | |
|     } else { | |
|       AddNonfatalFailure(); | |
|     } | |
|   } | |
| }; | |
| 
 | |
| // Tests that ScopedFakeTestPartResultReporter intercepts test | |
| // failures. | |
| TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { | |
|   TestPartResultArray results; | |
|   { | |
|     ScopedFakeTestPartResultReporter reporter( | |
|         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, | |
|         &results); | |
|     AddFailure(NONFATAL_FAILURE); | |
|     AddFailure(FATAL_FAILURE); | |
|   } | |
| 
 | |
|   EXPECT_EQ(2, results.size()); | |
|   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); | |
|   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); | |
| } | |
| 
 | |
| TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) { | |
|   TestPartResultArray results; | |
|   { | |
|     // Tests, that the deprecated constructor still works. | |
|     ScopedFakeTestPartResultReporter reporter(&results); | |
|     AddFailure(NONFATAL_FAILURE); | |
|   } | |
|   EXPECT_EQ(1, results.size()); | |
| } | |
| 
 | |
| #if GTEST_IS_THREADSAFE | |
|  | |
| class ScopedFakeTestPartResultReporterWithThreadsTest | |
|   : public ScopedFakeTestPartResultReporterTest { | |
|  protected: | |
|   static void AddFailureInOtherThread(FailureMode failure) { | |
|     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL); | |
|     thread.Join(); | |
|   } | |
| }; | |
| 
 | |
| TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest, | |
|        InterceptsTestFailuresInAllThreads) { | |
|   TestPartResultArray results; | |
|   { | |
|     ScopedFakeTestPartResultReporter reporter( | |
|         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results); | |
|     AddFailure(NONFATAL_FAILURE); | |
|     AddFailure(FATAL_FAILURE); | |
|     AddFailureInOtherThread(NONFATAL_FAILURE); | |
|     AddFailureInOtherThread(FATAL_FAILURE); | |
|   } | |
| 
 | |
|   EXPECT_EQ(4, results.size()); | |
|   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); | |
|   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); | |
|   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed()); | |
|   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed()); | |
| } | |
| 
 | |
| #endif  // GTEST_IS_THREADSAFE | |
|  | |
| // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they | |
| // work even if the failure is generated in a called function rather than | |
| // the current context. | |
|  | |
| typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest; | |
| 
 | |
| TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) { | |
|   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure."); | |
| } | |
| 
 | |
| #if GTEST_HAS_GLOBAL_STRING | |
| TEST_F(ExpectFatalFailureTest, AcceptsStringObject) { | |
|   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure.")); | |
| } | |
| #endif | |
|  | |
| TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) { | |
|   EXPECT_FATAL_FAILURE(AddFatalFailure(), | |
|                        ::std::string("Expected fatal failure.")); | |
| } | |
| 
 | |
| TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) { | |
|   // We have another test below to verify that the macro catches fatal | |
|   // failures generated on another thread. | |
|   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(), | |
|                                       "Expected fatal failure."); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Silences warnings: "Condition is always true" | |
| # pragma option push -w-ccc | |
| #endif | |
|  | |
| // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void | |
| // function even when the statement in it contains ASSERT_*. | |
|  | |
| int NonVoidFunction() { | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); | |
|   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); | |
|   return 0; | |
| } | |
| 
 | |
| TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) { | |
|   NonVoidFunction(); | |
| } | |
| 
 | |
| // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the | |
| // current function even though 'statement' generates a fatal failure. | |
|  | |
| void DoesNotAbortHelper(bool* aborted) { | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); | |
|   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); | |
| 
 | |
|   *aborted = false; | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Restores warnings after previous "#pragma option push" suppressed them. | |
| # pragma option pop | |
| #endif | |
|  | |
| TEST_F(ExpectFatalFailureTest, DoesNotAbort) { | |
|   bool aborted = true; | |
|   DoesNotAbortHelper(&aborted); | |
|   EXPECT_FALSE(aborted); | |
| } | |
| 
 | |
| // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a | |
| // statement that contains a macro which expands to code containing an | |
| // unprotected comma. | |
|  | |
| static int global_var = 0; | |
| #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++ | |
|  | |
| TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { | |
| #ifndef __BORLANDC__ | |
|   // ICE's in C++Builder. | |
|   EXPECT_FATAL_FAILURE({ | |
|     GTEST_USE_UNPROTECTED_COMMA_; | |
|     AddFatalFailure(); | |
|   }, ""); | |
| #endif | |
|  | |
|   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({ | |
|     GTEST_USE_UNPROTECTED_COMMA_; | |
|     AddFatalFailure(); | |
|   }, ""); | |
| } | |
| 
 | |
| // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}. | |
|  | |
| typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest; | |
| 
 | |
| TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) { | |
|   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
|                           "Expected non-fatal failure."); | |
| } | |
| 
 | |
| #if GTEST_HAS_GLOBAL_STRING | |
| TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) { | |
|   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
|                           ::string("Expected non-fatal failure.")); | |
| } | |
| #endif | |
|  | |
| TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) { | |
|   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
|                           ::std::string("Expected non-fatal failure.")); | |
| } | |
| 
 | |
| TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) { | |
|   // We have another test below to verify that the macro catches | |
|   // non-fatal failures generated on another thread. | |
|   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(), | |
|                                          "Expected non-fatal failure."); | |
| } | |
| 
 | |
| // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a | |
| // statement that contains a macro which expands to code containing an | |
| // unprotected comma. | |
| TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { | |
|   EXPECT_NONFATAL_FAILURE({ | |
|     GTEST_USE_UNPROTECTED_COMMA_; | |
|     AddNonfatalFailure(); | |
|   }, ""); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({ | |
|     GTEST_USE_UNPROTECTED_COMMA_; | |
|     AddNonfatalFailure(); | |
|   }, ""); | |
| } | |
| 
 | |
| #if GTEST_IS_THREADSAFE | |
|  | |
| typedef ScopedFakeTestPartResultReporterWithThreadsTest | |
|     ExpectFailureWithThreadsTest; | |
| 
 | |
| TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) { | |
|   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE), | |
|                                       "Expected fatal failure."); | |
| } | |
| 
 | |
| TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) { | |
|   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( | |
|       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); | |
| } | |
| 
 | |
| #endif  // GTEST_IS_THREADSAFE | |
|  | |
| // Tests the TestProperty class. | |
|  | |
| TEST(TestPropertyTest, ConstructorWorks) { | |
|   const TestProperty property("key", "value"); | |
|   EXPECT_STREQ("key", property.key()); | |
|   EXPECT_STREQ("value", property.value()); | |
| } | |
| 
 | |
| TEST(TestPropertyTest, SetValue) { | |
|   TestProperty property("key", "value_1"); | |
|   EXPECT_STREQ("key", property.key()); | |
|   property.SetValue("value_2"); | |
|   EXPECT_STREQ("key", property.key()); | |
|   EXPECT_STREQ("value_2", property.value()); | |
| } | |
| 
 | |
| // Tests the TestResult class | |
|  | |
| // The test fixture for testing TestResult. | |
| class TestResultTest : public Test { | |
|  protected: | |
|   typedef std::vector<TestPartResult> TPRVector; | |
| 
 | |
|   // We make use of 2 TestPartResult objects, | |
|   TestPartResult * pr1, * pr2; | |
| 
 | |
|   // ... and 3 TestResult objects. | |
|   TestResult * r0, * r1, * r2; | |
| 
 | |
|   virtual void SetUp() { | |
|     // pr1 is for success. | |
|     pr1 = new TestPartResult(TestPartResult::kSuccess, | |
|                              "foo/bar.cc", | |
|                              10, | |
|                              "Success!"); | |
| 
 | |
|     // pr2 is for fatal failure. | |
|     pr2 = new TestPartResult(TestPartResult::kFatalFailure, | |
|                              "foo/bar.cc", | |
|                              -1,  // This line number means "unknown" | |
|                              "Failure!"); | |
| 
 | |
|     // Creates the TestResult objects. | |
|     r0 = new TestResult(); | |
|     r1 = new TestResult(); | |
|     r2 = new TestResult(); | |
| 
 | |
|     // In order to test TestResult, we need to modify its internal | |
|     // state, in particular the TestPartResult vector it holds. | |
|     // test_part_results() returns a const reference to this vector. | |
|     // We cast it to a non-const object s.t. it can be modified (yes, | |
|     // this is a hack). | |
|     TPRVector* results1 = const_cast<TPRVector*>( | |
|         &TestResultAccessor::test_part_results(*r1)); | |
|     TPRVector* results2 = const_cast<TPRVector*>( | |
|         &TestResultAccessor::test_part_results(*r2)); | |
| 
 | |
|     // r0 is an empty TestResult. | |
|  | |
|     // r1 contains a single SUCCESS TestPartResult. | |
|     results1->push_back(*pr1); | |
| 
 | |
|     // r2 contains a SUCCESS, and a FAILURE. | |
|     results2->push_back(*pr1); | |
|     results2->push_back(*pr2); | |
|   } | |
| 
 | |
|   virtual void TearDown() { | |
|     delete pr1; | |
|     delete pr2; | |
| 
 | |
|     delete r0; | |
|     delete r1; | |
|     delete r2; | |
|   } | |
| 
 | |
|   // Helper that compares two two TestPartResults. | |
|   static void CompareTestPartResult(const TestPartResult& expected, | |
|                                     const TestPartResult& actual) { | |
|     EXPECT_EQ(expected.type(), actual.type()); | |
|     EXPECT_STREQ(expected.file_name(), actual.file_name()); | |
|     EXPECT_EQ(expected.line_number(), actual.line_number()); | |
|     EXPECT_STREQ(expected.summary(), actual.summary()); | |
|     EXPECT_STREQ(expected.message(), actual.message()); | |
|     EXPECT_EQ(expected.passed(), actual.passed()); | |
|     EXPECT_EQ(expected.failed(), actual.failed()); | |
|     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed()); | |
|     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed()); | |
|   } | |
| }; | |
| 
 | |
| // Tests TestResult::total_part_count(). | |
| TEST_F(TestResultTest, total_part_count) { | |
|   ASSERT_EQ(0, r0->total_part_count()); | |
|   ASSERT_EQ(1, r1->total_part_count()); | |
|   ASSERT_EQ(2, r2->total_part_count()); | |
| } | |
| 
 | |
| // Tests TestResult::Passed(). | |
| TEST_F(TestResultTest, Passed) { | |
|   ASSERT_TRUE(r0->Passed()); | |
|   ASSERT_TRUE(r1->Passed()); | |
|   ASSERT_FALSE(r2->Passed()); | |
| } | |
| 
 | |
| // Tests TestResult::Failed(). | |
| TEST_F(TestResultTest, Failed) { | |
|   ASSERT_FALSE(r0->Failed()); | |
|   ASSERT_FALSE(r1->Failed()); | |
|   ASSERT_TRUE(r2->Failed()); | |
| } | |
| 
 | |
| // Tests TestResult::GetTestPartResult(). | |
|  | |
| typedef TestResultTest TestResultDeathTest; | |
| 
 | |
| TEST_F(TestResultDeathTest, GetTestPartResult) { | |
|   CompareTestPartResult(*pr1, r2->GetTestPartResult(0)); | |
|   CompareTestPartResult(*pr2, r2->GetTestPartResult(1)); | |
|   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), ""); | |
|   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), ""); | |
| } | |
| 
 | |
| // Tests TestResult has no properties when none are added. | |
| TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { | |
|   TestResult test_result; | |
|   ASSERT_EQ(0, test_result.test_property_count()); | |
| } | |
| 
 | |
| // Tests TestResult has the expected property when added. | |
| TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { | |
|   TestResult test_result; | |
|   TestProperty property("key_1", "1"); | |
|   TestResultAccessor::RecordProperty(&test_result, property); | |
|   ASSERT_EQ(1, test_result.test_property_count()); | |
|   const TestProperty& actual_property = test_result.GetTestProperty(0); | |
|   EXPECT_STREQ("key_1", actual_property.key()); | |
|   EXPECT_STREQ("1", actual_property.value()); | |
| } | |
| 
 | |
| // Tests TestResult has multiple properties when added. | |
| TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { | |
|   TestResult test_result; | |
|   TestProperty property_1("key_1", "1"); | |
|   TestProperty property_2("key_2", "2"); | |
|   TestResultAccessor::RecordProperty(&test_result, property_1); | |
|   TestResultAccessor::RecordProperty(&test_result, property_2); | |
|   ASSERT_EQ(2, test_result.test_property_count()); | |
|   const TestProperty& actual_property_1 = test_result.GetTestProperty(0); | |
|   EXPECT_STREQ("key_1", actual_property_1.key()); | |
|   EXPECT_STREQ("1", actual_property_1.value()); | |
| 
 | |
|   const TestProperty& actual_property_2 = test_result.GetTestProperty(1); | |
|   EXPECT_STREQ("key_2", actual_property_2.key()); | |
|   EXPECT_STREQ("2", actual_property_2.value()); | |
| } | |
| 
 | |
| // Tests TestResult::RecordProperty() overrides values for duplicate keys. | |
| TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { | |
|   TestResult test_result; | |
|   TestProperty property_1_1("key_1", "1"); | |
|   TestProperty property_2_1("key_2", "2"); | |
|   TestProperty property_1_2("key_1", "12"); | |
|   TestProperty property_2_2("key_2", "22"); | |
|   TestResultAccessor::RecordProperty(&test_result, property_1_1); | |
|   TestResultAccessor::RecordProperty(&test_result, property_2_1); | |
|   TestResultAccessor::RecordProperty(&test_result, property_1_2); | |
|   TestResultAccessor::RecordProperty(&test_result, property_2_2); | |
| 
 | |
|   ASSERT_EQ(2, test_result.test_property_count()); | |
|   const TestProperty& actual_property_1 = test_result.GetTestProperty(0); | |
|   EXPECT_STREQ("key_1", actual_property_1.key()); | |
|   EXPECT_STREQ("12", actual_property_1.value()); | |
| 
 | |
|   const TestProperty& actual_property_2 = test_result.GetTestProperty(1); | |
|   EXPECT_STREQ("key_2", actual_property_2.key()); | |
|   EXPECT_STREQ("22", actual_property_2.value()); | |
| } | |
| 
 | |
| // Tests TestResult::GetTestProperty(). | |
| TEST(TestResultPropertyDeathTest, GetTestProperty) { | |
|   TestResult test_result; | |
|   TestProperty property_1("key_1", "1"); | |
|   TestProperty property_2("key_2", "2"); | |
|   TestProperty property_3("key_3", "3"); | |
|   TestResultAccessor::RecordProperty(&test_result, property_1); | |
|   TestResultAccessor::RecordProperty(&test_result, property_2); | |
|   TestResultAccessor::RecordProperty(&test_result, property_3); | |
| 
 | |
|   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0); | |
|   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1); | |
|   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2); | |
| 
 | |
|   EXPECT_STREQ("key_1", fetched_property_1.key()); | |
|   EXPECT_STREQ("1", fetched_property_1.value()); | |
| 
 | |
|   EXPECT_STREQ("key_2", fetched_property_2.key()); | |
|   EXPECT_STREQ("2", fetched_property_2.value()); | |
| 
 | |
|   EXPECT_STREQ("key_3", fetched_property_3.key()); | |
|   EXPECT_STREQ("3", fetched_property_3.value()); | |
| 
 | |
|   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), ""); | |
|   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), ""); | |
| } | |
| 
 | |
| // When a property using a reserved key is supplied to this function, it tests | |
| // that a non-fatal failure is added, a fatal failure is not added, and that the | |
| // property is not recorded. | |
| void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) { | |
|   TestResult test_result; | |
|   TestProperty property(key, "1"); | |
|   EXPECT_NONFATAL_FAILURE( | |
|       TestResultAccessor::RecordProperty(&test_result, property), | |
|       "Reserved key"); | |
|   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded"; | |
| } | |
| 
 | |
| // Attempting to recording a property with the Reserved literal "name" | |
| // should add a non-fatal failure and the property should not be recorded. | |
| TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) { | |
|   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name"); | |
| } | |
| 
 | |
| // Attempting to recording a property with the Reserved literal "status" | |
| // should add a non-fatal failure and the property should not be recorded. | |
| TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) { | |
|   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status"); | |
| } | |
| 
 | |
| // Attempting to recording a property with the Reserved literal "time" | |
| // should add a non-fatal failure and the property should not be recorded. | |
| TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) { | |
|   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time"); | |
| } | |
| 
 | |
| // Attempting to recording a property with the Reserved literal "classname" | |
| // should add a non-fatal failure and the property should not be recorded. | |
| TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) { | |
|   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname"); | |
| } | |
| 
 | |
| // Tests that GTestFlagSaver works on Windows and Mac. | |
|  | |
| class GTestFlagSaverTest : public Test { | |
|  protected: | |
|   // Saves the Google Test flags such that we can restore them later, and | |
|   // then sets them to their default values.  This will be called | |
|   // before the first test in this test case is run. | |
|   static void SetUpTestCase() { | |
|     saver_ = new GTestFlagSaver; | |
| 
 | |
|     GTEST_FLAG(also_run_disabled_tests) = false; | |
|     GTEST_FLAG(break_on_failure) = false; | |
|     GTEST_FLAG(catch_exceptions) = false; | |
|     GTEST_FLAG(death_test_use_fork) = false; | |
|     GTEST_FLAG(color) = "auto"; | |
|     GTEST_FLAG(filter) = ""; | |
|     GTEST_FLAG(list_tests) = false; | |
|     GTEST_FLAG(output) = ""; | |
|     GTEST_FLAG(print_time) = true; | |
|     GTEST_FLAG(random_seed) = 0; | |
|     GTEST_FLAG(repeat) = 1; | |
|     GTEST_FLAG(shuffle) = false; | |
|     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; | |
|     GTEST_FLAG(stream_result_to) = ""; | |
|     GTEST_FLAG(throw_on_failure) = false; | |
|   } | |
| 
 | |
|   // Restores the Google Test flags that the tests have modified.  This will | |
|   // be called after the last test in this test case is run. | |
|   static void TearDownTestCase() { | |
|     delete saver_; | |
|     saver_ = NULL; | |
|   } | |
| 
 | |
|   // Verifies that the Google Test flags have their default values, and then | |
|   // modifies each of them. | |
|   void VerifyAndModifyFlags() { | |
|     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests)); | |
|     EXPECT_FALSE(GTEST_FLAG(break_on_failure)); | |
|     EXPECT_FALSE(GTEST_FLAG(catch_exceptions)); | |
|     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str()); | |
|     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork)); | |
|     EXPECT_STREQ("", GTEST_FLAG(filter).c_str()); | |
|     EXPECT_FALSE(GTEST_FLAG(list_tests)); | |
|     EXPECT_STREQ("", GTEST_FLAG(output).c_str()); | |
|     EXPECT_TRUE(GTEST_FLAG(print_time)); | |
|     EXPECT_EQ(0, GTEST_FLAG(random_seed)); | |
|     EXPECT_EQ(1, GTEST_FLAG(repeat)); | |
|     EXPECT_FALSE(GTEST_FLAG(shuffle)); | |
|     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth)); | |
|     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str()); | |
|     EXPECT_FALSE(GTEST_FLAG(throw_on_failure)); | |
| 
 | |
|     GTEST_FLAG(also_run_disabled_tests) = true; | |
|     GTEST_FLAG(break_on_failure) = true; | |
|     GTEST_FLAG(catch_exceptions) = true; | |
|     GTEST_FLAG(color) = "no"; | |
|     GTEST_FLAG(death_test_use_fork) = true; | |
|     GTEST_FLAG(filter) = "abc"; | |
|     GTEST_FLAG(list_tests) = true; | |
|     GTEST_FLAG(output) = "xml:foo.xml"; | |
|     GTEST_FLAG(print_time) = false; | |
|     GTEST_FLAG(random_seed) = 1; | |
|     GTEST_FLAG(repeat) = 100; | |
|     GTEST_FLAG(shuffle) = true; | |
|     GTEST_FLAG(stack_trace_depth) = 1; | |
|     GTEST_FLAG(stream_result_to) = "localhost:1234"; | |
|     GTEST_FLAG(throw_on_failure) = true; | |
|   } | |
|  private: | |
|   // For saving Google Test flags during this test case. | |
|   static GTestFlagSaver* saver_; | |
| }; | |
| 
 | |
| GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL; | |
| 
 | |
| // Google Test doesn't guarantee the order of tests.  The following two | |
| // tests are designed to work regardless of their order. | |
|  | |
| // Modifies the Google Test flags in the test body. | |
| TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { | |
|   VerifyAndModifyFlags(); | |
| } | |
| 
 | |
| // Verifies that the Google Test flags in the body of the previous test were | |
| // restored to their original values. | |
| TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { | |
|   VerifyAndModifyFlags(); | |
| } | |
| 
 | |
| // Sets an environment variable with the given name to the given | |
| // value.  If the value argument is "", unsets the environment | |
| // variable.  The caller must ensure that both arguments are not NULL. | |
| static void SetEnv(const char* name, const char* value) { | |
| #if GTEST_OS_WINDOWS_MOBILE | |
|   // Environment variables are not supported on Windows CE. | |
|   return; | |
| #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) | |
|   // C++Builder's putenv only stores a pointer to its parameter; we have to | |
|   // ensure that the string remains valid as long as it might be needed. | |
|   // We use an std::map to do so. | |
|   static std::map<String, String*> added_env; | |
| 
 | |
|   // Because putenv stores a pointer to the string buffer, we can't delete the | |
|   // previous string (if present) until after it's replaced. | |
|   String *prev_env = NULL; | |
|   if (added_env.find(name) != added_env.end()) { | |
|     prev_env = added_env[name]; | |
|   } | |
|   added_env[name] = new String((Message() << name << "=" << value).GetString()); | |
| 
 | |
|   // The standard signature of putenv accepts a 'char*' argument. Other | |
|   // implementations, like C++Builder's, accept a 'const char*'. | |
|   // We cast away the 'const' since that would work for both variants. | |
|   putenv(const_cast<char*>(added_env[name]->c_str())); | |
|   delete prev_env; | |
| #elif GTEST_OS_WINDOWS  // If we are on Windows proper. | |
|   _putenv((Message() << name << "=" << value).GetString().c_str()); | |
| #else | |
|   if (*value == '\0') { | |
|     unsetenv(name); | |
|   } else { | |
|     setenv(name, value, 1); | |
|   } | |
| #endif  // GTEST_OS_WINDOWS_MOBILE | |
| } | |
| 
 | |
| #if !GTEST_OS_WINDOWS_MOBILE | |
| // Environment variables are not supported on Windows CE. | |
|  | |
| using testing::internal::Int32FromGTestEnv; | |
| 
 | |
| // Tests Int32FromGTestEnv(). | |
|  | |
| // Tests that Int32FromGTestEnv() returns the default value when the | |
| // environment variable is not set. | |
| TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", ""); | |
|   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); | |
| } | |
| 
 | |
| // Tests that Int32FromGTestEnv() returns the default value when the | |
| // environment variable overflows as an Int32. | |
| TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { | |
|   printf("(expecting 2 warnings)\n"); | |
| 
 | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321"); | |
|   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20)); | |
| 
 | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321"); | |
|   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); | |
| } | |
| 
 | |
| // Tests that Int32FromGTestEnv() returns the default value when the | |
| // environment variable does not represent a valid decimal integer. | |
| TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { | |
|   printf("(expecting 2 warnings)\n"); | |
| 
 | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1"); | |
|   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40)); | |
| 
 | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X"); | |
|   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); | |
| } | |
| 
 | |
| // Tests that Int32FromGTestEnv() parses and returns the value of the | |
| // environment variable when it represents a valid decimal integer in | |
| // the range of an Int32. | |
| TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123"); | |
|   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0)); | |
| 
 | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321"); | |
|   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); | |
| } | |
| #endif  // !GTEST_OS_WINDOWS_MOBILE | |
|  | |
| // Tests ParseInt32Flag(). | |
|  | |
| // Tests that ParseInt32Flag() returns false and doesn't change the | |
| // output value when the flag has wrong format | |
| TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { | |
|   Int32 value = 123; | |
|   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value)); | |
|   EXPECT_EQ(123, value); | |
| 
 | |
|   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value)); | |
|   EXPECT_EQ(123, value); | |
| } | |
| 
 | |
| // Tests that ParseInt32Flag() returns false and doesn't change the | |
| // output value when the flag overflows as an Int32. | |
| TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { | |
|   printf("(expecting 2 warnings)\n"); | |
| 
 | |
|   Int32 value = 123; | |
|   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value)); | |
|   EXPECT_EQ(123, value); | |
| 
 | |
|   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value)); | |
|   EXPECT_EQ(123, value); | |
| } | |
| 
 | |
| // Tests that ParseInt32Flag() returns false and doesn't change the | |
| // output value when the flag does not represent a valid decimal | |
| // integer. | |
| TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { | |
|   printf("(expecting 2 warnings)\n"); | |
| 
 | |
|   Int32 value = 123; | |
|   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value)); | |
|   EXPECT_EQ(123, value); | |
| 
 | |
|   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value)); | |
|   EXPECT_EQ(123, value); | |
| } | |
| 
 | |
| // Tests that ParseInt32Flag() parses the value of the flag and | |
| // returns true when the flag represents a valid decimal integer in | |
| // the range of an Int32. | |
| TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { | |
|   Int32 value = 123; | |
|   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value)); | |
|   EXPECT_EQ(456, value); | |
| 
 | |
|   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789", | |
|                              "abc", &value)); | |
|   EXPECT_EQ(-789, value); | |
| } | |
| 
 | |
| // Tests that Int32FromEnvOrDie() parses the value of the var or | |
| // returns the correct default. | |
| // Environment variables are not supported on Windows CE. | |
| #if !GTEST_OS_WINDOWS_MOBILE | |
| TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) { | |
|   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123"); | |
|   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123"); | |
|   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
| } | |
| #endif  // !GTEST_OS_WINDOWS_MOBILE | |
|  | |
| // Tests that Int32FromEnvOrDie() aborts with an error message | |
| // if the variable is not an Int32. | |
| TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) { | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), | |
|       ".*"); | |
| } | |
| 
 | |
| // Tests that Int32FromEnvOrDie() aborts with an error message | |
| // if the variable cannot be represnted by an Int32. | |
| TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) { | |
|   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234"); | |
|   EXPECT_DEATH_IF_SUPPORTED( | |
|       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), | |
|       ".*"); | |
| } | |
| 
 | |
| // Tests that ShouldRunTestOnShard() selects all tests | |
| // where there is 1 shard. | |
| TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) { | |
|   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0)); | |
|   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1)); | |
|   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2)); | |
|   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3)); | |
|   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4)); | |
| } | |
| 
 | |
| class ShouldShardTest : public testing::Test { | |
|  protected: | |
|   virtual void SetUp() { | |
|     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX"; | |
|     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL"; | |
|   } | |
| 
 | |
|   virtual void TearDown() { | |
|     SetEnv(index_var_, ""); | |
|     SetEnv(total_var_, ""); | |
|   } | |
| 
 | |
|   const char* index_var_; | |
|   const char* total_var_; | |
| }; | |
| 
 | |
| // Tests that sharding is disabled if neither of the environment variables | |
| // are set. | |
| TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) { | |
|   SetEnv(index_var_, ""); | |
|   SetEnv(total_var_, ""); | |
| 
 | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
| } | |
| 
 | |
| // Tests that sharding is not enabled if total_shards  == 1. | |
| TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) { | |
|   SetEnv(index_var_, "0"); | |
|   SetEnv(total_var_, "1"); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
| } | |
| 
 | |
| // Tests that sharding is enabled if total_shards > 1 and | |
| // we are not in a death test subprocess. | |
| // Environment variables are not supported on Windows CE. | |
| #if !GTEST_OS_WINDOWS_MOBILE | |
| TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) { | |
|   SetEnv(index_var_, "4"); | |
|   SetEnv(total_var_, "22"); | |
|   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
| 
 | |
|   SetEnv(index_var_, "8"); | |
|   SetEnv(total_var_, "9"); | |
|   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
| 
 | |
|   SetEnv(index_var_, "0"); | |
|   SetEnv(total_var_, "9"); | |
|   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
|   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
| } | |
| #endif  // !GTEST_OS_WINDOWS_MOBILE | |
|  | |
| // Tests that we exit in error if the sharding values are not valid. | |
|  | |
| typedef ShouldShardTest ShouldShardDeathTest; | |
| 
 | |
| TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) { | |
|   SetEnv(index_var_, "4"); | |
|   SetEnv(total_var_, "4"); | |
|   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
| 
 | |
|   SetEnv(index_var_, "4"); | |
|   SetEnv(total_var_, "-2"); | |
|   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
| 
 | |
|   SetEnv(index_var_, "5"); | |
|   SetEnv(total_var_, ""); | |
|   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
| 
 | |
|   SetEnv(index_var_, ""); | |
|   SetEnv(total_var_, "5"); | |
|   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
| } | |
| 
 | |
| // Tests that ShouldRunTestOnShard is a partition when 5 | |
| // shards are used. | |
| TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) { | |
|   // Choose an arbitrary number of tests and shards. | |
|   const int num_tests = 17; | |
|   const int num_shards = 5; | |
| 
 | |
|   // Check partitioning: each test should be on exactly 1 shard. | |
|   for (int test_id = 0; test_id < num_tests; test_id++) { | |
|     int prev_selected_shard_index = -1; | |
|     for (int shard_index = 0; shard_index < num_shards; shard_index++) { | |
|       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) { | |
|         if (prev_selected_shard_index < 0) { | |
|           prev_selected_shard_index = shard_index; | |
|         } else { | |
|           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and " | |
|             << shard_index << " are both selected to run test " << test_id; | |
|         } | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   // Check balance: This is not required by the sharding protocol, but is a | |
|   // desirable property for performance. | |
|   for (int shard_index = 0; shard_index < num_shards; shard_index++) { | |
|     int num_tests_on_shard = 0; | |
|     for (int test_id = 0; test_id < num_tests; test_id++) { | |
|       num_tests_on_shard += | |
|         ShouldRunTestOnShard(num_shards, shard_index, test_id); | |
|     } | |
|     EXPECT_GE(num_tests_on_shard, num_tests / num_shards); | |
|   } | |
| } | |
| 
 | |
| // For the same reason we are not explicitly testing everything in the | |
| // Test class, there are no separate tests for the following classes | |
| // (except for some trivial cases): | |
| // | |
| //   TestCase, UnitTest, UnitTestResultPrinter. | |
| // | |
| // Similarly, there are no separate tests for the following macros: | |
| // | |
| //   TEST, TEST_F, RUN_ALL_TESTS | |
|  | |
| TEST(UnitTestTest, CanGetOriginalWorkingDir) { | |
|   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL); | |
|   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); | |
| } | |
| 
 | |
| // This group of tests is for predicate assertions (ASSERT_PRED*, etc) | |
| // of various arities.  They do not attempt to be exhaustive.  Rather, | |
| // view them as smoke tests that can be easily reviewed and verified. | |
| // A more complete set of tests for predicate assertions can be found | |
| // in gtest_pred_impl_unittest.cc. | |
|  | |
| // First, some predicates and predicate-formatters needed by the tests. | |
|  | |
| // Returns true iff the argument is an even number. | |
| bool IsEven(int n) { | |
|   return (n % 2) == 0; | |
| } | |
| 
 | |
| // A functor that returns true iff the argument is an even number. | |
| struct IsEvenFunctor { | |
|   bool operator()(int n) { return IsEven(n); } | |
| }; | |
| 
 | |
| // A predicate-formatter function that asserts the argument is an even | |
| // number. | |
| AssertionResult AssertIsEven(const char* expr, int n) { | |
|   if (IsEven(n)) { | |
|     return AssertionSuccess(); | |
|   } | |
| 
 | |
|   Message msg; | |
|   msg << expr << " evaluates to " << n << ", which is not even."; | |
|   return AssertionFailure(msg); | |
| } | |
| 
 | |
| // A predicate function that returns AssertionResult for use in | |
| // EXPECT/ASSERT_TRUE/FALSE. | |
| AssertionResult ResultIsEven(int n) { | |
|   if (IsEven(n)) | |
|     return AssertionSuccess() << n << " is even"; | |
|   else | |
|     return AssertionFailure() << n << " is odd"; | |
| } | |
| 
 | |
| // A predicate function that returns AssertionResult but gives no | |
| // explanation why it succeeds. Needed for testing that | |
| // EXPECT/ASSERT_FALSE handles such functions correctly. | |
| AssertionResult ResultIsEvenNoExplanation(int n) { | |
|   if (IsEven(n)) | |
|     return AssertionSuccess(); | |
|   else | |
|     return AssertionFailure() << n << " is odd"; | |
| } | |
| 
 | |
| // A predicate-formatter functor that asserts the argument is an even | |
| // number. | |
| struct AssertIsEvenFunctor { | |
|   AssertionResult operator()(const char* expr, int n) { | |
|     return AssertIsEven(expr, n); | |
|   } | |
| }; | |
| 
 | |
| // Returns true iff the sum of the arguments is an even number. | |
| bool SumIsEven2(int n1, int n2) { | |
|   return IsEven(n1 + n2); | |
| } | |
| 
 | |
| // A functor that returns true iff the sum of the arguments is an even | |
| // number. | |
| struct SumIsEven3Functor { | |
|   bool operator()(int n1, int n2, int n3) { | |
|     return IsEven(n1 + n2 + n3); | |
|   } | |
| }; | |
| 
 | |
| // A predicate-formatter function that asserts the sum of the | |
| // arguments is an even number. | |
| AssertionResult AssertSumIsEven4( | |
|     const char* e1, const char* e2, const char* e3, const char* e4, | |
|     int n1, int n2, int n3, int n4) { | |
|   const int sum = n1 + n2 + n3 + n4; | |
|   if (IsEven(sum)) { | |
|     return AssertionSuccess(); | |
|   } | |
| 
 | |
|   Message msg; | |
|   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 | |
|       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 | |
|       << ") evaluates to " << sum << ", which is not even."; | |
|   return AssertionFailure(msg); | |
| } | |
| 
 | |
| // A predicate-formatter functor that asserts the sum of the arguments | |
| // is an even number. | |
| struct AssertSumIsEven5Functor { | |
|   AssertionResult operator()( | |
|       const char* e1, const char* e2, const char* e3, const char* e4, | |
|       const char* e5, int n1, int n2, int n3, int n4, int n5) { | |
|     const int sum = n1 + n2 + n3 + n4 + n5; | |
|     if (IsEven(sum)) { | |
|       return AssertionSuccess(); | |
|     } | |
| 
 | |
|     Message msg; | |
|     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 | |
|         << " (" | |
|         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 | |
|         << ") evaluates to " << sum << ", which is not even."; | |
|     return AssertionFailure(msg); | |
|   } | |
| }; | |
| 
 | |
| 
 | |
| // Tests unary predicate assertions. | |
|  | |
| // Tests unary predicate assertions that don't use a custom formatter. | |
| TEST(Pred1Test, WithoutFormat) { | |
|   // Success cases. | |
|   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; | |
|   ASSERT_PRED1(IsEven, 4); | |
| 
 | |
|   // Failure cases. | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED1(IsEven, 5) << "This failure is expected."; | |
|   }, "This failure is expected."); | |
|   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), | |
|                        "evaluates to false"); | |
| } | |
| 
 | |
| // Tests unary predicate assertions that use a custom formatter. | |
| TEST(Pred1Test, WithFormat) { | |
|   // Success cases. | |
|   EXPECT_PRED_FORMAT1(AssertIsEven, 2); | |
|   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) | |
|     << "This failure is UNEXPECTED!"; | |
| 
 | |
|   // Failure cases. | |
|   const int n = 5; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), | |
|                           "n evaluates to 5, which is not even."); | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; | |
|   }, "This failure is expected."); | |
| } | |
| 
 | |
| // Tests that unary predicate assertions evaluates their arguments | |
| // exactly once. | |
| TEST(Pred1Test, SingleEvaluationOnFailure) { | |
|   // A success case. | |
|   static int n = 0; | |
|   EXPECT_PRED1(IsEven, n++); | |
|   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once."; | |
| 
 | |
|   // A failure case. | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) | |
|         << "This failure is expected."; | |
|   }, "This failure is expected."); | |
|   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; | |
| } | |
| 
 | |
| 
 | |
| // Tests predicate assertions whose arity is >= 2. | |
|  | |
| // Tests predicate assertions that don't use a custom formatter. | |
| TEST(PredTest, WithoutFormat) { | |
|   // Success cases. | |
|   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; | |
|   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8); | |
| 
 | |
|   // Failure cases. | |
|   const int n1 = 1; | |
|   const int n2 = 2; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; | |
|   }, "This failure is expected."); | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); | |
|   }, "evaluates to false"); | |
| } | |
| 
 | |
| // Tests predicate assertions that use a custom formatter. | |
| TEST(PredTest, WithFormat) { | |
|   // Success cases. | |
|   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << | |
|     "This failure is UNEXPECTED!"; | |
|   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10); | |
| 
 | |
|   // Failure cases. | |
|   const int n1 = 1; | |
|   const int n2 = 2; | |
|   const int n3 = 4; | |
|   const int n4 = 6; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); | |
|   }, "evaluates to 13, which is not even."); | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) | |
|         << "This failure is expected."; | |
|   }, "This failure is expected."); | |
| } | |
| 
 | |
| // Tests that predicate assertions evaluates their arguments | |
| // exactly once. | |
| TEST(PredTest, SingleEvaluationOnFailure) { | |
|   // A success case. | |
|   int n1 = 0; | |
|   int n2 = 0; | |
|   EXPECT_PRED2(SumIsEven2, n1++, n2++); | |
|   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
| 
 | |
|   // Another success case. | |
|   n1 = n2 = 0; | |
|   int n3 = 0; | |
|   int n4 = 0; | |
|   int n5 = 0; | |
|   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), | |
|                       n1++, n2++, n3++, n4++, n5++) | |
|                         << "This failure is UNEXPECTED!"; | |
|   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once."; | |
| 
 | |
|   // A failure case. | |
|   n1 = n2 = n3 = 0; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) | |
|         << "This failure is expected."; | |
|   }, "This failure is expected."); | |
|   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
| 
 | |
|   // Another failure case. | |
|   n1 = n2 = n3 = n4 = 0; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); | |
|   }, "evaluates to 1, which is not even."); | |
|   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
|   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; | |
| } | |
| 
 | |
| 
 | |
| // Some helper functions for testing using overloaded/template | |
| // functions with ASSERT_PREDn and EXPECT_PREDn. | |
|  | |
| bool IsPositive(double x) { | |
|   return x > 0; | |
| } | |
| 
 | |
| template <typename T> | |
| bool IsNegative(T x) { | |
|   return x < 0; | |
| } | |
| 
 | |
| template <typename T1, typename T2> | |
| bool GreaterThan(T1 x1, T2 x2) { | |
|   return x1 > x2; | |
| } | |
| 
 | |
| // Tests that overloaded functions can be used in *_PRED* as long as | |
| // their types are explicitly specified. | |
| TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { | |
|   // C++Builder requires C-style casts rather than static_cast. | |
|   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT | |
|   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT | |
| } | |
| 
 | |
| // Tests that template functions can be used in *_PRED* as long as | |
| // their types are explicitly specified. | |
| TEST(PredicateAssertionTest, AcceptsTemplateFunction) { | |
|   EXPECT_PRED1(IsNegative<int>, -5); | |
|   // Makes sure that we can handle templates with more than one | |
|   // parameter. | |
|   ASSERT_PRED2((GreaterThan<int, int>), 5, 0); | |
| } | |
| 
 | |
| 
 | |
| // Some helper functions for testing using overloaded/template | |
| // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn. | |
|  | |
| AssertionResult IsPositiveFormat(const char* /* expr */, int n) { | |
|   return n > 0 ? AssertionSuccess() : | |
|       AssertionFailure(Message() << "Failure"); | |
| } | |
| 
 | |
| AssertionResult IsPositiveFormat(const char* /* expr */, double x) { | |
|   return x > 0 ? AssertionSuccess() : | |
|       AssertionFailure(Message() << "Failure"); | |
| } | |
| 
 | |
| template <typename T> | |
| AssertionResult IsNegativeFormat(const char* /* expr */, T x) { | |
|   return x < 0 ? AssertionSuccess() : | |
|       AssertionFailure(Message() << "Failure"); | |
| } | |
| 
 | |
| template <typename T1, typename T2> | |
| AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */, | |
|                              const T1& x1, const T2& x2) { | |
|   return x1 == x2 ? AssertionSuccess() : | |
|       AssertionFailure(Message() << "Failure"); | |
| } | |
| 
 | |
| // Tests that overloaded functions can be used in *_PRED_FORMAT* | |
| // without explicitly specifying their types. | |
| TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { | |
|   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); | |
|   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); | |
| } | |
| 
 | |
| // Tests that template functions can be used in *_PRED_FORMAT* without | |
| // explicitly specifying their types. | |
| TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { | |
|   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); | |
|   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); | |
| } | |
| 
 | |
| 
 | |
| // Tests string assertions. | |
|  | |
| // Tests ASSERT_STREQ with non-NULL arguments. | |
| TEST(StringAssertionTest, ASSERT_STREQ) { | |
|   const char * const p1 = "good"; | |
|   ASSERT_STREQ(p1, p1); | |
| 
 | |
|   // Let p2 have the same content as p1, but be at a different address. | |
|   const char p2[] = "good"; | |
|   ASSERT_STREQ(p1, p2); | |
| 
 | |
|   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), | |
|                        "Expected: \"bad\""); | |
| } | |
| 
 | |
| // Tests ASSERT_STREQ with NULL arguments. | |
| TEST(StringAssertionTest, ASSERT_STREQ_Null) { | |
|   ASSERT_STREQ(static_cast<const char *>(NULL), NULL); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"), | |
|                        "non-null"); | |
| } | |
| 
 | |
| // Tests ASSERT_STREQ with NULL arguments. | |
| TEST(StringAssertionTest, ASSERT_STREQ_Null2) { | |
|   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL), | |
|                        "non-null"); | |
| } | |
| 
 | |
| // Tests ASSERT_STRNE. | |
| TEST(StringAssertionTest, ASSERT_STRNE) { | |
|   ASSERT_STRNE("hi", "Hi"); | |
|   ASSERT_STRNE("Hi", NULL); | |
|   ASSERT_STRNE(NULL, "Hi"); | |
|   ASSERT_STRNE("", NULL); | |
|   ASSERT_STRNE(NULL, ""); | |
|   ASSERT_STRNE("", "Hi"); | |
|   ASSERT_STRNE("Hi", ""); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), | |
|                        "\"Hi\" vs \"Hi\""); | |
| } | |
| 
 | |
| // Tests ASSERT_STRCASEEQ. | |
| TEST(StringAssertionTest, ASSERT_STRCASEEQ) { | |
|   ASSERT_STRCASEEQ("hi", "Hi"); | |
|   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL); | |
| 
 | |
|   ASSERT_STRCASEEQ("", ""); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), | |
|                        "(ignoring case)"); | |
| } | |
| 
 | |
| // Tests ASSERT_STRCASENE. | |
| TEST(StringAssertionTest, ASSERT_STRCASENE) { | |
|   ASSERT_STRCASENE("hi1", "Hi2"); | |
|   ASSERT_STRCASENE("Hi", NULL); | |
|   ASSERT_STRCASENE(NULL, "Hi"); | |
|   ASSERT_STRCASENE("", NULL); | |
|   ASSERT_STRCASENE(NULL, ""); | |
|   ASSERT_STRCASENE("", "Hi"); | |
|   ASSERT_STRCASENE("Hi", ""); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), | |
|                        "(ignoring case)"); | |
| } | |
| 
 | |
| // Tests *_STREQ on wide strings. | |
| TEST(StringAssertionTest, STREQ_Wide) { | |
|   // NULL strings. | |
|   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL); | |
| 
 | |
|   // Empty strings. | |
|   ASSERT_STREQ(L"", L""); | |
| 
 | |
|   // Non-null vs NULL. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL), | |
|                           "non-null"); | |
| 
 | |
|   // Equal strings. | |
|   EXPECT_STREQ(L"Hi", L"Hi"); | |
| 
 | |
|   // Unequal strings. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), | |
|                           "Abc"); | |
| 
 | |
|   // Strings containing wide characters. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), | |
|                           "abc"); | |
| } | |
| 
 | |
| // Tests *_STRNE on wide strings. | |
| TEST(StringAssertionTest, STRNE_Wide) { | |
|   // NULL strings. | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL); | |
|   }, ""); | |
| 
 | |
|   // Empty strings. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), | |
|                           "L\"\""); | |
| 
 | |
|   // Non-null vs NULL. | |
|   ASSERT_STRNE(L"non-null", NULL); | |
| 
 | |
|   // Equal strings. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), | |
|                           "L\"Hi\""); | |
| 
 | |
|   // Unequal strings. | |
|   EXPECT_STRNE(L"abc", L"Abc"); | |
| 
 | |
|   // Strings containing wide characters. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), | |
|                           "abc"); | |
| } | |
| 
 | |
| // Tests for ::testing::IsSubstring(). | |
|  | |
| // Tests that IsSubstring() returns the correct result when the input | |
| // argument type is const char*. | |
| TEST(IsSubstringTest, ReturnsCorrectResultForCString) { | |
|   EXPECT_FALSE(IsSubstring("", "", NULL, "a")); | |
|   EXPECT_FALSE(IsSubstring("", "", "b", NULL)); | |
|   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack")); | |
| 
 | |
|   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL)); | |
|   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); | |
| } | |
| 
 | |
| // Tests that IsSubstring() returns the correct result when the input | |
| // argument type is const wchar_t*. | |
| TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { | |
|   EXPECT_FALSE(IsSubstring("", "", kNull, L"a")); | |
|   EXPECT_FALSE(IsSubstring("", "", L"b", kNull)); | |
|   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack")); | |
| 
 | |
|   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL)); | |
|   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); | |
| } | |
| 
 | |
| // Tests that IsSubstring() generates the correct message when the input | |
| // argument type is const char*. | |
| TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { | |
|   EXPECT_STREQ("Value of: needle_expr\n" | |
|                "  Actual: \"needle\"\n" | |
|                "Expected: a substring of haystack_expr\n" | |
|                "Which is: \"haystack\"", | |
|                IsSubstring("needle_expr", "haystack_expr", | |
|                            "needle", "haystack").failure_message()); | |
| } | |
| 
 | |
| // Tests that IsSubstring returns the correct result when the input | |
| // argument type is ::std::string. | |
| TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { | |
|   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); | |
|   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); | |
| } | |
| 
 | |
| #if GTEST_HAS_STD_WSTRING | |
| // Tests that IsSubstring returns the correct result when the input | |
| // argument type is ::std::wstring. | |
| TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { | |
|   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); | |
|   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); | |
| } | |
| 
 | |
| // Tests that IsSubstring() generates the correct message when the input | |
| // argument type is ::std::wstring. | |
| TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { | |
|   EXPECT_STREQ("Value of: needle_expr\n" | |
|                "  Actual: L\"needle\"\n" | |
|                "Expected: a substring of haystack_expr\n" | |
|                "Which is: L\"haystack\"", | |
|                IsSubstring( | |
|                    "needle_expr", "haystack_expr", | |
|                    ::std::wstring(L"needle"), L"haystack").failure_message()); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_STD_WSTRING | |
|  | |
| // Tests for ::testing::IsNotSubstring(). | |
|  | |
| // Tests that IsNotSubstring() returns the correct result when the input | |
| // argument type is const char*. | |
| TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { | |
|   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); | |
|   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); | |
| } | |
| 
 | |
| // Tests that IsNotSubstring() returns the correct result when the input | |
| // argument type is const wchar_t*. | |
| TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { | |
|   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); | |
|   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); | |
| } | |
| 
 | |
| // Tests that IsNotSubstring() generates the correct message when the input | |
| // argument type is const wchar_t*. | |
| TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { | |
|   EXPECT_STREQ("Value of: needle_expr\n" | |
|                "  Actual: L\"needle\"\n" | |
|                "Expected: not a substring of haystack_expr\n" | |
|                "Which is: L\"two needles\"", | |
|                IsNotSubstring( | |
|                    "needle_expr", "haystack_expr", | |
|                    L"needle", L"two needles").failure_message()); | |
| } | |
| 
 | |
| // Tests that IsNotSubstring returns the correct result when the input | |
| // argument type is ::std::string. | |
| TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { | |
|   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); | |
|   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); | |
| } | |
| 
 | |
| // Tests that IsNotSubstring() generates the correct message when the input | |
| // argument type is ::std::string. | |
| TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { | |
|   EXPECT_STREQ("Value of: needle_expr\n" | |
|                "  Actual: \"needle\"\n" | |
|                "Expected: not a substring of haystack_expr\n" | |
|                "Which is: \"two needles\"", | |
|                IsNotSubstring( | |
|                    "needle_expr", "haystack_expr", | |
|                    ::std::string("needle"), "two needles").failure_message()); | |
| } | |
| 
 | |
| #if GTEST_HAS_STD_WSTRING | |
|  | |
| // Tests that IsNotSubstring returns the correct result when the input | |
| // argument type is ::std::wstring. | |
| TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { | |
|   EXPECT_FALSE( | |
|       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); | |
|   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_STD_WSTRING | |
|  | |
| // Tests floating-point assertions. | |
|  | |
| template <typename RawType> | |
| class FloatingPointTest : public Test { | |
|  protected: | |
| 
 | |
|   // Pre-calculated numbers to be used by the tests. | |
|   struct TestValues { | |
|     RawType close_to_positive_zero; | |
|     RawType close_to_negative_zero; | |
|     RawType further_from_negative_zero; | |
| 
 | |
|     RawType close_to_one; | |
|     RawType further_from_one; | |
| 
 | |
|     RawType infinity; | |
|     RawType close_to_infinity; | |
|     RawType further_from_infinity; | |
| 
 | |
|     RawType nan1; | |
|     RawType nan2; | |
|   }; | |
| 
 | |
|   typedef typename testing::internal::FloatingPoint<RawType> Floating; | |
|   typedef typename Floating::Bits Bits; | |
| 
 | |
|   virtual void SetUp() { | |
|     const size_t max_ulps = Floating::kMaxUlps; | |
| 
 | |
|     // The bits that represent 0.0. | |
|     const Bits zero_bits = Floating(0).bits(); | |
| 
 | |
|     // Makes some numbers close to 0.0. | |
|     values_.close_to_positive_zero = Floating::ReinterpretBits( | |
|         zero_bits + max_ulps/2); | |
|     values_.close_to_negative_zero = -Floating::ReinterpretBits( | |
|         zero_bits + max_ulps - max_ulps/2); | |
|     values_.further_from_negative_zero = -Floating::ReinterpretBits( | |
|         zero_bits + max_ulps + 1 - max_ulps/2); | |
| 
 | |
|     // The bits that represent 1.0. | |
|     const Bits one_bits = Floating(1).bits(); | |
| 
 | |
|     // Makes some numbers close to 1.0. | |
|     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps); | |
|     values_.further_from_one = Floating::ReinterpretBits( | |
|         one_bits + max_ulps + 1); | |
| 
 | |
|     // +infinity. | |
|     values_.infinity = Floating::Infinity(); | |
| 
 | |
|     // The bits that represent +infinity. | |
|     const Bits infinity_bits = Floating(values_.infinity).bits(); | |
| 
 | |
|     // Makes some numbers close to infinity. | |
|     values_.close_to_infinity = Floating::ReinterpretBits( | |
|         infinity_bits - max_ulps); | |
|     values_.further_from_infinity = Floating::ReinterpretBits( | |
|         infinity_bits - max_ulps - 1); | |
| 
 | |
|     // Makes some NAN's.  Sets the most significant bit of the fraction so that | |
|     // our NaN's are quiet; trying to process a signaling NaN would raise an | |
|     // exception if our environment enables floating point exceptions. | |
|     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask | |
|         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1); | |
|     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask | |
|         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200); | |
|   } | |
| 
 | |
|   void TestSize() { | |
|     EXPECT_EQ(sizeof(RawType), sizeof(Bits)); | |
|   } | |
| 
 | |
|   static TestValues values_; | |
| }; | |
| 
 | |
| template <typename RawType> | |
| typename FloatingPointTest<RawType>::TestValues | |
|     FloatingPointTest<RawType>::values_; | |
| 
 | |
| // Instantiates FloatingPointTest for testing *_FLOAT_EQ. | |
| typedef FloatingPointTest<float> FloatTest; | |
| 
 | |
| // Tests that the size of Float::Bits matches the size of float. | |
| TEST_F(FloatTest, Size) { | |
|   TestSize(); | |
| } | |
| 
 | |
| // Tests comparing with +0 and -0. | |
| TEST_F(FloatTest, Zeros) { | |
|   EXPECT_FLOAT_EQ(0.0, -0.0); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), | |
|                           "1.0"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), | |
|                        "1.5"); | |
| } | |
| 
 | |
| // Tests comparing numbers close to 0. | |
| // | |
| // This ensures that *_FLOAT_EQ handles the sign correctly and no | |
| // overflow occurs when comparing numbers whose absolute value is very | |
| // small. | |
| TEST_F(FloatTest, AlmostZeros) { | |
|   // In C++Builder, names within local classes (such as used by | |
|   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
|   // scoping class.  Use a static local alias as a workaround. | |
|   // We use the assignment syntax since some compilers, like Sun Studio, | |
|   // don't allow initializing references using construction syntax | |
|   // (parentheses). | |
|   static const FloatTest::TestValues& v = this->values_; | |
| 
 | |
|   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero); | |
|   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero); | |
|   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero); | |
| 
 | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_FLOAT_EQ(v.close_to_positive_zero, | |
|                     v.further_from_negative_zero); | |
|   }, "v.further_from_negative_zero"); | |
| } | |
| 
 | |
| // Tests comparing numbers close to each other. | |
| TEST_F(FloatTest, SmallDiff) { | |
|   EXPECT_FLOAT_EQ(1.0, values_.close_to_one); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one), | |
|                           "values_.further_from_one"); | |
| } | |
| 
 | |
| // Tests comparing numbers far apart. | |
| TEST_F(FloatTest, LargeDiff) { | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), | |
|                           "3.0"); | |
| } | |
| 
 | |
| // Tests comparing with infinity. | |
| // | |
| // This ensures that no overflow occurs when comparing numbers whose | |
| // absolute value is very large. | |
| TEST_F(FloatTest, Infinity) { | |
|   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity); | |
|   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity); | |
| #if !GTEST_OS_SYMBIAN | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity), | |
|                           "-values_.infinity"); | |
| 
 | |
|   // This is interesting as the representations of infinity and nan1 | |
|   // are only 1 DLP apart. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1), | |
|                           "values_.nan1"); | |
| #endif  // !GTEST_OS_SYMBIAN | |
| } | |
| 
 | |
| // Tests that comparing with NAN always returns false. | |
| TEST_F(FloatTest, NaN) { | |
| #if !GTEST_OS_SYMBIAN | |
| // Nokia's STLport crashes if we try to output infinity or NaN. | |
|  | |
|   // In C++Builder, names within local classes (such as used by | |
|   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
|   // scoping class.  Use a static local alias as a workaround. | |
|   // We use the assignment syntax since some compilers, like Sun Studio, | |
|   // don't allow initializing references using construction syntax | |
|   // (parentheses). | |
|   static const FloatTest::TestValues& v = this->values_; | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), | |
|                           "v.nan1"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), | |
|                           "v.nan2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), | |
|                           "v.nan1"); | |
| 
 | |
|   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), | |
|                        "v.infinity"); | |
| #endif  // !GTEST_OS_SYMBIAN | |
| } | |
| 
 | |
| // Tests that *_FLOAT_EQ are reflexive. | |
| TEST_F(FloatTest, Reflexive) { | |
|   EXPECT_FLOAT_EQ(0.0, 0.0); | |
|   EXPECT_FLOAT_EQ(1.0, 1.0); | |
|   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity); | |
| } | |
| 
 | |
| // Tests that *_FLOAT_EQ are commutative. | |
| TEST_F(FloatTest, Commutative) { | |
|   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one). | |
|   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0); | |
| 
 | |
|   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one). | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0), | |
|                           "1.0"); | |
| } | |
| 
 | |
| // Tests EXPECT_NEAR. | |
| TEST_F(FloatTest, EXPECT_NEAR) { | |
|   EXPECT_NEAR(-1.0f, -1.1f, 0.2f); | |
|   EXPECT_NEAR(2.0f, 3.0f, 1.0f); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT | |
|                           "The difference between 1.0f and 1.5f is 0.5, " | |
|                           "which exceeds 0.25f"); | |
|   // To work around a bug in gcc 2.95.0, there is intentionally no | |
|   // space after the first comma in the previous line. | |
| } | |
| 
 | |
| // Tests ASSERT_NEAR. | |
| TEST_F(FloatTest, ASSERT_NEAR) { | |
|   ASSERT_NEAR(-1.0f, -1.1f, 0.2f); | |
|   ASSERT_NEAR(2.0f, 3.0f, 1.0f); | |
|   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT | |
|                        "The difference between 1.0f and 1.5f is 0.5, " | |
|                        "which exceeds 0.25f"); | |
|   // To work around a bug in gcc 2.95.0, there is intentionally no | |
|   // space after the first comma in the previous line. | |
| } | |
| 
 | |
| // Tests the cases where FloatLE() should succeed. | |
| TEST_F(FloatTest, FloatLESucceeds) { | |
|   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2, | |
|   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2, | |
|  | |
|   // or when val1 is greater than, but almost equals to, val2. | |
|   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f); | |
| } | |
| 
 | |
| // Tests the cases where FloatLE() should fail. | |
| TEST_F(FloatTest, FloatLEFails) { | |
|   // When val1 is greater than val2 by a large margin, | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), | |
|                           "(2.0f) <= (1.0f)"); | |
| 
 | |
|   // or by a small yet non-negligible margin, | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f); | |
|   }, "(values_.further_from_one) <= (1.0f)"); | |
| 
 | |
| #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   // C++Builder gives bad results for ordered comparisons involving NaNs | |
|   // due to compiler bugs. | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity); | |
|   }, "(values_.nan1) <= (values_.infinity)"); | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1); | |
|   }, "(-values_.infinity) <= (values_.nan1)"); | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1); | |
|   }, "(values_.nan1) <= (values_.nan1)"); | |
| #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
| } | |
| 
 | |
| // Instantiates FloatingPointTest for testing *_DOUBLE_EQ. | |
| typedef FloatingPointTest<double> DoubleTest; | |
| 
 | |
| // Tests that the size of Double::Bits matches the size of double. | |
| TEST_F(DoubleTest, Size) { | |
|   TestSize(); | |
| } | |
| 
 | |
| // Tests comparing with +0 and -0. | |
| TEST_F(DoubleTest, Zeros) { | |
|   EXPECT_DOUBLE_EQ(0.0, -0.0); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), | |
|                           "1.0"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), | |
|                        "1.0"); | |
| } | |
| 
 | |
| // Tests comparing numbers close to 0. | |
| // | |
| // This ensures that *_DOUBLE_EQ handles the sign correctly and no | |
| // overflow occurs when comparing numbers whose absolute value is very | |
| // small. | |
| TEST_F(DoubleTest, AlmostZeros) { | |
|   // In C++Builder, names within local classes (such as used by | |
|   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
|   // scoping class.  Use a static local alias as a workaround. | |
|   // We use the assignment syntax since some compilers, like Sun Studio, | |
|   // don't allow initializing references using construction syntax | |
|   // (parentheses). | |
|   static const DoubleTest::TestValues& v = this->values_; | |
| 
 | |
|   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero); | |
|   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero); | |
|   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero); | |
| 
 | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_DOUBLE_EQ(v.close_to_positive_zero, | |
|                      v.further_from_negative_zero); | |
|   }, "v.further_from_negative_zero"); | |
| } | |
| 
 | |
| // Tests comparing numbers close to each other. | |
| TEST_F(DoubleTest, SmallDiff) { | |
|   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one), | |
|                           "values_.further_from_one"); | |
| } | |
| 
 | |
| // Tests comparing numbers far apart. | |
| TEST_F(DoubleTest, LargeDiff) { | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), | |
|                           "3.0"); | |
| } | |
| 
 | |
| // Tests comparing with infinity. | |
| // | |
| // This ensures that no overflow occurs when comparing numbers whose | |
| // absolute value is very large. | |
| TEST_F(DoubleTest, Infinity) { | |
|   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity); | |
|   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity); | |
| #if !GTEST_OS_SYMBIAN | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity), | |
|                           "-values_.infinity"); | |
| 
 | |
|   // This is interesting as the representations of infinity_ and nan1_ | |
|   // are only 1 DLP apart. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1), | |
|                           "values_.nan1"); | |
| #endif  // !GTEST_OS_SYMBIAN | |
| } | |
| 
 | |
| // Tests that comparing with NAN always returns false. | |
| TEST_F(DoubleTest, NaN) { | |
| #if !GTEST_OS_SYMBIAN | |
|   // In C++Builder, names within local classes (such as used by | |
|   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
|   // scoping class.  Use a static local alias as a workaround. | |
|   // We use the assignment syntax since some compilers, like Sun Studio, | |
|   // don't allow initializing references using construction syntax | |
|   // (parentheses). | |
|   static const DoubleTest::TestValues& v = this->values_; | |
| 
 | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), | |
|                           "v.nan1"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), | |
|                        "v.infinity"); | |
| #endif  // !GTEST_OS_SYMBIAN | |
| } | |
| 
 | |
| // Tests that *_DOUBLE_EQ are reflexive. | |
| TEST_F(DoubleTest, Reflexive) { | |
|   EXPECT_DOUBLE_EQ(0.0, 0.0); | |
|   EXPECT_DOUBLE_EQ(1.0, 1.0); | |
| #if !GTEST_OS_SYMBIAN | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity); | |
| #endif  // !GTEST_OS_SYMBIAN | |
| } | |
| 
 | |
| // Tests that *_DOUBLE_EQ are commutative. | |
| TEST_F(DoubleTest, Commutative) { | |
|   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one). | |
|   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0); | |
| 
 | |
|   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one). | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0), | |
|                           "1.0"); | |
| } | |
| 
 | |
| // Tests EXPECT_NEAR. | |
| TEST_F(DoubleTest, EXPECT_NEAR) { | |
|   EXPECT_NEAR(-1.0, -1.1, 0.2); | |
|   EXPECT_NEAR(2.0, 3.0, 1.0); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT | |
|                           "The difference between 1.0 and 1.5 is 0.5, " | |
|                           "which exceeds 0.25"); | |
|   // To work around a bug in gcc 2.95.0, there is intentionally no | |
|   // space after the first comma in the previous statement. | |
| } | |
| 
 | |
| // Tests ASSERT_NEAR. | |
| TEST_F(DoubleTest, ASSERT_NEAR) { | |
|   ASSERT_NEAR(-1.0, -1.1, 0.2); | |
|   ASSERT_NEAR(2.0, 3.0, 1.0); | |
|   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT | |
|                        "The difference between 1.0 and 1.5 is 0.5, " | |
|                        "which exceeds 0.25"); | |
|   // To work around a bug in gcc 2.95.0, there is intentionally no | |
|   // space after the first comma in the previous statement. | |
| } | |
| 
 | |
| // Tests the cases where DoubleLE() should succeed. | |
| TEST_F(DoubleTest, DoubleLESucceeds) { | |
|   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2, | |
|   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2, | |
|  | |
|   // or when val1 is greater than, but almost equals to, val2. | |
|   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0); | |
| } | |
| 
 | |
| // Tests the cases where DoubleLE() should fail. | |
| TEST_F(DoubleTest, DoubleLEFails) { | |
|   // When val1 is greater than val2 by a large margin, | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), | |
|                           "(2.0) <= (1.0)"); | |
| 
 | |
|   // or by a small yet non-negligible margin, | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0); | |
|   }, "(values_.further_from_one) <= (1.0)"); | |
| 
 | |
| #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
|   // Nokia's STLport crashes if we try to output infinity or NaN. | |
|   // C++Builder gives bad results for ordered comparisons involving NaNs | |
|   // due to compiler bugs. | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity); | |
|   }, "(values_.nan1) <= (values_.infinity)"); | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1); | |
|   }, " (-values_.infinity) <= (values_.nan1)"); | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1); | |
|   }, "(values_.nan1) <= (values_.nan1)"); | |
| #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
| } | |
| 
 | |
| 
 | |
| // Verifies that a test or test case whose name starts with DISABLED_ is | |
| // not run. | |
|  | |
| // A test whose name starts with DISABLED_. | |
| // Should not run. | |
| TEST(DisabledTest, DISABLED_TestShouldNotRun) { | |
|   FAIL() << "Unexpected failure: Disabled test should not be run."; | |
| } | |
| 
 | |
| // A test whose name does not start with DISABLED_. | |
| // Should run. | |
| TEST(DisabledTest, NotDISABLED_TestShouldRun) { | |
|   EXPECT_EQ(1, 1); | |
| } | |
| 
 | |
| // A test case whose name starts with DISABLED_. | |
| // Should not run. | |
| TEST(DISABLED_TestCase, TestShouldNotRun) { | |
|   FAIL() << "Unexpected failure: Test in disabled test case should not be run."; | |
| } | |
| 
 | |
| // A test case and test whose names start with DISABLED_. | |
| // Should not run. | |
| TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) { | |
|   FAIL() << "Unexpected failure: Test in disabled test case should not be run."; | |
| } | |
| 
 | |
| // Check that when all tests in a test case are disabled, SetupTestCase() and | |
| // TearDownTestCase() are not called. | |
| class DisabledTestsTest : public Test { | |
|  protected: | |
|   static void SetUpTestCase() { | |
|     FAIL() << "Unexpected failure: All tests disabled in test case. " | |
|               "SetupTestCase() should not be called."; | |
|   } | |
| 
 | |
|   static void TearDownTestCase() { | |
|     FAIL() << "Unexpected failure: All tests disabled in test case. " | |
|               "TearDownTestCase() should not be called."; | |
|   } | |
| }; | |
| 
 | |
| TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { | |
|   FAIL() << "Unexpected failure: Disabled test should not be run."; | |
| } | |
| 
 | |
| TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { | |
|   FAIL() << "Unexpected failure: Disabled test should not be run."; | |
| } | |
| 
 | |
| // Tests that disabled typed tests aren't run. | |
|  | |
| #if GTEST_HAS_TYPED_TEST | |
|  | |
| template <typename T> | |
| class TypedTest : public Test { | |
| }; | |
| 
 | |
| typedef testing::Types<int, double> NumericTypes; | |
| TYPED_TEST_CASE(TypedTest, NumericTypes); | |
| 
 | |
| TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { | |
|   FAIL() << "Unexpected failure: Disabled typed test should not run."; | |
| } | |
| 
 | |
| template <typename T> | |
| class DISABLED_TypedTest : public Test { | |
| }; | |
| 
 | |
| TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes); | |
| 
 | |
| TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { | |
|   FAIL() << "Unexpected failure: Disabled typed test should not run."; | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_TYPED_TEST | |
|  | |
| // Tests that disabled type-parameterized tests aren't run. | |
|  | |
| #if GTEST_HAS_TYPED_TEST_P | |
|  | |
| template <typename T> | |
| class TypedTestP : public Test { | |
| }; | |
| 
 | |
| TYPED_TEST_CASE_P(TypedTestP); | |
| 
 | |
| TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { | |
|   FAIL() << "Unexpected failure: " | |
|          << "Disabled type-parameterized test should not run."; | |
| } | |
| 
 | |
| REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun); | |
| 
 | |
| INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes); | |
| 
 | |
| template <typename T> | |
| class DISABLED_TypedTestP : public Test { | |
| }; | |
| 
 | |
| TYPED_TEST_CASE_P(DISABLED_TypedTestP); | |
| 
 | |
| TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { | |
|   FAIL() << "Unexpected failure: " | |
|          << "Disabled type-parameterized test should not run."; | |
| } | |
| 
 | |
| REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun); | |
| 
 | |
| INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes); | |
| 
 | |
| #endif  // GTEST_HAS_TYPED_TEST_P | |
|  | |
| // Tests that assertion macros evaluate their arguments exactly once. | |
|  | |
| class SingleEvaluationTest : public Test { | |
|  public:  // Must be public and not protected due to a bug in g++ 3.4.2. | |
|   // This helper function is needed by the FailedASSERT_STREQ test | |
|   // below.  It's public to work around C++Builder's bug with scoping local | |
|   // classes. | |
|   static void CompareAndIncrementCharPtrs() { | |
|     ASSERT_STREQ(p1_++, p2_++); | |
|   } | |
| 
 | |
|   // This helper function is needed by the FailedASSERT_NE test below.  It's | |
|   // public to work around C++Builder's bug with scoping local classes. | |
|   static void CompareAndIncrementInts() { | |
|     ASSERT_NE(a_++, b_++); | |
|   } | |
| 
 | |
|  protected: | |
|   SingleEvaluationTest() { | |
|     p1_ = s1_; | |
|     p2_ = s2_; | |
|     a_ = 0; | |
|     b_ = 0; | |
|   } | |
| 
 | |
|   static const char* const s1_; | |
|   static const char* const s2_; | |
|   static const char* p1_; | |
|   static const char* p2_; | |
| 
 | |
|   static int a_; | |
|   static int b_; | |
| }; | |
| 
 | |
| const char* const SingleEvaluationTest::s1_ = "01234"; | |
| const char* const SingleEvaluationTest::s2_ = "abcde"; | |
| const char* SingleEvaluationTest::p1_; | |
| const char* SingleEvaluationTest::p2_; | |
| int SingleEvaluationTest::a_; | |
| int SingleEvaluationTest::b_; | |
| 
 | |
| // Tests that when ASSERT_STREQ fails, it evaluates its arguments | |
| // exactly once. | |
| TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { | |
|   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(), | |
|                        "p2_++"); | |
|   EXPECT_EQ(s1_ + 1, p1_); | |
|   EXPECT_EQ(s2_ + 1, p2_); | |
| } | |
| 
 | |
| // Tests that string assertion arguments are evaluated exactly once. | |
| TEST_F(SingleEvaluationTest, ASSERT_STR) { | |
|   // successful EXPECT_STRNE | |
|   EXPECT_STRNE(p1_++, p2_++); | |
|   EXPECT_EQ(s1_ + 1, p1_); | |
|   EXPECT_EQ(s2_ + 1, p2_); | |
| 
 | |
|   // failed EXPECT_STRCASEEQ | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), | |
|                           "ignoring case"); | |
|   EXPECT_EQ(s1_ + 2, p1_); | |
|   EXPECT_EQ(s2_ + 2, p2_); | |
| } | |
| 
 | |
| // Tests that when ASSERT_NE fails, it evaluates its arguments exactly | |
| // once. | |
| TEST_F(SingleEvaluationTest, FailedASSERT_NE) { | |
|   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(), | |
|                        "(a_++) != (b_++)"); | |
|   EXPECT_EQ(1, a_); | |
|   EXPECT_EQ(1, b_); | |
| } | |
| 
 | |
| // Tests that assertion arguments are evaluated exactly once. | |
| TEST_F(SingleEvaluationTest, OtherCases) { | |
|   // successful EXPECT_TRUE | |
|   EXPECT_TRUE(0 == a_++);  // NOLINT | |
|   EXPECT_EQ(1, a_); | |
| 
 | |
|   // failed EXPECT_TRUE | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); | |
|   EXPECT_EQ(2, a_); | |
| 
 | |
|   // successful EXPECT_GT | |
|   EXPECT_GT(a_++, b_++); | |
|   EXPECT_EQ(3, a_); | |
|   EXPECT_EQ(1, b_); | |
| 
 | |
|   // failed EXPECT_LT | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); | |
|   EXPECT_EQ(4, a_); | |
|   EXPECT_EQ(2, b_); | |
| 
 | |
|   // successful ASSERT_TRUE | |
|   ASSERT_TRUE(0 < a_++);  // NOLINT | |
|   EXPECT_EQ(5, a_); | |
| 
 | |
|   // successful ASSERT_GT | |
|   ASSERT_GT(a_++, b_++); | |
|   EXPECT_EQ(6, a_); | |
|   EXPECT_EQ(3, b_); | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
|  | |
| void ThrowAnInteger() { | |
|   throw 1; | |
| } | |
| 
 | |
| // Tests that assertion arguments are evaluated exactly once. | |
| TEST_F(SingleEvaluationTest, ExceptionTests) { | |
|   // successful EXPECT_THROW | |
|   EXPECT_THROW({  // NOLINT | |
|     a_++; | |
|     ThrowAnInteger(); | |
|   }, int); | |
|   EXPECT_EQ(1, a_); | |
| 
 | |
|   // failed EXPECT_THROW, throws different | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT | |
|     a_++; | |
|     ThrowAnInteger(); | |
|   }, bool), "throws a different type"); | |
|   EXPECT_EQ(2, a_); | |
| 
 | |
|   // failed EXPECT_THROW, throws nothing | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); | |
|   EXPECT_EQ(3, a_); | |
| 
 | |
|   // successful EXPECT_NO_THROW | |
|   EXPECT_NO_THROW(a_++); | |
|   EXPECT_EQ(4, a_); | |
| 
 | |
|   // failed EXPECT_NO_THROW | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT | |
|     a_++; | |
|     ThrowAnInteger(); | |
|   }), "it throws"); | |
|   EXPECT_EQ(5, a_); | |
| 
 | |
|   // successful EXPECT_ANY_THROW | |
|   EXPECT_ANY_THROW({  // NOLINT | |
|     a_++; | |
|     ThrowAnInteger(); | |
|   }); | |
|   EXPECT_EQ(6, a_); | |
| 
 | |
|   // failed EXPECT_ANY_THROW | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); | |
|   EXPECT_EQ(7, a_); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE. | |
| class NoFatalFailureTest : public Test { | |
|  protected: | |
|   void Succeeds() {} | |
|   void FailsNonFatal() { | |
|     ADD_FAILURE() << "some non-fatal failure"; | |
|   } | |
|   void Fails() { | |
|     FAIL() << "some fatal failure"; | |
|   } | |
| 
 | |
|   void DoAssertNoFatalFailureOnFails() { | |
|     ASSERT_NO_FATAL_FAILURE(Fails()); | |
|     ADD_FAILURE() << "shold not reach here."; | |
|   } | |
| 
 | |
|   void DoExpectNoFatalFailureOnFails() { | |
|     EXPECT_NO_FATAL_FAILURE(Fails()); | |
|     ADD_FAILURE() << "other failure"; | |
|   } | |
| }; | |
| 
 | |
| TEST_F(NoFatalFailureTest, NoFailure) { | |
|   EXPECT_NO_FATAL_FAILURE(Succeeds()); | |
|   ASSERT_NO_FATAL_FAILURE(Succeeds()); | |
| } | |
| 
 | |
| TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) { | |
|   EXPECT_NONFATAL_FAILURE( | |
|       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()), | |
|       "some non-fatal failure"); | |
|   EXPECT_NONFATAL_FAILURE( | |
|       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()), | |
|       "some non-fatal failure"); | |
| } | |
| 
 | |
| TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) { | |
|   TestPartResultArray gtest_failures; | |
|   { | |
|     ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
|     DoAssertNoFatalFailureOnFails(); | |
|   } | |
|   ASSERT_EQ(2, gtest_failures.size()); | |
|   EXPECT_EQ(TestPartResult::kFatalFailure, | |
|             gtest_failures.GetTestPartResult(0).type()); | |
|   EXPECT_EQ(TestPartResult::kFatalFailure, | |
|             gtest_failures.GetTestPartResult(1).type()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", | |
|                       gtest_failures.GetTestPartResult(0).message()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", | |
|                       gtest_failures.GetTestPartResult(1).message()); | |
| } | |
| 
 | |
| TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) { | |
|   TestPartResultArray gtest_failures; | |
|   { | |
|     ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
|     DoExpectNoFatalFailureOnFails(); | |
|   } | |
|   ASSERT_EQ(3, gtest_failures.size()); | |
|   EXPECT_EQ(TestPartResult::kFatalFailure, | |
|             gtest_failures.GetTestPartResult(0).type()); | |
|   EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
|             gtest_failures.GetTestPartResult(1).type()); | |
|   EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
|             gtest_failures.GetTestPartResult(2).type()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", | |
|                       gtest_failures.GetTestPartResult(0).message()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", | |
|                       gtest_failures.GetTestPartResult(1).message()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure", | |
|                       gtest_failures.GetTestPartResult(2).message()); | |
| } | |
| 
 | |
| TEST_F(NoFatalFailureTest, MessageIsStreamable) { | |
|   TestPartResultArray gtest_failures; | |
|   { | |
|     ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
|     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message"; | |
|   } | |
|   ASSERT_EQ(2, gtest_failures.size()); | |
|   EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
|             gtest_failures.GetTestPartResult(0).type()); | |
|   EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
|             gtest_failures.GetTestPartResult(1).type()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo", | |
|                       gtest_failures.GetTestPartResult(0).message()); | |
|   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message", | |
|                       gtest_failures.GetTestPartResult(1).message()); | |
| } | |
| 
 | |
| // Tests non-string assertions. | |
|  | |
| // Tests EqFailure(), used for implementing *EQ* assertions. | |
| TEST(AssertionTest, EqFailure) { | |
|   const String foo_val("5"), bar_val("6"); | |
|   const String msg1( | |
|       EqFailure("foo", "bar", foo_val, bar_val, false) | |
|       .failure_message()); | |
|   EXPECT_STREQ( | |
|       "Value of: bar\n" | |
|       "  Actual: 6\n" | |
|       "Expected: foo\n" | |
|       "Which is: 5", | |
|       msg1.c_str()); | |
| 
 | |
|   const String msg2( | |
|       EqFailure("foo", "6", foo_val, bar_val, false) | |
|       .failure_message()); | |
|   EXPECT_STREQ( | |
|       "Value of: 6\n" | |
|       "Expected: foo\n" | |
|       "Which is: 5", | |
|       msg2.c_str()); | |
| 
 | |
|   const String msg3( | |
|       EqFailure("5", "bar", foo_val, bar_val, false) | |
|       .failure_message()); | |
|   EXPECT_STREQ( | |
|       "Value of: bar\n" | |
|       "  Actual: 6\n" | |
|       "Expected: 5", | |
|       msg3.c_str()); | |
| 
 | |
|   const String msg4( | |
|       EqFailure("5", "6", foo_val, bar_val, false).failure_message()); | |
|   EXPECT_STREQ( | |
|       "Value of: 6\n" | |
|       "Expected: 5", | |
|       msg4.c_str()); | |
| 
 | |
|   const String msg5( | |
|       EqFailure("foo", "bar", | |
|                 String("\"x\""), String("\"y\""), | |
|                 true).failure_message()); | |
|   EXPECT_STREQ( | |
|       "Value of: bar\n" | |
|       "  Actual: \"y\"\n" | |
|       "Expected: foo (ignoring case)\n" | |
|       "Which is: \"x\"", | |
|       msg5.c_str()); | |
| } | |
| 
 | |
| // Tests AppendUserMessage(), used for implementing the *EQ* macros. | |
| TEST(AssertionTest, AppendUserMessage) { | |
|   const String foo("foo"); | |
| 
 | |
|   Message msg; | |
|   EXPECT_STREQ("foo", | |
|                AppendUserMessage(foo, msg).c_str()); | |
| 
 | |
|   msg << "bar"; | |
|   EXPECT_STREQ("foo\nbar", | |
|                AppendUserMessage(foo, msg).c_str()); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Silences warnings: "Condition is always true", "Unreachable code" | |
| # pragma option push -w-ccc -w-rch | |
| #endif | |
|  | |
| // Tests ASSERT_TRUE. | |
| TEST(AssertionTest, ASSERT_TRUE) { | |
|   ASSERT_TRUE(2 > 1);  // NOLINT | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), | |
|                        "2 < 1"); | |
| } | |
| 
 | |
| // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult. | |
| TEST(AssertionTest, AssertTrueWithAssertionResult) { | |
|   ASSERT_TRUE(ResultIsEven(2)); | |
| #ifndef __BORLANDC__ | |
|   // ICE's in C++Builder. | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)), | |
|                        "Value of: ResultIsEven(3)\n" | |
|                        "  Actual: false (3 is odd)\n" | |
|                        "Expected: true"); | |
| #endif | |
|   ASSERT_TRUE(ResultIsEvenNoExplanation(2)); | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)), | |
|                        "Value of: ResultIsEvenNoExplanation(3)\n" | |
|                        "  Actual: false (3 is odd)\n" | |
|                        "Expected: true"); | |
| } | |
| 
 | |
| // Tests ASSERT_FALSE. | |
| TEST(AssertionTest, ASSERT_FALSE) { | |
|   ASSERT_FALSE(2 < 1);  // NOLINT | |
|   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), | |
|                        "Value of: 2 > 1\n" | |
|                        "  Actual: true\n" | |
|                        "Expected: false"); | |
| } | |
| 
 | |
| // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult. | |
| TEST(AssertionTest, AssertFalseWithAssertionResult) { | |
|   ASSERT_FALSE(ResultIsEven(3)); | |
| #ifndef __BORLANDC__ | |
|   // ICE's in C++Builder. | |
|   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)), | |
|                        "Value of: ResultIsEven(2)\n" | |
|                        "  Actual: true (2 is even)\n" | |
|                        "Expected: false"); | |
| #endif | |
|   ASSERT_FALSE(ResultIsEvenNoExplanation(3)); | |
|   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)), | |
|                        "Value of: ResultIsEvenNoExplanation(2)\n" | |
|                        "  Actual: true\n" | |
|                        "Expected: false"); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Restores warnings after previous "#pragma option push" supressed them | |
| # pragma option pop | |
| #endif | |
|  | |
| // Tests using ASSERT_EQ on double values.  The purpose is to make | |
| // sure that the specialization we did for integer and anonymous enums | |
| // isn't used for double arguments. | |
| TEST(ExpectTest, ASSERT_EQ_Double) { | |
|   // A success. | |
|   ASSERT_EQ(5.6, 5.6); | |
| 
 | |
|   // A failure. | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), | |
|                        "5.1"); | |
| } | |
| 
 | |
| // Tests ASSERT_EQ. | |
| TEST(AssertionTest, ASSERT_EQ) { | |
|   ASSERT_EQ(5, 2 + 3); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), | |
|                        "Value of: 2*3\n" | |
|                        "  Actual: 6\n" | |
|                        "Expected: 5"); | |
| } | |
| 
 | |
| // Tests ASSERT_EQ(NULL, pointer). | |
| #if GTEST_CAN_COMPARE_NULL | |
| TEST(AssertionTest, ASSERT_EQ_NULL) { | |
|   // A success. | |
|   const char* p = NULL; | |
|   // Some older GCC versions may issue a spurious waring in this or the next | |
|   // assertion statement. This warning should not be suppressed with | |
|   // static_cast since the test verifies the ability to use bare NULL as the | |
|   // expected parameter to the macro. | |
|   ASSERT_EQ(NULL, p); | |
| 
 | |
|   // A failure. | |
|   static int n = 0; | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n), | |
|                        "Value of: &n\n"); | |
| } | |
| #endif  // GTEST_CAN_COMPARE_NULL | |
|  | |
| // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be | |
| // treated as a null pointer by the compiler, we need to make sure | |
| // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as | |
| // ASSERT_EQ(static_cast<void*>(NULL), non_pointer). | |
| TEST(ExpectTest, ASSERT_EQ_0) { | |
|   int n = 0; | |
| 
 | |
|   // A success. | |
|   ASSERT_EQ(0, n); | |
| 
 | |
|   // A failure. | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), | |
|                        "Expected: 0"); | |
| } | |
| 
 | |
| // Tests ASSERT_NE. | |
| TEST(AssertionTest, ASSERT_NE) { | |
|   ASSERT_NE(6, 7); | |
|   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), | |
|                        "Expected: ('a') != ('a'), " | |
|                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); | |
| } | |
| 
 | |
| // Tests ASSERT_LE. | |
| TEST(AssertionTest, ASSERT_LE) { | |
|   ASSERT_LE(2, 3); | |
|   ASSERT_LE(2, 2); | |
|   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), | |
|                        "Expected: (2) <= (0), actual: 2 vs 0"); | |
| } | |
| 
 | |
| // Tests ASSERT_LT. | |
| TEST(AssertionTest, ASSERT_LT) { | |
|   ASSERT_LT(2, 3); | |
|   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), | |
|                        "Expected: (2) < (2), actual: 2 vs 2"); | |
| } | |
| 
 | |
| // Tests ASSERT_GE. | |
| TEST(AssertionTest, ASSERT_GE) { | |
|   ASSERT_GE(2, 1); | |
|   ASSERT_GE(2, 2); | |
|   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), | |
|                        "Expected: (2) >= (3), actual: 2 vs 3"); | |
| } | |
| 
 | |
| // Tests ASSERT_GT. | |
| TEST(AssertionTest, ASSERT_GT) { | |
|   ASSERT_GT(2, 1); | |
|   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), | |
|                        "Expected: (2) > (2), actual: 2 vs 2"); | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
|  | |
| void ThrowNothing() {} | |
| 
 | |
| // Tests ASSERT_THROW. | |
| TEST(AssertionTest, ASSERT_THROW) { | |
|   ASSERT_THROW(ThrowAnInteger(), int); | |
| 
 | |
| # ifndef __BORLANDC__ | |
|  | |
|   // ICE's in C++Builder 2007 and 2009. | |
|   EXPECT_FATAL_FAILURE( | |
|       ASSERT_THROW(ThrowAnInteger(), bool), | |
|       "Expected: ThrowAnInteger() throws an exception of type bool.\n" | |
|       "  Actual: it throws a different type."); | |
| # endif | |
|  | |
|   EXPECT_FATAL_FAILURE( | |
|       ASSERT_THROW(ThrowNothing(), bool), | |
|       "Expected: ThrowNothing() throws an exception of type bool.\n" | |
|       "  Actual: it throws nothing."); | |
| } | |
| 
 | |
| // Tests ASSERT_NO_THROW. | |
| TEST(AssertionTest, ASSERT_NO_THROW) { | |
|   ASSERT_NO_THROW(ThrowNothing()); | |
|   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), | |
|                        "Expected: ThrowAnInteger() doesn't throw an exception." | |
|                        "\n  Actual: it throws."); | |
| } | |
| 
 | |
| // Tests ASSERT_ANY_THROW. | |
| TEST(AssertionTest, ASSERT_ANY_THROW) { | |
|   ASSERT_ANY_THROW(ThrowAnInteger()); | |
|   EXPECT_FATAL_FAILURE( | |
|       ASSERT_ANY_THROW(ThrowNothing()), | |
|       "Expected: ThrowNothing() throws an exception.\n" | |
|       "  Actual: it doesn't."); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| // Makes sure we deal with the precedence of <<.  This test should | |
| // compile. | |
| TEST(AssertionTest, AssertPrecedence) { | |
|   ASSERT_EQ(1 < 2, true); | |
|   bool false_value = false; | |
|   ASSERT_EQ(true && false_value, false); | |
| } | |
| 
 | |
| // A subroutine used by the following test. | |
| void TestEq1(int x) { | |
|   ASSERT_EQ(1, x); | |
| } | |
| 
 | |
| // Tests calling a test subroutine that's not part of a fixture. | |
| TEST(AssertionTest, NonFixtureSubroutine) { | |
|   EXPECT_FATAL_FAILURE(TestEq1(2), | |
|                        "Value of: x"); | |
| } | |
| 
 | |
| // An uncopyable class. | |
| class Uncopyable { | |
|  public: | |
|   explicit Uncopyable(int a_value) : value_(a_value) {} | |
| 
 | |
|   int value() const { return value_; } | |
|   bool operator==(const Uncopyable& rhs) const { | |
|     return value() == rhs.value(); | |
|   } | |
|  private: | |
|   // This constructor deliberately has no implementation, as we don't | |
|   // want this class to be copyable. | |
|   Uncopyable(const Uncopyable&);  // NOLINT | |
|  | |
|   int value_; | |
| }; | |
| 
 | |
| ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { | |
|   return os << value.value(); | |
| } | |
| 
 | |
| 
 | |
| bool IsPositiveUncopyable(const Uncopyable& x) { | |
|   return x.value() > 0; | |
| } | |
| 
 | |
| // A subroutine used by the following test. | |
| void TestAssertNonPositive() { | |
|   Uncopyable y(-1); | |
|   ASSERT_PRED1(IsPositiveUncopyable, y); | |
| } | |
| // A subroutine used by the following test. | |
| void TestAssertEqualsUncopyable() { | |
|   Uncopyable x(5); | |
|   Uncopyable y(-1); | |
|   ASSERT_EQ(x, y); | |
| } | |
| 
 | |
| // Tests that uncopyable objects can be used in assertions. | |
| TEST(AssertionTest, AssertWorksWithUncopyableObject) { | |
|   Uncopyable x(5); | |
|   ASSERT_PRED1(IsPositiveUncopyable, x); | |
|   ASSERT_EQ(x, x); | |
|   EXPECT_FATAL_FAILURE(TestAssertNonPositive(), | |
|     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); | |
|   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), | |
|     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5"); | |
| } | |
| 
 | |
| // Tests that uncopyable objects can be used in expects. | |
| TEST(AssertionTest, ExpectWorksWithUncopyableObject) { | |
|   Uncopyable x(5); | |
|   EXPECT_PRED1(IsPositiveUncopyable, x); | |
|   Uncopyable y(-1); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y), | |
|     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); | |
|   EXPECT_EQ(x, x); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), | |
|     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5"); | |
| } | |
| 
 | |
| enum NamedEnum { | |
|   kE1 = 0, | |
|   kE2 = 1 | |
| }; | |
| 
 | |
| TEST(AssertionTest, NamedEnum) { | |
|   EXPECT_EQ(kE1, kE1); | |
|   EXPECT_LT(kE1, kE2); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1"); | |
| } | |
| 
 | |
| // The version of gcc used in XCode 2.2 has a bug and doesn't allow | |
| // anonymous enums in assertions.  Therefore the following test is not | |
| // done on Mac. | |
| // Sun Studio and HP aCC also reject this code. | |
| #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC) | |
|  | |
| // Tests using assertions with anonymous enums. | |
| enum { | |
|   kCaseA = -1, | |
| 
 | |
| # if GTEST_OS_LINUX | |
|  | |
|   // We want to test the case where the size of the anonymous enum is | |
|   // larger than sizeof(int), to make sure our implementation of the | |
|   // assertions doesn't truncate the enums.  However, MSVC | |
|   // (incorrectly) doesn't allow an enum value to exceed the range of | |
|   // an int, so this has to be conditionally compiled. | |
|   // | |
|   // On Linux, kCaseB and kCaseA have the same value when truncated to | |
|   // int size.  We want to test whether this will confuse the | |
|   // assertions. | |
|   kCaseB = testing::internal::kMaxBiggestInt, | |
| 
 | |
| # else | |
|  | |
|   kCaseB = INT_MAX, | |
| 
 | |
| # endif  // GTEST_OS_LINUX | |
|  | |
|   kCaseC = 42 | |
| }; | |
| 
 | |
| TEST(AssertionTest, AnonymousEnum) { | |
| # if GTEST_OS_LINUX | |
|  | |
|   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB)); | |
| 
 | |
| # endif  // GTEST_OS_LINUX | |
|  | |
|   EXPECT_EQ(kCaseA, kCaseA); | |
|   EXPECT_NE(kCaseA, kCaseB); | |
|   EXPECT_LT(kCaseA, kCaseB); | |
|   EXPECT_LE(kCaseA, kCaseB); | |
|   EXPECT_GT(kCaseB, kCaseA); | |
|   EXPECT_GE(kCaseA, kCaseA); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), | |
|                           "(kCaseA) >= (kCaseB)"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), | |
|                           "-1 vs 42"); | |
| 
 | |
|   ASSERT_EQ(kCaseA, kCaseA); | |
|   ASSERT_NE(kCaseA, kCaseB); | |
|   ASSERT_LT(kCaseA, kCaseB); | |
|   ASSERT_LE(kCaseA, kCaseB); | |
|   ASSERT_GT(kCaseB, kCaseA); | |
|   ASSERT_GE(kCaseA, kCaseA); | |
| 
 | |
| # ifndef __BORLANDC__ | |
|  | |
|   // ICE's in C++Builder. | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), | |
|                        "Value of: kCaseB"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), | |
|                        "Actual: 42"); | |
| # endif | |
|  | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), | |
|                        "Which is: -1"); | |
| } | |
| 
 | |
| #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC) | |
|  | |
| #if GTEST_OS_WINDOWS | |
|  | |
| static HRESULT UnexpectedHRESULTFailure() { | |
|   return E_UNEXPECTED; | |
| } | |
| 
 | |
| static HRESULT OkHRESULTSuccess() { | |
|   return S_OK; | |
| } | |
| 
 | |
| static HRESULT FalseHRESULTSuccess() { | |
|   return S_FALSE; | |
| } | |
| 
 | |
| // HRESULT assertion tests test both zero and non-zero | |
| // success codes as well as failure message for each. | |
| // | |
| // Windows CE doesn't support message texts. | |
| TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { | |
|   EXPECT_HRESULT_SUCCEEDED(S_OK); | |
|   EXPECT_HRESULT_SUCCEEDED(S_FALSE); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), | |
|     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" | |
|     "  Actual: 0x8000FFFF"); | |
| } | |
| 
 | |
| TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { | |
|   ASSERT_HRESULT_SUCCEEDED(S_OK); | |
|   ASSERT_HRESULT_SUCCEEDED(S_FALSE); | |
| 
 | |
|   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), | |
|     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" | |
|     "  Actual: 0x8000FFFF"); | |
| } | |
| 
 | |
| TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { | |
|   EXPECT_HRESULT_FAILED(E_UNEXPECTED); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), | |
|     "Expected: (OkHRESULTSuccess()) fails.\n" | |
|     "  Actual: 0x00000000"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), | |
|     "Expected: (FalseHRESULTSuccess()) fails.\n" | |
|     "  Actual: 0x00000001"); | |
| } | |
| 
 | |
| TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { | |
|   ASSERT_HRESULT_FAILED(E_UNEXPECTED); | |
| 
 | |
| # ifndef __BORLANDC__ | |
|  | |
|   // ICE's in C++Builder 2007 and 2009. | |
|   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), | |
|     "Expected: (OkHRESULTSuccess()) fails.\n" | |
|     "  Actual: 0x00000000"); | |
| # endif | |
|  | |
|   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), | |
|     "Expected: (FalseHRESULTSuccess()) fails.\n" | |
|     "  Actual: 0x00000001"); | |
| } | |
| 
 | |
| // Tests that streaming to the HRESULT macros works. | |
| TEST(HRESULTAssertionTest, Streaming) { | |
|   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; | |
|   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; | |
|   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; | |
|   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE( | |
|       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", | |
|       "expected failure"); | |
| 
 | |
| # ifndef __BORLANDC__ | |
|  | |
|   // ICE's in C++Builder 2007 and 2009. | |
|   EXPECT_FATAL_FAILURE( | |
|       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", | |
|       "expected failure"); | |
| # endif | |
|  | |
|   EXPECT_NONFATAL_FAILURE( | |
|       EXPECT_HRESULT_FAILED(S_OK) << "expected failure", | |
|       "expected failure"); | |
| 
 | |
|   EXPECT_FATAL_FAILURE( | |
|       ASSERT_HRESULT_FAILED(S_OK) << "expected failure", | |
|       "expected failure"); | |
| } | |
| 
 | |
| #endif  // GTEST_OS_WINDOWS | |
|  | |
| #ifdef __BORLANDC__ | |
| // Silences warnings: "Condition is always true", "Unreachable code" | |
| # pragma option push -w-ccc -w-rch | |
| #endif | |
|  | |
| // Tests that the assertion macros behave like single statements. | |
| TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) { | |
|   if (AlwaysFalse()) | |
|     ASSERT_TRUE(false) << "This should never be executed; " | |
|                           "It's a compilation test only."; | |
| 
 | |
|   if (AlwaysTrue()) | |
|     EXPECT_FALSE(false); | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysFalse()) | |
|     ASSERT_LT(1, 3); | |
| 
 | |
|   if (AlwaysFalse()) | |
|     ;  // NOLINT | |
|   else | |
|     EXPECT_GT(3, 2) << ""; | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
| // Tests that the compiler will not complain about unreachable code in the | |
| // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros. | |
| TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) { | |
|   int n = 0; | |
| 
 | |
|   EXPECT_THROW(throw 1, int); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), ""); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), ""); | |
|   EXPECT_NO_THROW(n++); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), ""); | |
|   EXPECT_ANY_THROW(throw 1); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), ""); | |
| } | |
| 
 | |
| TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) { | |
|   if (AlwaysFalse()) | |
|     EXPECT_THROW(ThrowNothing(), bool); | |
| 
 | |
|   if (AlwaysTrue()) | |
|     EXPECT_THROW(ThrowAnInteger(), int); | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysFalse()) | |
|     EXPECT_NO_THROW(ThrowAnInteger()); | |
| 
 | |
|   if (AlwaysTrue()) | |
|     EXPECT_NO_THROW(ThrowNothing()); | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysFalse()) | |
|     EXPECT_ANY_THROW(ThrowNothing()); | |
| 
 | |
|   if (AlwaysTrue()) | |
|     EXPECT_ANY_THROW(ThrowAnInteger()); | |
|   else | |
|     ;  // NOLINT | |
| } | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) { | |
|   if (AlwaysFalse()) | |
|     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. " | |
|                                     << "It's a compilation test only."; | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysFalse()) | |
|     ASSERT_NO_FATAL_FAILURE(FAIL()) << ""; | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysTrue()) | |
|     EXPECT_NO_FATAL_FAILURE(SUCCEED()); | |
|   else | |
|     ;  // NOLINT | |
|  | |
|   if (AlwaysFalse()) | |
|     ;  // NOLINT | |
|   else | |
|     ASSERT_NO_FATAL_FAILURE(SUCCEED()); | |
| } | |
| 
 | |
| // Tests that the assertion macros work well with switch statements. | |
| TEST(AssertionSyntaxTest, WorksWithSwitch) { | |
|   switch (0) { | |
|     case 1: | |
|       break; | |
|     default: | |
|       ASSERT_TRUE(true); | |
|   } | |
| 
 | |
|   switch (0) | |
|     case 0: | |
|       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case"; | |
| 
 | |
|   // Binary assertions are implemented using a different code path | |
|   // than the Boolean assertions.  Hence we test them separately. | |
|   switch (0) { | |
|     case 1: | |
|     default: | |
|       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; | |
|   } | |
| 
 | |
|   switch (0) | |
|     case 0: | |
|       EXPECT_NE(1, 2); | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
|  | |
| void ThrowAString() { | |
|     throw "String"; | |
| } | |
| 
 | |
| // Test that the exception assertion macros compile and work with const | |
| // type qualifier. | |
| TEST(AssertionSyntaxTest, WorksWithConst) { | |
|     ASSERT_THROW(ThrowAString(), const char*); | |
| 
 | |
|     EXPECT_THROW(ThrowAString(), const char*); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| }  // namespace | |
|  | |
| namespace testing { | |
| 
 | |
| // Tests that Google Test tracks SUCCEED*. | |
| TEST(SuccessfulAssertionTest, SUCCEED) { | |
|   SUCCEED(); | |
|   SUCCEED() << "OK"; | |
|   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
| } | |
| 
 | |
| // Tests that Google Test doesn't track successful EXPECT_*. | |
| TEST(SuccessfulAssertionTest, EXPECT) { | |
|   EXPECT_TRUE(true); | |
|   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
| } | |
| 
 | |
| // Tests that Google Test doesn't track successful EXPECT_STR*. | |
| TEST(SuccessfulAssertionTest, EXPECT_STR) { | |
|   EXPECT_STREQ("", ""); | |
|   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
| } | |
| 
 | |
| // Tests that Google Test doesn't track successful ASSERT_*. | |
| TEST(SuccessfulAssertionTest, ASSERT) { | |
|   ASSERT_TRUE(true); | |
|   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
| } | |
| 
 | |
| // Tests that Google Test doesn't track successful ASSERT_STR*. | |
| TEST(SuccessfulAssertionTest, ASSERT_STR) { | |
|   ASSERT_STREQ("", ""); | |
|   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
| } | |
| 
 | |
| }  // namespace testing | |
|  | |
| namespace { | |
| 
 | |
| // Tests EXPECT_TRUE. | |
| TEST(ExpectTest, EXPECT_TRUE) { | |
|   EXPECT_TRUE(2 > 1);  // NOLINT | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), | |
|                           "Value of: 2 < 1\n" | |
|                           "  Actual: false\n" | |
|                           "Expected: true"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), | |
|                           "2 > 3"); | |
| } | |
| 
 | |
| // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult. | |
| TEST(ExpectTest, ExpectTrueWithAssertionResult) { | |
|   EXPECT_TRUE(ResultIsEven(2)); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)), | |
|                           "Value of: ResultIsEven(3)\n" | |
|                           "  Actual: false (3 is odd)\n" | |
|                           "Expected: true"); | |
|   EXPECT_TRUE(ResultIsEvenNoExplanation(2)); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)), | |
|                           "Value of: ResultIsEvenNoExplanation(3)\n" | |
|                           "  Actual: false (3 is odd)\n" | |
|                           "Expected: true"); | |
| } | |
| 
 | |
| // Tests EXPECT_FALSE. | |
| TEST(ExpectTest, EXPECT_FALSE) { | |
|   EXPECT_FALSE(2 < 1);  // NOLINT | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), | |
|                           "Value of: 2 > 1\n" | |
|                           "  Actual: true\n" | |
|                           "Expected: false"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), | |
|                           "2 < 3"); | |
| } | |
| 
 | |
| // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult. | |
| TEST(ExpectTest, ExpectFalseWithAssertionResult) { | |
|   EXPECT_FALSE(ResultIsEven(3)); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)), | |
|                           "Value of: ResultIsEven(2)\n" | |
|                           "  Actual: true (2 is even)\n" | |
|                           "Expected: false"); | |
|   EXPECT_FALSE(ResultIsEvenNoExplanation(3)); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)), | |
|                           "Value of: ResultIsEvenNoExplanation(2)\n" | |
|                           "  Actual: true\n" | |
|                           "Expected: false"); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Restores warnings after previous "#pragma option push" supressed them | |
| # pragma option pop | |
| #endif | |
|  | |
| // Tests EXPECT_EQ. | |
| TEST(ExpectTest, EXPECT_EQ) { | |
|   EXPECT_EQ(5, 2 + 3); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), | |
|                           "Value of: 2*3\n" | |
|                           "  Actual: 6\n" | |
|                           "Expected: 5"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), | |
|                           "2 - 3"); | |
| } | |
| 
 | |
| // Tests using EXPECT_EQ on double values.  The purpose is to make | |
| // sure that the specialization we did for integer and anonymous enums | |
| // isn't used for double arguments. | |
| TEST(ExpectTest, EXPECT_EQ_Double) { | |
|   // A success. | |
|   EXPECT_EQ(5.6, 5.6); | |
| 
 | |
|   // A failure. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), | |
|                           "5.1"); | |
| } | |
| 
 | |
| #if GTEST_CAN_COMPARE_NULL | |
| // Tests EXPECT_EQ(NULL, pointer). | |
| TEST(ExpectTest, EXPECT_EQ_NULL) { | |
|   // A success. | |
|   const char* p = NULL; | |
|   // Some older GCC versions may issue a spurious warning in this or the next | |
|   // assertion statement. This warning should not be suppressed with | |
|   // static_cast since the test verifies the ability to use bare NULL as the | |
|   // expected parameter to the macro. | |
|   EXPECT_EQ(NULL, p); | |
| 
 | |
|   // A failure. | |
|   int n = 0; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n), | |
|                           "Value of: &n\n"); | |
| } | |
| #endif  // GTEST_CAN_COMPARE_NULL | |
|  | |
| // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be | |
| // treated as a null pointer by the compiler, we need to make sure | |
| // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as | |
| // EXPECT_EQ(static_cast<void*>(NULL), non_pointer). | |
| TEST(ExpectTest, EXPECT_EQ_0) { | |
|   int n = 0; | |
| 
 | |
|   // A success. | |
|   EXPECT_EQ(0, n); | |
| 
 | |
|   // A failure. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), | |
|                           "Expected: 0"); | |
| } | |
| 
 | |
| // Tests EXPECT_NE. | |
| TEST(ExpectTest, EXPECT_NE) { | |
|   EXPECT_NE(6, 7); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), | |
|                           "Expected: ('a') != ('a'), " | |
|                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), | |
|                           "2"); | |
|   char* const p0 = NULL; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), | |
|                           "p0"); | |
|   // Only way to get the Nokia compiler to compile the cast | |
|   // is to have a separate void* variable first. Putting | |
|   // the two casts on the same line doesn't work, neither does | |
|   // a direct C-style to char*. | |
|   void* pv1 = (void*)0x1234;  // NOLINT | |
|   char* const p1 = reinterpret_cast<char*>(pv1); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), | |
|                           "p1"); | |
| } | |
| 
 | |
| // Tests EXPECT_LE. | |
| TEST(ExpectTest, EXPECT_LE) { | |
|   EXPECT_LE(2, 3); | |
|   EXPECT_LE(2, 2); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), | |
|                           "Expected: (2) <= (0), actual: 2 vs 0"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), | |
|                           "(1.1) <= (0.9)"); | |
| } | |
| 
 | |
| // Tests EXPECT_LT. | |
| TEST(ExpectTest, EXPECT_LT) { | |
|   EXPECT_LT(2, 3); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), | |
|                           "Expected: (2) < (2), actual: 2 vs 2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), | |
|                           "(2) < (1)"); | |
| } | |
| 
 | |
| // Tests EXPECT_GE. | |
| TEST(ExpectTest, EXPECT_GE) { | |
|   EXPECT_GE(2, 1); | |
|   EXPECT_GE(2, 2); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), | |
|                           "Expected: (2) >= (3), actual: 2 vs 3"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), | |
|                           "(0.9) >= (1.1)"); | |
| } | |
| 
 | |
| // Tests EXPECT_GT. | |
| TEST(ExpectTest, EXPECT_GT) { | |
|   EXPECT_GT(2, 1); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), | |
|                           "Expected: (2) > (2), actual: 2 vs 2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), | |
|                           "(2) > (3)"); | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
|  | |
| // Tests EXPECT_THROW. | |
| TEST(ExpectTest, EXPECT_THROW) { | |
|   EXPECT_THROW(ThrowAnInteger(), int); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), | |
|                           "Expected: ThrowAnInteger() throws an exception of " | |
|                           "type bool.\n  Actual: it throws a different type."); | |
|   EXPECT_NONFATAL_FAILURE( | |
|       EXPECT_THROW(ThrowNothing(), bool), | |
|       "Expected: ThrowNothing() throws an exception of type bool.\n" | |
|       "  Actual: it throws nothing."); | |
| } | |
| 
 | |
| // Tests EXPECT_NO_THROW. | |
| TEST(ExpectTest, EXPECT_NO_THROW) { | |
|   EXPECT_NO_THROW(ThrowNothing()); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), | |
|                           "Expected: ThrowAnInteger() doesn't throw an " | |
|                           "exception.\n  Actual: it throws."); | |
| } | |
| 
 | |
| // Tests EXPECT_ANY_THROW. | |
| TEST(ExpectTest, EXPECT_ANY_THROW) { | |
|   EXPECT_ANY_THROW(ThrowAnInteger()); | |
|   EXPECT_NONFATAL_FAILURE( | |
|       EXPECT_ANY_THROW(ThrowNothing()), | |
|       "Expected: ThrowNothing() throws an exception.\n" | |
|       "  Actual: it doesn't."); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| // Make sure we deal with the precedence of <<. | |
| TEST(ExpectTest, ExpectPrecedence) { | |
|   EXPECT_EQ(1 < 2, true); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), | |
|                           "Value of: true && false"); | |
| } | |
| 
 | |
| 
 | |
| // Tests the StreamableToString() function. | |
|  | |
| // Tests using StreamableToString() on a scalar. | |
| TEST(StreamableToStringTest, Scalar) { | |
|   EXPECT_STREQ("5", StreamableToString(5).c_str()); | |
| } | |
| 
 | |
| // Tests using StreamableToString() on a non-char pointer. | |
| TEST(StreamableToStringTest, Pointer) { | |
|   int n = 0; | |
|   int* p = &n; | |
|   EXPECT_STRNE("(null)", StreamableToString(p).c_str()); | |
| } | |
| 
 | |
| // Tests using StreamableToString() on a NULL non-char pointer. | |
| TEST(StreamableToStringTest, NullPointer) { | |
|   int* p = NULL; | |
|   EXPECT_STREQ("(null)", StreamableToString(p).c_str()); | |
| } | |
| 
 | |
| // Tests using StreamableToString() on a C string. | |
| TEST(StreamableToStringTest, CString) { | |
|   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); | |
| } | |
| 
 | |
| // Tests using StreamableToString() on a NULL C string. | |
| TEST(StreamableToStringTest, NullCString) { | |
|   char* p = NULL; | |
|   EXPECT_STREQ("(null)", StreamableToString(p).c_str()); | |
| } | |
| 
 | |
| // Tests using streamable values as assertion messages. | |
|  | |
| // Tests using std::string as an assertion message. | |
| TEST(StreamableTest, string) { | |
|   static const std::string str( | |
|       "This failure message is a std::string, and is expected."); | |
|   EXPECT_FATAL_FAILURE(FAIL() << str, | |
|                        str.c_str()); | |
| } | |
| 
 | |
| // Tests that we can output strings containing embedded NULs. | |
| // Limited to Linux because we can only do this with std::string's. | |
| TEST(StreamableTest, stringWithEmbeddedNUL) { | |
|   static const char char_array_with_nul[] = | |
|       "Here's a NUL\0 and some more string"; | |
|   static const std::string string_with_nul(char_array_with_nul, | |
|                                            sizeof(char_array_with_nul) | |
|                                            - 1);  // drops the trailing NUL | |
|   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, | |
|                        "Here's a NUL\\0 and some more string"); | |
| } | |
| 
 | |
| // Tests that we can output a NUL char. | |
| TEST(StreamableTest, NULChar) { | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     FAIL() << "A NUL" << '\0' << " and some more string"; | |
|   }, "A NUL\\0 and some more string"); | |
| } | |
| 
 | |
| // Tests using int as an assertion message. | |
| TEST(StreamableTest, int) { | |
|   EXPECT_FATAL_FAILURE(FAIL() << 900913, | |
|                        "900913"); | |
| } | |
| 
 | |
| // Tests using NULL char pointer as an assertion message. | |
| // | |
| // In MSVC, streaming a NULL char * causes access violation.  Google Test | |
| // implemented a workaround (substituting "(null)" for NULL).  This | |
| // tests whether the workaround works. | |
| TEST(StreamableTest, NullCharPtr) { | |
|   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL), | |
|                        "(null)"); | |
| } | |
| 
 | |
| // Tests that basic IO manipulators (endl, ends, and flush) can be | |
| // streamed to testing::Message. | |
| TEST(StreamableTest, BasicIoManip) { | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     FAIL() << "Line 1." << std::endl | |
|            << "A NUL char " << std::ends << std::flush << " in line 2."; | |
|   }, "Line 1.\nA NUL char \\0 in line 2."); | |
| } | |
| 
 | |
| // Tests the macros that haven't been covered so far. | |
|  | |
| void AddFailureHelper(bool* aborted) { | |
|   *aborted = true; | |
|   ADD_FAILURE() << "Failure"; | |
|   *aborted = false; | |
| } | |
| 
 | |
| // Tests ADD_FAILURE. | |
| TEST(MacroTest, ADD_FAILURE) { | |
|   bool aborted = true; | |
|   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), | |
|                           "Failure"); | |
|   EXPECT_FALSE(aborted); | |
| } | |
| 
 | |
| // Tests ADD_FAILURE_AT. | |
| TEST(MacroTest, ADD_FAILURE_AT) { | |
|   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and | |
|   // the failure message contains the user-streamed part. | |
|   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!"); | |
| 
 | |
|   // Verifies that the user-streamed part is optional. | |
|   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed"); | |
| 
 | |
|   // Unfortunately, we cannot verify that the failure message contains | |
|   // the right file path and line number the same way, as | |
|   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and | |
|   // line number.  Instead, we do that in gtest_output_test_.cc. | |
| } | |
| 
 | |
| // Tests FAIL. | |
| TEST(MacroTest, FAIL) { | |
|   EXPECT_FATAL_FAILURE(FAIL(), | |
|                        "Failed"); | |
|   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", | |
|                        "Intentional failure."); | |
| } | |
| 
 | |
| // Tests SUCCEED | |
| TEST(MacroTest, SUCCEED) { | |
|   SUCCEED(); | |
|   SUCCEED() << "Explicit success."; | |
| } | |
| 
 | |
| 
 | |
| // Tests for EXPECT_EQ() and ASSERT_EQ(). | |
| // | |
| // These tests fail *intentionally*, s.t. the failure messages can be | |
| // generated and tested. | |
| // | |
| // We have different tests for different argument types. | |
|  | |
| // Tests using bool values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, Bool) { | |
|   EXPECT_EQ(true,  true); | |
|   EXPECT_FATAL_FAILURE({ | |
|       bool false_value = false; | |
|       ASSERT_EQ(false_value, true); | |
|     }, "Value of: true"); | |
| } | |
| 
 | |
| // Tests using int values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, Int) { | |
|   ASSERT_EQ(32, 32); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), | |
|                           "33"); | |
| } | |
| 
 | |
| // Tests using time_t values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, Time_T) { | |
|   EXPECT_EQ(static_cast<time_t>(0), | |
|             static_cast<time_t>(0)); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0), | |
|                                  static_cast<time_t>(1234)), | |
|                        "1234"); | |
| } | |
| 
 | |
| // Tests using char values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, Char) { | |
|   ASSERT_EQ('z', 'z'); | |
|   const char ch = 'b'; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), | |
|                           "ch"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), | |
|                           "ch"); | |
| } | |
| 
 | |
| // Tests using wchar_t values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, WideChar) { | |
|   EXPECT_EQ(L'b', L'b'); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), | |
|                           "Value of: L'x'\n" | |
|                           "  Actual: L'x' (120, 0x78)\n" | |
|                           "Expected: L'\0'\n" | |
|                           "Which is: L'\0' (0, 0x0)"); | |
| 
 | |
|   static wchar_t wchar; | |
|   wchar = L'b'; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), | |
|                           "wchar"); | |
|   wchar = 0x8119; | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar), | |
|                        "Value of: wchar"); | |
| } | |
| 
 | |
| // Tests using ::std::string values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, StdString) { | |
|   // Compares a const char* to an std::string that has identical | |
|   // content. | |
|   ASSERT_EQ("Test", ::std::string("Test")); | |
| 
 | |
|   // Compares two identical std::strings. | |
|   static const ::std::string str1("A * in the middle"); | |
|   static const ::std::string str2(str1); | |
|   EXPECT_EQ(str1, str2); | |
| 
 | |
|   // Compares a const char* to an std::string that has different | |
|   // content | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), | |
|                           "::std::string(\"test\")"); | |
| 
 | |
|   // Compares an std::string to a char* that has different content. | |
|   char* const p1 = const_cast<char*>("foo"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), | |
|                           "p1"); | |
| 
 | |
|   // Compares two std::strings that have different contents, one of | |
|   // which having a NUL character in the middle.  This should fail. | |
|   static ::std::string str3(str1); | |
|   str3.at(2) = '\0'; | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), | |
|                        "Value of: str3\n" | |
|                        "  Actual: \"A \\0 in the middle\""); | |
| } | |
| 
 | |
| #if GTEST_HAS_STD_WSTRING | |
|  | |
| // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, StdWideString) { | |
|   // Compares two identical std::wstrings. | |
|   const ::std::wstring wstr1(L"A * in the middle"); | |
|   const ::std::wstring wstr2(wstr1); | |
|   ASSERT_EQ(wstr1, wstr2); | |
| 
 | |
|   // Compares an std::wstring to a const wchar_t* that has identical | |
|   // content. | |
|   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; | |
|   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119); | |
| 
 | |
|   // Compares an std::wstring to a const wchar_t* that has different | |
|   // content. | |
|   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120); | |
|   }, "kTestX8120"); | |
| 
 | |
|   // Compares two std::wstrings that have different contents, one of | |
|   // which having a NUL character in the middle. | |
|   ::std::wstring wstr3(wstr1); | |
|   wstr3.at(2) = L'\0'; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), | |
|                           "wstr3"); | |
| 
 | |
|   // Compares a wchar_t* to an std::wstring that has different | |
|   // content. | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar")); | |
|   }, ""); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_STD_WSTRING | |
|  | |
| #if GTEST_HAS_GLOBAL_STRING | |
| // Tests using ::string values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, GlobalString) { | |
|   // Compares a const char* to a ::string that has identical content. | |
|   EXPECT_EQ("Test", ::string("Test")); | |
| 
 | |
|   // Compares two identical ::strings. | |
|   const ::string str1("A * in the middle"); | |
|   const ::string str2(str1); | |
|   ASSERT_EQ(str1, str2); | |
| 
 | |
|   // Compares a ::string to a const char* that has different content. | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"), | |
|                           "test"); | |
| 
 | |
|   // Compares two ::strings that have different contents, one of which | |
|   // having a NUL character in the middle. | |
|   ::string str3(str1); | |
|   str3.at(2) = '\0'; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3), | |
|                           "str3"); | |
| 
 | |
|   // Compares a ::string to a char* that has different content. | |
|   EXPECT_FATAL_FAILURE({  // NOLINT | |
|     ASSERT_EQ(::string("bar"), const_cast<char*>("foo")); | |
|   }, ""); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_GLOBAL_STRING | |
|  | |
| #if GTEST_HAS_GLOBAL_WSTRING | |
|  | |
| // Tests using ::wstring values in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, GlobalWideString) { | |
|   // Compares two identical ::wstrings. | |
|   static const ::wstring wstr1(L"A * in the middle"); | |
|   static const ::wstring wstr2(wstr1); | |
|   EXPECT_EQ(wstr1, wstr2); | |
| 
 | |
|   // Compares a const wchar_t* to a ::wstring that has identical content. | |
|   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; | |
|   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119)); | |
| 
 | |
|   // Compares a const wchar_t* to a ::wstring that has different | |
|   // content. | |
|   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; | |
|   EXPECT_NONFATAL_FAILURE({  // NOLINT | |
|     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119)); | |
|   }, "Test\\x8119"); | |
| 
 | |
|   // Compares a wchar_t* to a ::wstring that has different content. | |
|   wchar_t* const p1 = const_cast<wchar_t*>(L"foo"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")), | |
|                           "bar"); | |
| 
 | |
|   // Compares two ::wstrings that have different contents, one of which | |
|   // having a NUL character in the middle. | |
|   static ::wstring wstr3; | |
|   wstr3 = wstr1; | |
|   wstr3.at(2) = L'\0'; | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3), | |
|                        "wstr3"); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_GLOBAL_WSTRING | |
|  | |
| // Tests using char pointers in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, CharPointer) { | |
|   char* const p0 = NULL; | |
|   // Only way to get the Nokia compiler to compile the cast | |
|   // is to have a separate void* variable first. Putting | |
|   // the two casts on the same line doesn't work, neither does | |
|   // a direct C-style to char*. | |
|   void* pv1 = (void*)0x1234;  // NOLINT | |
|   void* pv2 = (void*)0xABC0;  // NOLINT | |
|   char* const p1 = reinterpret_cast<char*>(pv1); | |
|   char* const p2 = reinterpret_cast<char*>(pv2); | |
|   ASSERT_EQ(p1, p1); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), | |
|                           "Value of: p2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), | |
|                           "p2"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234), | |
|                                  reinterpret_cast<char*>(0xABC0)), | |
|                        "ABC0"); | |
| } | |
| 
 | |
| // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, WideCharPointer) { | |
|   wchar_t* const p0 = NULL; | |
|   // Only way to get the Nokia compiler to compile the cast | |
|   // is to have a separate void* variable first. Putting | |
|   // the two casts on the same line doesn't work, neither does | |
|   // a direct C-style to char*. | |
|   void* pv1 = (void*)0x1234;  // NOLINT | |
|   void* pv2 = (void*)0xABC0;  // NOLINT | |
|   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1); | |
|   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2); | |
|   EXPECT_EQ(p0, p0); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), | |
|                           "Value of: p2"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), | |
|                           "p2"); | |
|   void* pv3 = (void*)0x1234;  // NOLINT | |
|   void* pv4 = (void*)0xABC0;  // NOLINT | |
|   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3); | |
|   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), | |
|                           "p4"); | |
| } | |
| 
 | |
| // Tests using other types of pointers in {EXPECT|ASSERT}_EQ. | |
| TEST(EqAssertionTest, OtherPointer) { | |
|   ASSERT_EQ(static_cast<const int*>(NULL), | |
|             static_cast<const int*>(NULL)); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL), | |
|                                  reinterpret_cast<const int*>(0x1234)), | |
|                        "0x1234"); | |
| } | |
| 
 | |
| // A class that supports binary comparison operators but not streaming. | |
| class UnprintableChar { | |
|  public: | |
|   explicit UnprintableChar(char ch) : char_(ch) {} | |
| 
 | |
|   bool operator==(const UnprintableChar& rhs) const { | |
|     return char_ == rhs.char_; | |
|   } | |
|   bool operator!=(const UnprintableChar& rhs) const { | |
|     return char_ != rhs.char_; | |
|   } | |
|   bool operator<(const UnprintableChar& rhs) const { | |
|     return char_ < rhs.char_; | |
|   } | |
|   bool operator<=(const UnprintableChar& rhs) const { | |
|     return char_ <= rhs.char_; | |
|   } | |
|   bool operator>(const UnprintableChar& rhs) const { | |
|     return char_ > rhs.char_; | |
|   } | |
|   bool operator>=(const UnprintableChar& rhs) const { | |
|     return char_ >= rhs.char_; | |
|   } | |
| 
 | |
|  private: | |
|   char char_; | |
| }; | |
| 
 | |
| // Tests that ASSERT_EQ() and friends don't require the arguments to | |
| // be printable. | |
| TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) { | |
|   const UnprintableChar x('x'), y('y'); | |
|   ASSERT_EQ(x, x); | |
|   EXPECT_NE(x, y); | |
|   ASSERT_LT(x, y); | |
|   EXPECT_LE(x, y); | |
|   ASSERT_GT(y, x); | |
|   EXPECT_GE(x, x); | |
| 
 | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>"); | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>"); | |
| 
 | |
|   // Code tested by EXPECT_FATAL_FAILURE cannot reference local | |
|   // variables, so we have to write UnprintableChar('x') instead of x. | |
| #ifndef __BORLANDC__ | |
|   // ICE's in C++Builder. | |
|   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')), | |
|                        "1-byte object <78>"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), | |
|                        "1-byte object <78>"); | |
| #endif | |
|   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), | |
|                        "1-byte object <79>"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), | |
|                        "1-byte object <78>"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), | |
|                        "1-byte object <79>"); | |
| } | |
| 
 | |
| // Tests the FRIEND_TEST macro. | |
|  | |
| // This class has a private member we want to test.  We will test it | |
| // both in a TEST and in a TEST_F. | |
| class Foo { | |
|  public: | |
|   Foo() {} | |
| 
 | |
|  private: | |
|   int Bar() const { return 1; } | |
| 
 | |
|   // Declares the friend tests that can access the private member | |
|   // Bar(). | |
|   FRIEND_TEST(FRIEND_TEST_Test, TEST); | |
|   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); | |
| }; | |
| 
 | |
| // Tests that the FRIEND_TEST declaration allows a TEST to access a | |
| // class's private members.  This should compile. | |
| TEST(FRIEND_TEST_Test, TEST) { | |
|   ASSERT_EQ(1, Foo().Bar()); | |
| } | |
| 
 | |
| // The fixture needed to test using FRIEND_TEST with TEST_F. | |
| class FRIEND_TEST_Test2 : public Test { | |
|  protected: | |
|   Foo foo; | |
| }; | |
| 
 | |
| // Tests that the FRIEND_TEST declaration allows a TEST_F to access a | |
| // class's private members.  This should compile. | |
| TEST_F(FRIEND_TEST_Test2, TEST_F) { | |
|   ASSERT_EQ(1, foo.Bar()); | |
| } | |
| 
 | |
| // Tests the life cycle of Test objects. | |
|  | |
| // The test fixture for testing the life cycle of Test objects. | |
| // | |
| // This class counts the number of live test objects that uses this | |
| // fixture. | |
| class TestLifeCycleTest : public Test { | |
|  protected: | |
|   // Constructor.  Increments the number of test objects that uses | |
|   // this fixture. | |
|   TestLifeCycleTest() { count_++; } | |
| 
 | |
|   // Destructor.  Decrements the number of test objects that uses this | |
|   // fixture. | |
|   ~TestLifeCycleTest() { count_--; } | |
| 
 | |
|   // Returns the number of live test objects that uses this fixture. | |
|   int count() const { return count_; } | |
| 
 | |
|  private: | |
|   static int count_; | |
| }; | |
| 
 | |
| int TestLifeCycleTest::count_ = 0; | |
| 
 | |
| // Tests the life cycle of test objects. | |
| TEST_F(TestLifeCycleTest, Test1) { | |
|   // There should be only one test object in this test case that's | |
|   // currently alive. | |
|   ASSERT_EQ(1, count()); | |
| } | |
| 
 | |
| // Tests the life cycle of test objects. | |
| TEST_F(TestLifeCycleTest, Test2) { | |
|   // After Test1 is done and Test2 is started, there should still be | |
|   // only one live test object, as the object for Test1 should've been | |
|   // deleted. | |
|   ASSERT_EQ(1, count()); | |
| } | |
| 
 | |
| }  // namespace | |
|  | |
| // Tests that the copy constructor works when it is NOT optimized away by | |
| // the compiler. | |
| TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) { | |
|   // Checks that the copy constructor doesn't try to dereference NULL pointers | |
|   // in the source object. | |
|   AssertionResult r1 = AssertionSuccess(); | |
|   AssertionResult r2 = r1; | |
|   // The following line is added to prevent the compiler from optimizing | |
|   // away the constructor call. | |
|   r1 << "abc"; | |
| 
 | |
|   AssertionResult r3 = r1; | |
|   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1)); | |
|   EXPECT_STREQ("abc", r1.message()); | |
| } | |
| 
 | |
| // Tests that AssertionSuccess and AssertionFailure construct | |
| // AssertionResult objects as expected. | |
| TEST(AssertionResultTest, ConstructionWorks) { | |
|   AssertionResult r1 = AssertionSuccess(); | |
|   EXPECT_TRUE(r1); | |
|   EXPECT_STREQ("", r1.message()); | |
| 
 | |
|   AssertionResult r2 = AssertionSuccess() << "abc"; | |
|   EXPECT_TRUE(r2); | |
|   EXPECT_STREQ("abc", r2.message()); | |
| 
 | |
|   AssertionResult r3 = AssertionFailure(); | |
|   EXPECT_FALSE(r3); | |
|   EXPECT_STREQ("", r3.message()); | |
| 
 | |
|   AssertionResult r4 = AssertionFailure() << "def"; | |
|   EXPECT_FALSE(r4); | |
|   EXPECT_STREQ("def", r4.message()); | |
| 
 | |
|   AssertionResult r5 = AssertionFailure(Message() << "ghi"); | |
|   EXPECT_FALSE(r5); | |
|   EXPECT_STREQ("ghi", r5.message()); | |
| } | |
| 
 | |
| // Tests that the negation flips the predicate result but keeps the message. | |
| TEST(AssertionResultTest, NegationWorks) { | |
|   AssertionResult r1 = AssertionSuccess() << "abc"; | |
|   EXPECT_FALSE(!r1); | |
|   EXPECT_STREQ("abc", (!r1).message()); | |
| 
 | |
|   AssertionResult r2 = AssertionFailure() << "def"; | |
|   EXPECT_TRUE(!r2); | |
|   EXPECT_STREQ("def", (!r2).message()); | |
| } | |
| 
 | |
| TEST(AssertionResultTest, StreamingWorks) { | |
|   AssertionResult r = AssertionSuccess(); | |
|   r << "abc" << 'd' << 0 << true; | |
|   EXPECT_STREQ("abcd0true", r.message()); | |
| } | |
| 
 | |
| TEST(AssertionResultTest, CanStreamOstreamManipulators) { | |
|   AssertionResult r = AssertionSuccess(); | |
|   r << "Data" << std::endl << std::flush << std::ends << "Will be visible"; | |
|   EXPECT_STREQ("Data\n\\0Will be visible", r.message()); | |
| } | |
| 
 | |
| // Tests streaming a user type whose definition and operator << are | |
| // both in the global namespace. | |
| class Base { | |
|  public: | |
|   explicit Base(int an_x) : x_(an_x) {} | |
|   int x() const { return x_; } | |
|  private: | |
|   int x_; | |
| }; | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const Base& val) { | |
|   return os << val.x(); | |
| } | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const Base* pointer) { | |
|   return os << "(" << pointer->x() << ")"; | |
| } | |
| 
 | |
| TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { | |
|   Message msg; | |
|   Base a(1); | |
| 
 | |
|   msg << a << &a;  // Uses ::operator<<. | |
|   EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
| } | |
| 
 | |
| // Tests streaming a user type whose definition and operator<< are | |
| // both in an unnamed namespace. | |
| namespace { | |
| class MyTypeInUnnamedNameSpace : public Base { | |
|  public: | |
|   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {} | |
| }; | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const MyTypeInUnnamedNameSpace& val) { | |
|   return os << val.x(); | |
| } | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const MyTypeInUnnamedNameSpace* pointer) { | |
|   return os << "(" << pointer->x() << ")"; | |
| } | |
| }  // namespace | |
|  | |
| TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { | |
|   Message msg; | |
|   MyTypeInUnnamedNameSpace a(1); | |
| 
 | |
|   msg << a << &a;  // Uses <unnamed_namespace>::operator<<. | |
|   EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
| } | |
| 
 | |
| // Tests streaming a user type whose definition and operator<< are | |
| // both in a user namespace. | |
| namespace namespace1 { | |
| class MyTypeInNameSpace1 : public Base { | |
|  public: | |
|   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {} | |
| }; | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const MyTypeInNameSpace1& val) { | |
|   return os << val.x(); | |
| } | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const MyTypeInNameSpace1* pointer) { | |
|   return os << "(" << pointer->x() << ")"; | |
| } | |
| }  // namespace namespace1 | |
|  | |
| TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { | |
|   Message msg; | |
|   namespace1::MyTypeInNameSpace1 a(1); | |
| 
 | |
|   msg << a << &a;  // Uses namespace1::operator<<. | |
|   EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
| } | |
| 
 | |
| // Tests streaming a user type whose definition is in a user namespace | |
| // but whose operator<< is in the global namespace. | |
| namespace namespace2 { | |
| class MyTypeInNameSpace2 : public ::Base { | |
|  public: | |
|   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {} | |
| }; | |
| }  // namespace namespace2 | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const namespace2::MyTypeInNameSpace2& val) { | |
|   return os << val.x(); | |
| } | |
| std::ostream& operator<<(std::ostream& os, | |
|                          const namespace2::MyTypeInNameSpace2* pointer) { | |
|   return os << "(" << pointer->x() << ")"; | |
| } | |
| 
 | |
| TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { | |
|   Message msg; | |
|   namespace2::MyTypeInNameSpace2 a(1); | |
| 
 | |
|   msg << a << &a;  // Uses ::operator<<. | |
|   EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
| } | |
| 
 | |
| // Tests streaming NULL pointers to testing::Message. | |
| TEST(MessageTest, NullPointers) { | |
|   Message msg; | |
|   char* const p1 = NULL; | |
|   unsigned char* const p2 = NULL; | |
|   int* p3 = NULL; | |
|   double* p4 = NULL; | |
|   bool* p5 = NULL; | |
|   Message* p6 = NULL; | |
| 
 | |
|   msg << p1 << p2 << p3 << p4 << p5 << p6; | |
|   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", | |
|                msg.GetString().c_str()); | |
| } | |
| 
 | |
| // Tests streaming wide strings to testing::Message. | |
| TEST(MessageTest, WideStrings) { | |
|   // Streams a NULL of type const wchar_t*. | |
|   const wchar_t* const_wstr = NULL; | |
|   EXPECT_STREQ("(null)", | |
|                (Message() << const_wstr).GetString().c_str()); | |
| 
 | |
|   // Streams a NULL of type wchar_t*. | |
|   wchar_t* wstr = NULL; | |
|   EXPECT_STREQ("(null)", | |
|                (Message() << wstr).GetString().c_str()); | |
| 
 | |
|   // Streams a non-NULL of type const wchar_t*. | |
|   const_wstr = L"abc\x8119"; | |
|   EXPECT_STREQ("abc\xe8\x84\x99", | |
|                (Message() << const_wstr).GetString().c_str()); | |
| 
 | |
|   // Streams a non-NULL of type wchar_t*. | |
|   wstr = const_cast<wchar_t*>(const_wstr); | |
|   EXPECT_STREQ("abc\xe8\x84\x99", | |
|                (Message() << wstr).GetString().c_str()); | |
| } | |
| 
 | |
| 
 | |
| // This line tests that we can define tests in the testing namespace. | |
| namespace testing { | |
| 
 | |
| // Tests the TestInfo class. | |
|  | |
| class TestInfoTest : public Test { | |
|  protected: | |
|   static const TestInfo* GetTestInfo(const char* test_name) { | |
|     const TestCase* const test_case = GetUnitTestImpl()-> | |
|         GetTestCase("TestInfoTest", "", NULL, NULL); | |
| 
 | |
|     for (int i = 0; i < test_case->total_test_count(); ++i) { | |
|       const TestInfo* const test_info = test_case->GetTestInfo(i); | |
|       if (strcmp(test_name, test_info->name()) == 0) | |
|         return test_info; | |
|     } | |
|     return NULL; | |
|   } | |
| 
 | |
|   static const TestResult* GetTestResult( | |
|       const TestInfo* test_info) { | |
|     return test_info->result(); | |
|   } | |
| }; | |
| 
 | |
| // Tests TestInfo::test_case_name() and TestInfo::name(). | |
| TEST_F(TestInfoTest, Names) { | |
|   const TestInfo* const test_info = GetTestInfo("Names"); | |
| 
 | |
|   ASSERT_STREQ("TestInfoTest", test_info->test_case_name()); | |
|   ASSERT_STREQ("Names", test_info->name()); | |
| } | |
| 
 | |
| // Tests TestInfo::result(). | |
| TEST_F(TestInfoTest, result) { | |
|   const TestInfo* const test_info = GetTestInfo("result"); | |
| 
 | |
|   // Initially, there is no TestPartResult for this test. | |
|   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); | |
| 
 | |
|   // After the previous assertion, there is still none. | |
|   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); | |
| } | |
| 
 | |
| // Tests setting up and tearing down a test case. | |
|  | |
| class SetUpTestCaseTest : public Test { | |
|  protected: | |
|   // This will be called once before the first test in this test case | |
|   // is run. | |
|   static void SetUpTestCase() { | |
|     printf("Setting up the test case . . .\n"); | |
| 
 | |
|     // Initializes some shared resource.  In this simple example, we | |
|     // just create a C string.  More complex stuff can be done if | |
|     // desired. | |
|     shared_resource_ = "123"; | |
| 
 | |
|     // Increments the number of test cases that have been set up. | |
|     counter_++; | |
| 
 | |
|     // SetUpTestCase() should be called only once. | |
|     EXPECT_EQ(1, counter_); | |
|   } | |
| 
 | |
|   // This will be called once after the last test in this test case is | |
|   // run. | |
|   static void TearDownTestCase() { | |
|     printf("Tearing down the test case . . .\n"); | |
| 
 | |
|     // Decrements the number of test cases that have been set up. | |
|     counter_--; | |
| 
 | |
|     // TearDownTestCase() should be called only once. | |
|     EXPECT_EQ(0, counter_); | |
| 
 | |
|     // Cleans up the shared resource. | |
|     shared_resource_ = NULL; | |
|   } | |
| 
 | |
|   // This will be called before each test in this test case. | |
|   virtual void SetUp() { | |
|     // SetUpTestCase() should be called only once, so counter_ should | |
|     // always be 1. | |
|     EXPECT_EQ(1, counter_); | |
|   } | |
| 
 | |
|   // Number of test cases that have been set up. | |
|   static int counter_; | |
| 
 | |
|   // Some resource to be shared by all tests in this test case. | |
|   static const char* shared_resource_; | |
| }; | |
| 
 | |
| int SetUpTestCaseTest::counter_ = 0; | |
| const char* SetUpTestCaseTest::shared_resource_ = NULL; | |
| 
 | |
| // A test that uses the shared resource. | |
| TEST_F(SetUpTestCaseTest, Test1) { | |
|   EXPECT_STRNE(NULL, shared_resource_); | |
| } | |
| 
 | |
| // Another test that uses the shared resource. | |
| TEST_F(SetUpTestCaseTest, Test2) { | |
|   EXPECT_STREQ("123", shared_resource_); | |
| } | |
| 
 | |
| // The InitGoogleTestTest test case tests testing::InitGoogleTest(). | |
|  | |
| // The Flags struct stores a copy of all Google Test flags. | |
| struct Flags { | |
|   // Constructs a Flags struct where each flag has its default value. | |
|   Flags() : also_run_disabled_tests(false), | |
|             break_on_failure(false), | |
|             catch_exceptions(false), | |
|             death_test_use_fork(false), | |
|             filter(""), | |
|             list_tests(false), | |
|             output(""), | |
|             print_time(true), | |
|             random_seed(0), | |
|             repeat(1), | |
|             shuffle(false), | |
|             stack_trace_depth(kMaxStackTraceDepth), | |
|             stream_result_to(""), | |
|             throw_on_failure(false) {} | |
| 
 | |
|   // Factory methods. | |
|  | |
|   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has | |
|   // the given value. | |
|   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) { | |
|     Flags flags; | |
|     flags.also_run_disabled_tests = also_run_disabled_tests; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_break_on_failure flag has | |
|   // the given value. | |
|   static Flags BreakOnFailure(bool break_on_failure) { | |
|     Flags flags; | |
|     flags.break_on_failure = break_on_failure; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_catch_exceptions flag has | |
|   // the given value. | |
|   static Flags CatchExceptions(bool catch_exceptions) { | |
|     Flags flags; | |
|     flags.catch_exceptions = catch_exceptions; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_death_test_use_fork flag has | |
|   // the given value. | |
|   static Flags DeathTestUseFork(bool death_test_use_fork) { | |
|     Flags flags; | |
|     flags.death_test_use_fork = death_test_use_fork; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_filter flag has the given | |
|   // value. | |
|   static Flags Filter(const char* filter) { | |
|     Flags flags; | |
|     flags.filter = filter; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_list_tests flag has the | |
|   // given value. | |
|   static Flags ListTests(bool list_tests) { | |
|     Flags flags; | |
|     flags.list_tests = list_tests; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_output flag has the given | |
|   // value. | |
|   static Flags Output(const char* output) { | |
|     Flags flags; | |
|     flags.output = output; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_print_time flag has the given | |
|   // value. | |
|   static Flags PrintTime(bool print_time) { | |
|     Flags flags; | |
|     flags.print_time = print_time; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_random_seed flag has | |
|   // the given value. | |
|   static Flags RandomSeed(Int32 random_seed) { | |
|     Flags flags; | |
|     flags.random_seed = random_seed; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_repeat flag has the given | |
|   // value. | |
|   static Flags Repeat(Int32 repeat) { | |
|     Flags flags; | |
|     flags.repeat = repeat; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_shuffle flag has | |
|   // the given value. | |
|   static Flags Shuffle(bool shuffle) { | |
|     Flags flags; | |
|     flags.shuffle = shuffle; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has | |
|   // the given value. | |
|   static Flags StackTraceDepth(Int32 stack_trace_depth) { | |
|     Flags flags; | |
|     flags.stack_trace_depth = stack_trace_depth; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has | |
|   // the given value. | |
|   static Flags StreamResultTo(const char* stream_result_to) { | |
|     Flags flags; | |
|     flags.stream_result_to = stream_result_to; | |
|     return flags; | |
|   } | |
| 
 | |
|   // Creates a Flags struct where the gtest_throw_on_failure flag has | |
|   // the given value. | |
|   static Flags ThrowOnFailure(bool throw_on_failure) { | |
|     Flags flags; | |
|     flags.throw_on_failure = throw_on_failure; | |
|     return flags; | |
|   } | |
| 
 | |
|   // These fields store the flag values. | |
|   bool also_run_disabled_tests; | |
|   bool break_on_failure; | |
|   bool catch_exceptions; | |
|   bool death_test_use_fork; | |
|   const char* filter; | |
|   bool list_tests; | |
|   const char* output; | |
|   bool print_time; | |
|   Int32 random_seed; | |
|   Int32 repeat; | |
|   bool shuffle; | |
|   Int32 stack_trace_depth; | |
|   const char* stream_result_to; | |
|   bool throw_on_failure; | |
| }; | |
| 
 | |
| // Fixture for testing InitGoogleTest(). | |
| class InitGoogleTestTest : public Test { | |
|  protected: | |
|   // Clears the flags before each test. | |
|   virtual void SetUp() { | |
|     GTEST_FLAG(also_run_disabled_tests) = false; | |
|     GTEST_FLAG(break_on_failure) = false; | |
|     GTEST_FLAG(catch_exceptions) = false; | |
|     GTEST_FLAG(death_test_use_fork) = false; | |
|     GTEST_FLAG(filter) = ""; | |
|     GTEST_FLAG(list_tests) = false; | |
|     GTEST_FLAG(output) = ""; | |
|     GTEST_FLAG(print_time) = true; | |
|     GTEST_FLAG(random_seed) = 0; | |
|     GTEST_FLAG(repeat) = 1; | |
|     GTEST_FLAG(shuffle) = false; | |
|     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; | |
|     GTEST_FLAG(stream_result_to) = ""; | |
|     GTEST_FLAG(throw_on_failure) = false; | |
|   } | |
| 
 | |
|   // Asserts that two narrow or wide string arrays are equal. | |
|   template <typename CharType> | |
|   static void AssertStringArrayEq(size_t size1, CharType** array1, | |
|                                   size_t size2, CharType** array2) { | |
|     ASSERT_EQ(size1, size2) << " Array sizes different."; | |
| 
 | |
|     for (size_t i = 0; i != size1; i++) { | |
|       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; | |
|     } | |
|   } | |
| 
 | |
|   // Verifies that the flag values match the expected values. | |
|   static void CheckFlags(const Flags& expected) { | |
|     EXPECT_EQ(expected.also_run_disabled_tests, | |
|               GTEST_FLAG(also_run_disabled_tests)); | |
|     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure)); | |
|     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions)); | |
|     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork)); | |
|     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str()); | |
|     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests)); | |
|     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str()); | |
|     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time)); | |
|     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed)); | |
|     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat)); | |
|     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle)); | |
|     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth)); | |
|     EXPECT_STREQ(expected.stream_result_to, | |
|                  GTEST_FLAG(stream_result_to).c_str()); | |
|     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure)); | |
|   } | |
| 
 | |
|   // Parses a command line (specified by argc1 and argv1), then | |
|   // verifies that the flag values are expected and that the | |
|   // recognized flags are removed from the command line. | |
|   template <typename CharType> | |
|   static void TestParsingFlags(int argc1, const CharType** argv1, | |
|                                int argc2, const CharType** argv2, | |
|                                const Flags& expected, bool should_print_help) { | |
|     const bool saved_help_flag = ::testing::internal::g_help_flag; | |
|     ::testing::internal::g_help_flag = false; | |
| 
 | |
| #if GTEST_HAS_STREAM_REDIRECTION | |
|     CaptureStdout(); | |
| #endif | |
|  | |
|     // Parses the command line. | |
|     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1)); | |
| 
 | |
| #if GTEST_HAS_STREAM_REDIRECTION | |
|     const String captured_stdout = GetCapturedStdout(); | |
| #endif | |
|  | |
|     // Verifies the flag values. | |
|     CheckFlags(expected); | |
| 
 | |
|     // Verifies that the recognized flags are removed from the command | |
|     // line. | |
|     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2); | |
| 
 | |
|     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the | |
|     // help message for the flags it recognizes. | |
|     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag); | |
| 
 | |
| #if GTEST_HAS_STREAM_REDIRECTION | |
|     const char* const expected_help_fragment = | |
|         "This program contains tests written using"; | |
|     if (should_print_help) { | |
|       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout); | |
|     } else { | |
|       EXPECT_PRED_FORMAT2(IsNotSubstring, | |
|                           expected_help_fragment, captured_stdout); | |
|     } | |
| #endif  // GTEST_HAS_STREAM_REDIRECTION | |
|  | |
|     ::testing::internal::g_help_flag = saved_help_flag; | |
|   } | |
| 
 | |
|   // This macro wraps TestParsingFlags s.t. the user doesn't need | |
|   // to specify the array sizes. | |
|  | |
| #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \ | |
|   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \ | |
|                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \ | |
|                    expected, should_print_help) | |
| }; | |
| 
 | |
| // Tests parsing an empty command line. | |
| TEST_F(InitGoogleTestTest, Empty) { | |
|   const char* argv[] = { | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); | |
| } | |
| 
 | |
| // Tests parsing a command line that has no flag. | |
| TEST_F(InitGoogleTestTest, NoFlag) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); | |
| } | |
| 
 | |
| // Tests parsing a bad --gtest_filter flag. | |
| TEST_F(InitGoogleTestTest, FilterBad) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_filter", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     "--gtest_filter", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true); | |
| } | |
| 
 | |
| // Tests parsing an empty --gtest_filter flag. | |
| TEST_F(InitGoogleTestTest, FilterEmpty) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_filter=", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false); | |
| } | |
| 
 | |
| // Tests parsing a non-empty --gtest_filter flag. | |
| TEST_F(InitGoogleTestTest, FilterNonEmpty) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_filter=abc", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_break_on_failure. | |
| TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure", | |
|     NULL | |
| }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_break_on_failure=0. | |
| TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure=0", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_break_on_failure=f. | |
| TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure=f", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_break_on_failure=F. | |
| TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure=F", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
| } | |
| 
 | |
| // Tests parsing a --gtest_break_on_failure flag that has a "true" | |
| // definition. | |
| TEST_F(InitGoogleTestTest, BreakOnFailureTrue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure=1", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_catch_exceptions. | |
| TEST_F(InitGoogleTestTest, CatchExceptions) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_catch_exceptions", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_death_test_use_fork. | |
| TEST_F(InitGoogleTestTest, DeathTestUseFork) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_death_test_use_fork", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false); | |
| } | |
| 
 | |
| // Tests having the same flag twice with different values.  The | |
| // expected behavior is that the one coming last takes precedence. | |
| TEST_F(InitGoogleTestTest, DuplicatedFlags) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_filter=a", | |
|     "--gtest_filter=b", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false); | |
| } | |
| 
 | |
| // Tests having an unrecognized flag on the command line. | |
| TEST_F(InitGoogleTestTest, UnrecognizedFlag) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_break_on_failure", | |
|     "bar",  // Unrecognized by Google Test. | |
|     "--gtest_filter=b", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     "bar", | |
|     NULL | |
|   }; | |
| 
 | |
|   Flags flags; | |
|   flags.break_on_failure = true; | |
|   flags.filter = "b"; | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false); | |
| } | |
| 
 | |
| // Tests having a --gtest_list_tests flag | |
| TEST_F(InitGoogleTestTest, ListTestsFlag) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_list_tests", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_list_tests flag with a "true" value | |
| TEST_F(InitGoogleTestTest, ListTestsTrue) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_list_tests=1", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_list_tests flag with a "false" value | |
| TEST_F(InitGoogleTestTest, ListTestsFalse) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_list_tests=0", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_list_tests=f. | |
| TEST_F(InitGoogleTestTest, ListTestsFalse_f) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_list_tests=f", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_list_tests=F. | |
| TEST_F(InitGoogleTestTest, ListTestsFalse_F) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_list_tests=F", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_output (invalid). | |
| TEST_F(InitGoogleTestTest, OutputEmpty) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_output", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     "--gtest_output", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true); | |
| } | |
| 
 | |
| // Tests parsing --gtest_output=xml | |
| TEST_F(InitGoogleTestTest, OutputXml) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_output=xml", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_output=xml:file | |
| TEST_F(InitGoogleTestTest, OutputXmlFile) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_output=xml:file", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_output=xml:directory/path/ | |
| TEST_F(InitGoogleTestTest, OutputXmlDirectory) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_output=xml:directory/path/", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
|                             Flags::Output("xml:directory/path/"), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_print_time flag | |
| TEST_F(InitGoogleTestTest, PrintTimeFlag) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_print_time", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_print_time flag with a "true" value | |
| TEST_F(InitGoogleTestTest, PrintTimeTrue) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_print_time=1", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_print_time flag with a "false" value | |
| TEST_F(InitGoogleTestTest, PrintTimeFalse) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_print_time=0", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_print_time=f. | |
| TEST_F(InitGoogleTestTest, PrintTimeFalse_f) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_print_time=f", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_print_time=F. | |
| TEST_F(InitGoogleTestTest, PrintTimeFalse_F) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_print_time=F", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_random_seed=number | |
| TEST_F(InitGoogleTestTest, RandomSeed) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_random_seed=1000", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_repeat=number | |
| TEST_F(InitGoogleTestTest, Repeat) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_repeat=1000", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_also_run_disabled_tests flag | |
| TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_also_run_disabled_tests", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
|                               Flags::AlsoRunDisabledTests(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_also_run_disabled_tests flag with a "true" value | |
| TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_also_run_disabled_tests=1", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
|                               Flags::AlsoRunDisabledTests(true), false); | |
| } | |
| 
 | |
| // Tests having a --gtest_also_run_disabled_tests flag with a "false" value | |
| TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) { | |
|     const char* argv[] = { | |
|       "foo.exe", | |
|       "--gtest_also_run_disabled_tests=0", | |
|       NULL | |
|     }; | |
| 
 | |
|     const char* argv2[] = { | |
|       "foo.exe", | |
|       NULL | |
|     }; | |
| 
 | |
|     GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
|                               Flags::AlsoRunDisabledTests(false), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_shuffle. | |
| TEST_F(InitGoogleTestTest, ShuffleWithoutValue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_shuffle", | |
|     NULL | |
| }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_shuffle=0. | |
| TEST_F(InitGoogleTestTest, ShuffleFalse_0) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_shuffle=0", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false); | |
| } | |
| 
 | |
| // Tests parsing a --gtest_shuffle flag that has a "true" | |
| // definition. | |
| TEST_F(InitGoogleTestTest, ShuffleTrue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_shuffle=1", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_stack_trace_depth=number. | |
| TEST_F(InitGoogleTestTest, StackTraceDepth) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_stack_trace_depth=5", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false); | |
| } | |
| 
 | |
| TEST_F(InitGoogleTestTest, StreamResultTo) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_stream_result_to=localhost:1234", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_( | |
|       argv, argv2, Flags::StreamResultTo("localhost:1234"), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_throw_on_failure. | |
| TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_throw_on_failure", | |
|     NULL | |
| }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); | |
| } | |
| 
 | |
| // Tests parsing --gtest_throw_on_failure=0. | |
| TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_throw_on_failure=0", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false); | |
| } | |
| 
 | |
| // Tests parsing a --gtest_throw_on_failure flag that has a "true" | |
| // definition. | |
| TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) { | |
|   const char* argv[] = { | |
|     "foo.exe", | |
|     "--gtest_throw_on_failure=1", | |
|     NULL | |
|   }; | |
| 
 | |
|   const char* argv2[] = { | |
|     "foo.exe", | |
|     NULL | |
|   }; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); | |
| } | |
| 
 | |
| #if GTEST_OS_WINDOWS | |
| // Tests parsing wide strings. | |
| TEST_F(InitGoogleTestTest, WideStrings) { | |
|   const wchar_t* argv[] = { | |
|     L"foo.exe", | |
|     L"--gtest_filter=Foo*", | |
|     L"--gtest_list_tests=1", | |
|     L"--gtest_break_on_failure", | |
|     L"--non_gtest_flag", | |
|     NULL | |
|   }; | |
| 
 | |
|   const wchar_t* argv2[] = { | |
|     L"foo.exe", | |
|     L"--non_gtest_flag", | |
|     NULL | |
|   }; | |
| 
 | |
|   Flags expected_flags; | |
|   expected_flags.break_on_failure = true; | |
|   expected_flags.filter = "Foo*"; | |
|   expected_flags.list_tests = true; | |
| 
 | |
|   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); | |
| } | |
| #endif  // GTEST_OS_WINDOWS | |
|  | |
| // Tests current_test_info() in UnitTest. | |
| class CurrentTestInfoTest : public Test { | |
|  protected: | |
|   // Tests that current_test_info() returns NULL before the first test in | |
|   // the test case is run. | |
|   static void SetUpTestCase() { | |
|     // There should be no tests running at this point. | |
|     const TestInfo* test_info = | |
|       UnitTest::GetInstance()->current_test_info(); | |
|     EXPECT_TRUE(test_info == NULL) | |
|         << "There should be no tests running at this point."; | |
|   } | |
| 
 | |
|   // Tests that current_test_info() returns NULL after the last test in | |
|   // the test case has run. | |
|   static void TearDownTestCase() { | |
|     const TestInfo* test_info = | |
|       UnitTest::GetInstance()->current_test_info(); | |
|     EXPECT_TRUE(test_info == NULL) | |
|         << "There should be no tests running at this point."; | |
|   } | |
| }; | |
| 
 | |
| // Tests that current_test_info() returns TestInfo for currently running | |
| // test by checking the expected test name against the actual one. | |
| TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) { | |
|   const TestInfo* test_info = | |
|     UnitTest::GetInstance()->current_test_info(); | |
|   ASSERT_TRUE(NULL != test_info) | |
|       << "There is a test running so we should have a valid TestInfo."; | |
|   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) | |
|       << "Expected the name of the currently running test case."; | |
|   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name()) | |
|       << "Expected the name of the currently running test."; | |
| } | |
| 
 | |
| // Tests that current_test_info() returns TestInfo for currently running | |
| // test by checking the expected test name against the actual one.  We | |
| // use this test to see that the TestInfo object actually changed from | |
| // the previous invocation. | |
| TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) { | |
|   const TestInfo* test_info = | |
|     UnitTest::GetInstance()->current_test_info(); | |
|   ASSERT_TRUE(NULL != test_info) | |
|       << "There is a test running so we should have a valid TestInfo."; | |
|   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) | |
|       << "Expected the name of the currently running test case."; | |
|   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name()) | |
|       << "Expected the name of the currently running test."; | |
| } | |
| 
 | |
| }  // namespace testing | |
|  | |
| // These two lines test that we can define tests in a namespace that | |
| // has the name "testing" and is nested in another namespace. | |
| namespace my_namespace { | |
| namespace testing { | |
| 
 | |
| // Makes sure that TEST knows to use ::testing::Test instead of | |
| // ::my_namespace::testing::Test. | |
| class Test {}; | |
| 
 | |
| // Makes sure that an assertion knows to use ::testing::Message instead of | |
| // ::my_namespace::testing::Message. | |
| class Message {}; | |
| 
 | |
| // Makes sure that an assertion knows to use | |
| // ::testing::AssertionResult instead of | |
| // ::my_namespace::testing::AssertionResult. | |
| class AssertionResult {}; | |
| 
 | |
| // Tests that an assertion that should succeed works as expected. | |
| TEST(NestedTestingNamespaceTest, Success) { | |
|   EXPECT_EQ(1, 1) << "This shouldn't fail."; | |
| } | |
| 
 | |
| // Tests that an assertion that should fail works as expected. | |
| TEST(NestedTestingNamespaceTest, Failure) { | |
|   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", | |
|                        "This failure is expected."); | |
| } | |
| 
 | |
| }  // namespace testing | |
| }  // namespace my_namespace | |
|  | |
| // Tests that one can call superclass SetUp and TearDown methods-- | |
| // that is, that they are not private. | |
| // No tests are based on this fixture; the test "passes" if it compiles | |
| // successfully. | |
| class ProtectedFixtureMethodsTest : public Test { | |
|  protected: | |
|   virtual void SetUp() { | |
|     Test::SetUp(); | |
|   } | |
|   virtual void TearDown() { | |
|     Test::TearDown(); | |
|   } | |
| }; | |
| 
 | |
| // StreamingAssertionsTest tests the streaming versions of a representative | |
| // sample of assertions. | |
| TEST(StreamingAssertionsTest, Unconditional) { | |
|   SUCCEED() << "expected success"; | |
|   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(FAIL() << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Silences warnings: "Condition is always true", "Unreachable code" | |
| # pragma option push -w-ccc -w-rch | |
| #endif | |
|  | |
| TEST(StreamingAssertionsTest, Truth) { | |
|   EXPECT_TRUE(true) << "unexpected failure"; | |
|   ASSERT_TRUE(true) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, Truth2) { | |
|   EXPECT_FALSE(false) << "unexpected failure"; | |
|   ASSERT_FALSE(false) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| #ifdef __BORLANDC__ | |
| // Restores warnings after previous "#pragma option push" supressed them | |
| # pragma option pop | |
| #endif | |
|  | |
| TEST(StreamingAssertionsTest, IntegerEquals) { | |
|   EXPECT_EQ(1, 1) << "unexpected failure"; | |
|   ASSERT_EQ(1, 1) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, IntegerLessThan) { | |
|   EXPECT_LT(1, 2) << "unexpected failure"; | |
|   ASSERT_LT(1, 2) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, StringsEqual) { | |
|   EXPECT_STREQ("foo", "foo") << "unexpected failure"; | |
|   ASSERT_STREQ("foo", "foo") << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, StringsNotEqual) { | |
|   EXPECT_STRNE("foo", "bar") << "unexpected failure"; | |
|   ASSERT_STRNE("foo", "bar") << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { | |
|   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; | |
|   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { | |
|   EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; | |
|   ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, FloatingPointEquals) { | |
|   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; | |
|   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", | |
|                           "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", | |
|                        "expected failure"); | |
| } | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS | |
|  | |
| TEST(StreamingAssertionsTest, Throw) { | |
|   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; | |
|   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << | |
|                           "expected failure", "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << | |
|                        "expected failure", "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, NoThrow) { | |
|   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure"; | |
|   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << | |
|                           "expected failure", "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << | |
|                        "expected failure", "expected failure"); | |
| } | |
| 
 | |
| TEST(StreamingAssertionsTest, AnyThrow) { | |
|   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; | |
|   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; | |
|   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) << | |
|                           "expected failure", "expected failure"); | |
|   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << | |
|                        "expected failure", "expected failure"); | |
| } | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS | |
|  | |
| // Tests that Google Test correctly decides whether to use colors in the output. | |
|  | |
| TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { | |
|   GTEST_FLAG(color) = "yes"; | |
| 
 | |
|   SetEnv("TERM", "xterm");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY. | |
|  | |
|   SetEnv("TERM", "dumb");  // TERM doesn't support colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY. | |
| } | |
| 
 | |
| TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { | |
|   SetEnv("TERM", "dumb");  // TERM doesn't support colors. | |
|  | |
|   GTEST_FLAG(color) = "True"; | |
|   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY. | |
|  | |
|   GTEST_FLAG(color) = "t"; | |
|   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY. | |
|  | |
|   GTEST_FLAG(color) = "1"; | |
|   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY. | |
| } | |
| 
 | |
| TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { | |
|   GTEST_FLAG(color) = "no"; | |
| 
 | |
|   SetEnv("TERM", "xterm");  // TERM supports colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY. | |
|  | |
|   SetEnv("TERM", "dumb");  // TERM doesn't support colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY. | |
| } | |
| 
 | |
| TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { | |
|   SetEnv("TERM", "xterm");  // TERM supports colors. | |
|  | |
|   GTEST_FLAG(color) = "F"; | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   GTEST_FLAG(color) = "0"; | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   GTEST_FLAG(color) = "unknown"; | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
| } | |
| 
 | |
| TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { | |
|   GTEST_FLAG(color) = "auto"; | |
| 
 | |
|   SetEnv("TERM", "xterm");  // TERM supports colors. | |
|   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY. | |
|   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY. | |
| } | |
| 
 | |
| TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { | |
|   GTEST_FLAG(color) = "auto"; | |
| 
 | |
| #if GTEST_OS_WINDOWS | |
|   // On Windows, we ignore the TERM variable as it's usually not set. | |
|  | |
|   SetEnv("TERM", "dumb"); | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", ""); | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "xterm"); | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
| #else | |
|   // On non-Windows platforms, we rely on TERM to determine if the | |
|   // terminal supports colors. | |
|  | |
|   SetEnv("TERM", "dumb");  // TERM doesn't support colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "emacs");  // TERM doesn't support colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "vt100");  // TERM doesn't support colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors. | |
|   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "xterm");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "xterm-color");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "xterm-256color");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "screen");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "linux");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
|  | |
|   SetEnv("TERM", "cygwin");  // TERM supports colors. | |
|   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY. | |
| #endif  // GTEST_OS_WINDOWS | |
| } | |
| 
 | |
| // Verifies that StaticAssertTypeEq works in a namespace scope. | |
|  | |
| static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>(); | |
| static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ = | |
|     StaticAssertTypeEq<const int, const int>(); | |
| 
 | |
| // Verifies that StaticAssertTypeEq works in a class. | |
|  | |
| template <typename T> | |
| class StaticAssertTypeEqTestHelper { | |
|  public: | |
|   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); } | |
| }; | |
| 
 | |
| TEST(StaticAssertTypeEqTest, WorksInClass) { | |
|   StaticAssertTypeEqTestHelper<bool>(); | |
| } | |
| 
 | |
| // Verifies that StaticAssertTypeEq works inside a function. | |
|  | |
| typedef int IntAlias; | |
| 
 | |
| TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) { | |
|   StaticAssertTypeEq<int, IntAlias>(); | |
|   StaticAssertTypeEq<int*, IntAlias*>(); | |
| } | |
| 
 | |
| TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) { | |
|   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance(); | |
| 
 | |
|   // We don't have a stack walker in Google Test yet. | |
|   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str()); | |
|   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str()); | |
| } | |
| 
 | |
| TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) { | |
|   EXPECT_FALSE(HasNonfatalFailure()); | |
| } | |
| 
 | |
| static void FailFatally() { FAIL(); } | |
| 
 | |
| TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) { | |
|   FailFatally(); | |
|   const bool has_nonfatal_failure = HasNonfatalFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_FALSE(has_nonfatal_failure); | |
| } | |
| 
 | |
| TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { | |
|   ADD_FAILURE(); | |
|   const bool has_nonfatal_failure = HasNonfatalFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_nonfatal_failure); | |
| } | |
| 
 | |
| TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { | |
|   FailFatally(); | |
|   ADD_FAILURE(); | |
|   const bool has_nonfatal_failure = HasNonfatalFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_nonfatal_failure); | |
| } | |
| 
 | |
| // A wrapper for calling HasNonfatalFailure outside of a test body. | |
| static bool HasNonfatalFailureHelper() { | |
|   return testing::Test::HasNonfatalFailure(); | |
| } | |
| 
 | |
| TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) { | |
|   EXPECT_FALSE(HasNonfatalFailureHelper()); | |
| } | |
| 
 | |
| TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) { | |
|   ADD_FAILURE(); | |
|   const bool has_nonfatal_failure = HasNonfatalFailureHelper(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_nonfatal_failure); | |
| } | |
| 
 | |
| TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) { | |
|   EXPECT_FALSE(HasFailure()); | |
| } | |
| 
 | |
| TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) { | |
|   FailFatally(); | |
|   const bool has_failure = HasFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_failure); | |
| } | |
| 
 | |
| TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { | |
|   ADD_FAILURE(); | |
|   const bool has_failure = HasFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_failure); | |
| } | |
| 
 | |
| TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { | |
|   FailFatally(); | |
|   ADD_FAILURE(); | |
|   const bool has_failure = HasFailure(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_failure); | |
| } | |
| 
 | |
| // A wrapper for calling HasFailure outside of a test body. | |
| static bool HasFailureHelper() { return testing::Test::HasFailure(); } | |
| 
 | |
| TEST(HasFailureTest, WorksOutsideOfTestBody) { | |
|   EXPECT_FALSE(HasFailureHelper()); | |
| } | |
| 
 | |
| TEST(HasFailureTest, WorksOutsideOfTestBody2) { | |
|   ADD_FAILURE(); | |
|   const bool has_failure = HasFailureHelper(); | |
|   ClearCurrentTestPartResults(); | |
|   EXPECT_TRUE(has_failure); | |
| } | |
| 
 | |
| class TestListener : public EmptyTestEventListener { | |
|  public: | |
|   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {} | |
|   TestListener(int* on_start_counter, bool* is_destroyed) | |
|       : on_start_counter_(on_start_counter), | |
|         is_destroyed_(is_destroyed) {} | |
| 
 | |
|   virtual ~TestListener() { | |
|     if (is_destroyed_) | |
|       *is_destroyed_ = true; | |
|   } | |
| 
 | |
|  protected: | |
|   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { | |
|     if (on_start_counter_ != NULL) | |
|       (*on_start_counter_)++; | |
|   } | |
| 
 | |
|  private: | |
|   int* on_start_counter_; | |
|   bool* is_destroyed_; | |
| }; | |
| 
 | |
| // Tests the constructor. | |
| TEST(TestEventListenersTest, ConstructionWorks) { | |
|   TestEventListeners listeners; | |
| 
 | |
|   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL); | |
|   EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
|   EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
| } | |
| 
 | |
| // Tests that the TestEventListeners destructor deletes all the listeners it | |
| // owns. | |
| TEST(TestEventListenersTest, DestructionWorks) { | |
|   bool default_result_printer_is_destroyed = false; | |
|   bool default_xml_printer_is_destroyed = false; | |
|   bool extra_listener_is_destroyed = false; | |
|   TestListener* default_result_printer = new TestListener( | |
|       NULL, &default_result_printer_is_destroyed); | |
|   TestListener* default_xml_printer = new TestListener( | |
|       NULL, &default_xml_printer_is_destroyed); | |
|   TestListener* extra_listener = new TestListener( | |
|       NULL, &extra_listener_is_destroyed); | |
| 
 | |
|   { | |
|     TestEventListeners listeners; | |
|     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, | |
|                                                         default_result_printer); | |
|     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, | |
|                                                        default_xml_printer); | |
|     listeners.Append(extra_listener); | |
|   } | |
|   EXPECT_TRUE(default_result_printer_is_destroyed); | |
|   EXPECT_TRUE(default_xml_printer_is_destroyed); | |
|   EXPECT_TRUE(extra_listener_is_destroyed); | |
| } | |
| 
 | |
| // Tests that a listener Append'ed to a TestEventListeners list starts | |
| // receiving events. | |
| TEST(TestEventListenersTest, Append) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
|   { | |
|     TestEventListeners listeners; | |
|     listeners.Append(listener); | |
|     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|         *UnitTest::GetInstance()); | |
|     EXPECT_EQ(1, on_start_counter); | |
|   } | |
|   EXPECT_TRUE(is_destroyed); | |
| } | |
| 
 | |
| // Tests that listeners receive events in the order they were appended to | |
| // the list, except for *End requests, which must be received in the reverse | |
| // order. | |
| class SequenceTestingListener : public EmptyTestEventListener { | |
|  public: | |
|   SequenceTestingListener(std::vector<String>* vector, const char* id) | |
|       : vector_(vector), id_(id) {} | |
| 
 | |
|  protected: | |
|   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { | |
|     vector_->push_back(GetEventDescription("OnTestProgramStart")); | |
|   } | |
| 
 | |
|   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) { | |
|     vector_->push_back(GetEventDescription("OnTestProgramEnd")); | |
|   } | |
| 
 | |
|   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/, | |
|                                     int /*iteration*/) { | |
|     vector_->push_back(GetEventDescription("OnTestIterationStart")); | |
|   } | |
| 
 | |
|   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/, | |
|                                   int /*iteration*/) { | |
|     vector_->push_back(GetEventDescription("OnTestIterationEnd")); | |
|   } | |
| 
 | |
|  private: | |
|   String GetEventDescription(const char* method) { | |
|     Message message; | |
|     message << id_ << "." << method; | |
|     return message.GetString(); | |
|   } | |
| 
 | |
|   std::vector<String>* vector_; | |
|   const char* const id_; | |
| 
 | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener); | |
| }; | |
| 
 | |
| TEST(EventListenerTest, AppendKeepsOrder) { | |
|   std::vector<String> vec; | |
|   TestEventListeners listeners; | |
|   listeners.Append(new SequenceTestingListener(&vec, "1st")); | |
|   listeners.Append(new SequenceTestingListener(&vec, "2nd")); | |
|   listeners.Append(new SequenceTestingListener(&vec, "3rd")); | |
| 
 | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
|   ASSERT_EQ(3U, vec.size()); | |
|   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str()); | |
|   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str()); | |
|   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str()); | |
| 
 | |
|   vec.clear(); | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd( | |
|       *UnitTest::GetInstance()); | |
|   ASSERT_EQ(3U, vec.size()); | |
|   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str()); | |
|   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str()); | |
|   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str()); | |
| 
 | |
|   vec.clear(); | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart( | |
|       *UnitTest::GetInstance(), 0); | |
|   ASSERT_EQ(3U, vec.size()); | |
|   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str()); | |
|   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str()); | |
|   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str()); | |
| 
 | |
|   vec.clear(); | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd( | |
|       *UnitTest::GetInstance(), 0); | |
|   ASSERT_EQ(3U, vec.size()); | |
|   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str()); | |
|   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str()); | |
|   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str()); | |
| } | |
| 
 | |
| // Tests that a listener removed from a TestEventListeners list stops receiving | |
| // events and is not deleted when the list is destroyed. | |
| TEST(TestEventListenersTest, Release) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   // Although Append passes the ownership of this object to the list, | |
|   // the following calls release it, and we need to delete it before the | |
|   // test ends. | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
|   { | |
|     TestEventListeners listeners; | |
|     listeners.Append(listener); | |
|     EXPECT_EQ(listener, listeners.Release(listener)); | |
|     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|         *UnitTest::GetInstance()); | |
|     EXPECT_TRUE(listeners.Release(listener) == NULL); | |
|   } | |
|   EXPECT_EQ(0, on_start_counter); | |
|   EXPECT_FALSE(is_destroyed); | |
|   delete listener; | |
| } | |
| 
 | |
| // Tests that no events are forwarded when event forwarding is disabled. | |
| TEST(EventListenerTest, SuppressEventForwarding) { | |
|   int on_start_counter = 0; | |
|   TestListener* listener = new TestListener(&on_start_counter, NULL); | |
| 
 | |
|   TestEventListeners listeners; | |
|   listeners.Append(listener); | |
|   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); | |
|   TestEventListenersAccessor::SuppressEventForwarding(&listeners); | |
|   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
|   EXPECT_EQ(0, on_start_counter); | |
| } | |
| 
 | |
| // Tests that events generated by Google Test are not forwarded in | |
| // death test subprocesses. | |
| TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) { | |
|   EXPECT_DEATH_IF_SUPPORTED({ | |
|       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled( | |
|           *GetUnitTestImpl()->listeners())) << "expected failure";}, | |
|       "expected failure"); | |
| } | |
| 
 | |
| // Tests that a listener installed via SetDefaultResultPrinter() starts | |
| // receiving events and is returned via default_result_printer() and that | |
| // the previous default_result_printer is removed from the list and deleted. | |
| TEST(EventListenerTest, default_result_printer) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
| 
 | |
|   TestEventListeners listeners; | |
|   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); | |
| 
 | |
|   EXPECT_EQ(listener, listeners.default_result_printer()); | |
| 
 | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
| 
 | |
|   EXPECT_EQ(1, on_start_counter); | |
| 
 | |
|   // Replacing default_result_printer with something else should remove it | |
|   // from the list and destroy it. | |
|   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL); | |
| 
 | |
|   EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
|   EXPECT_TRUE(is_destroyed); | |
| 
 | |
|   // After broadcasting an event the counter is still the same, indicating | |
|   // the listener is not in the list anymore. | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
|   EXPECT_EQ(1, on_start_counter); | |
| } | |
| 
 | |
| // Tests that the default_result_printer listener stops receiving events | |
| // when removed via Release and that is not owned by the list anymore. | |
| TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   // Although Append passes the ownership of this object to the list, | |
|   // the following calls release it, and we need to delete it before the | |
|   // test ends. | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
|   { | |
|     TestEventListeners listeners; | |
|     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); | |
| 
 | |
|     EXPECT_EQ(listener, listeners.Release(listener)); | |
|     EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
|     EXPECT_FALSE(is_destroyed); | |
| 
 | |
|     // Broadcasting events now should not affect default_result_printer. | |
|     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|         *UnitTest::GetInstance()); | |
|     EXPECT_EQ(0, on_start_counter); | |
|   } | |
|   // Destroying the list should not affect the listener now, too. | |
|   EXPECT_FALSE(is_destroyed); | |
|   delete listener; | |
| } | |
| 
 | |
| // Tests that a listener installed via SetDefaultXmlGenerator() starts | |
| // receiving events and is returned via default_xml_generator() and that | |
| // the previous default_xml_generator is removed from the list and deleted. | |
| TEST(EventListenerTest, default_xml_generator) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
| 
 | |
|   TestEventListeners listeners; | |
|   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); | |
| 
 | |
|   EXPECT_EQ(listener, listeners.default_xml_generator()); | |
| 
 | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
| 
 | |
|   EXPECT_EQ(1, on_start_counter); | |
| 
 | |
|   // Replacing default_xml_generator with something else should remove it | |
|   // from the list and destroy it. | |
|   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL); | |
| 
 | |
|   EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
|   EXPECT_TRUE(is_destroyed); | |
| 
 | |
|   // After broadcasting an event the counter is still the same, indicating | |
|   // the listener is not in the list anymore. | |
|   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|       *UnitTest::GetInstance()); | |
|   EXPECT_EQ(1, on_start_counter); | |
| } | |
| 
 | |
| // Tests that the default_xml_generator listener stops receiving events | |
| // when removed via Release and that is not owned by the list anymore. | |
| TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) { | |
|   int on_start_counter = 0; | |
|   bool is_destroyed = false; | |
|   // Although Append passes the ownership of this object to the list, | |
|   // the following calls release it, and we need to delete it before the | |
|   // test ends. | |
|   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
|   { | |
|     TestEventListeners listeners; | |
|     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); | |
| 
 | |
|     EXPECT_EQ(listener, listeners.Release(listener)); | |
|     EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
|     EXPECT_FALSE(is_destroyed); | |
| 
 | |
|     // Broadcasting events now should not affect default_xml_generator. | |
|     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
|         *UnitTest::GetInstance()); | |
|     EXPECT_EQ(0, on_start_counter); | |
|   } | |
|   // Destroying the list should not affect the listener now, too. | |
|   EXPECT_FALSE(is_destroyed); | |
|   delete listener; | |
| } | |
| 
 | |
| // Sanity tests to ensure that the alternative, verbose spellings of | |
| // some of the macros work.  We don't test them thoroughly as that | |
| // would be quite involved.  Since their implementations are | |
| // straightforward, and they are rarely used, we'll just rely on the | |
| // users to tell us when they are broken. | |
| GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST. | |
|   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED. | |
|  | |
|   // GTEST_FAIL is the same as FAIL. | |
|   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   // GTEST_ASSERT_XY is the same as ASSERT_XY. | |
|  | |
|   GTEST_ASSERT_EQ(0, 0); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure", | |
|                        "An expected failure"); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   GTEST_ASSERT_NE(0, 1); | |
|   GTEST_ASSERT_NE(1, 0); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   GTEST_ASSERT_LE(0, 0); | |
|   GTEST_ASSERT_LE(0, 1); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   GTEST_ASSERT_LT(0, 1); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure", | |
|                        "An expected failure"); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   GTEST_ASSERT_GE(0, 0); | |
|   GTEST_ASSERT_GE(1, 0); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure", | |
|                        "An expected failure"); | |
| 
 | |
|   GTEST_ASSERT_GT(1, 0); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure", | |
|                        "An expected failure"); | |
|   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure", | |
|                        "An expected failure"); | |
| } | |
| 
 | |
| // Tests for internal utilities necessary for implementation of the universal | |
| // printing. | |
| // TODO(vladl@google.com): Find a better home for them. | |
|  | |
| class ConversionHelperBase {}; | |
| class ConversionHelperDerived : public ConversionHelperBase {}; | |
| 
 | |
| // Tests that IsAProtocolMessage<T>::value is a compile-time constant. | |
| TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) { | |
|   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, | |
|                         const_true); | |
|   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false); | |
| } | |
| 
 | |
| // Tests that IsAProtocolMessage<T>::value is true when T is | |
| // proto2::Message or a sub-class of it. | |
| TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) { | |
|   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value); | |
|   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value); | |
| } | |
| 
 | |
| // Tests that IsAProtocolMessage<T>::value is false when T is neither | |
| // ProtocolMessage nor a sub-class of it. | |
| TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) { | |
|   EXPECT_FALSE(IsAProtocolMessage<int>::value); | |
|   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value); | |
| } | |
| 
 | |
| // Tests that CompileAssertTypesEqual compiles when the type arguments are | |
| // equal. | |
| TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) { | |
|   CompileAssertTypesEqual<void, void>(); | |
|   CompileAssertTypesEqual<int*, int*>(); | |
| } | |
| 
 | |
| // Tests that RemoveReference does not affect non-reference types. | |
| TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) { | |
|   CompileAssertTypesEqual<int, RemoveReference<int>::type>(); | |
|   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>(); | |
| } | |
| 
 | |
| // Tests that RemoveReference removes reference from reference types. | |
| TEST(RemoveReferenceTest, RemovesReference) { | |
|   CompileAssertTypesEqual<int, RemoveReference<int&>::type>(); | |
|   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>(); | |
| } | |
| 
 | |
| // Tests GTEST_REMOVE_REFERENCE_. | |
|  | |
| template <typename T1, typename T2> | |
| void TestGTestRemoveReference() { | |
|   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>(); | |
| } | |
| 
 | |
| TEST(RemoveReferenceTest, MacroVersion) { | |
|   TestGTestRemoveReference<int, int>(); | |
|   TestGTestRemoveReference<const char, const char&>(); | |
| } | |
| 
 | |
| 
 | |
| // Tests that RemoveConst does not affect non-const types. | |
| TEST(RemoveConstTest, DoesNotAffectNonConstType) { | |
|   CompileAssertTypesEqual<int, RemoveConst<int>::type>(); | |
|   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>(); | |
| } | |
| 
 | |
| // Tests that RemoveConst removes const from const types. | |
| TEST(RemoveConstTest, RemovesConst) { | |
|   CompileAssertTypesEqual<int, RemoveConst<const int>::type>(); | |
|   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>(); | |
|   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>(); | |
| } | |
| 
 | |
| // Tests GTEST_REMOVE_CONST_. | |
|  | |
| template <typename T1, typename T2> | |
| void TestGTestRemoveConst() { | |
|   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>(); | |
| } | |
| 
 | |
| TEST(RemoveConstTest, MacroVersion) { | |
|   TestGTestRemoveConst<int, int>(); | |
|   TestGTestRemoveConst<double&, double&>(); | |
|   TestGTestRemoveConst<char, const char>(); | |
| } | |
| 
 | |
| // Tests GTEST_REMOVE_REFERENCE_AND_CONST_. | |
|  | |
| template <typename T1, typename T2> | |
| void TestGTestRemoveReferenceAndConst() { | |
|   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>(); | |
| } | |
| 
 | |
| TEST(RemoveReferenceToConstTest, Works) { | |
|   TestGTestRemoveReferenceAndConst<int, int>(); | |
|   TestGTestRemoveReferenceAndConst<double, double&>(); | |
|   TestGTestRemoveReferenceAndConst<char, const char>(); | |
|   TestGTestRemoveReferenceAndConst<char, const char&>(); | |
|   TestGTestRemoveReferenceAndConst<const char*, const char*>(); | |
| } | |
| 
 | |
| // Tests that AddReference does not affect reference types. | |
| TEST(AddReferenceTest, DoesNotAffectReferenceType) { | |
|   CompileAssertTypesEqual<int&, AddReference<int&>::type>(); | |
|   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>(); | |
| } | |
| 
 | |
| // Tests that AddReference adds reference to non-reference types. | |
| TEST(AddReferenceTest, AddsReference) { | |
|   CompileAssertTypesEqual<int&, AddReference<int>::type>(); | |
|   CompileAssertTypesEqual<const char&, AddReference<const char>::type>(); | |
| } | |
| 
 | |
| // Tests GTEST_ADD_REFERENCE_. | |
|  | |
| template <typename T1, typename T2> | |
| void TestGTestAddReference() { | |
|   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>(); | |
| } | |
| 
 | |
| TEST(AddReferenceTest, MacroVersion) { | |
|   TestGTestAddReference<int&, int>(); | |
|   TestGTestAddReference<const char&, const char&>(); | |
| } | |
| 
 | |
| // Tests GTEST_REFERENCE_TO_CONST_. | |
|  | |
| template <typename T1, typename T2> | |
| void TestGTestReferenceToConst() { | |
|   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>(); | |
| } | |
| 
 | |
| TEST(GTestReferenceToConstTest, Works) { | |
|   TestGTestReferenceToConst<const char&, char>(); | |
|   TestGTestReferenceToConst<const int&, const int>(); | |
|   TestGTestReferenceToConst<const double&, double>(); | |
|   TestGTestReferenceToConst<const String&, const String&>(); | |
| } | |
| 
 | |
| // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant. | |
| TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) { | |
|   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true); | |
|   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value), | |
|                         const_false); | |
| } | |
| 
 | |
| // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can | |
| // be implicitly converted to T2. | |
| TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) { | |
|   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value)); | |
|   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value)); | |
|   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value)); | |
|   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value)); | |
|   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&, | |
|                                      const ConversionHelperBase&>::value)); | |
|   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase, | |
|                                      ConversionHelperBase>::value)); | |
| } | |
| 
 | |
| // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1 | |
| // cannot be implicitly converted to T2. | |
| TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) { | |
|   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value)); | |
|   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value)); | |
|   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value)); | |
|   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&, | |
|                                       ConversionHelperDerived&>::value)); | |
| } | |
| 
 | |
| // Tests IsContainerTest. | |
|  | |
| class NonContainer {}; | |
| 
 | |
| TEST(IsContainerTestTest, WorksForNonContainer) { | |
|   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0))); | |
|   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0))); | |
|   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0))); | |
| } | |
| 
 | |
| TEST(IsContainerTestTest, WorksForContainer) { | |
|   EXPECT_EQ(sizeof(IsContainer), | |
|             sizeof(IsContainerTest<std::vector<bool> >(0))); | |
|   EXPECT_EQ(sizeof(IsContainer), | |
|             sizeof(IsContainerTest<std::map<int, double> >(0))); | |
| } | |
| 
 | |
| // Tests ArrayEq(). | |
|  | |
| TEST(ArrayEqTest, WorksForDegeneratedArrays) { | |
|   EXPECT_TRUE(ArrayEq(5, 5L)); | |
|   EXPECT_FALSE(ArrayEq('a', 0)); | |
| } | |
| 
 | |
| TEST(ArrayEqTest, WorksForOneDimensionalArrays) { | |
|   const int a[] = { 0, 1 }; | |
|   long b[] = { 0, 1 }; | |
|   EXPECT_TRUE(ArrayEq(a, b)); | |
|   EXPECT_TRUE(ArrayEq(a, 2, b)); | |
| 
 | |
|   b[0] = 2; | |
|   EXPECT_FALSE(ArrayEq(a, b)); | |
|   EXPECT_FALSE(ArrayEq(a, 1, b)); | |
| } | |
| 
 | |
| TEST(ArrayEqTest, WorksForTwoDimensionalArrays) { | |
|   const char a[][3] = { "hi", "lo" }; | |
|   const char b[][3] = { "hi", "lo" }; | |
|   const char c[][3] = { "hi", "li" }; | |
| 
 | |
|   EXPECT_TRUE(ArrayEq(a, b)); | |
|   EXPECT_TRUE(ArrayEq(a, 2, b)); | |
| 
 | |
|   EXPECT_FALSE(ArrayEq(a, c)); | |
|   EXPECT_FALSE(ArrayEq(a, 2, c)); | |
| } | |
| 
 | |
| // Tests ArrayAwareFind(). | |
|  | |
| TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) { | |
|   const char a[] = "hello"; | |
|   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o')); | |
|   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x')); | |
| } | |
| 
 | |
| TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) { | |
|   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } }; | |
|   const int b[2] = { 2, 3 }; | |
|   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b)); | |
| 
 | |
|   const int c[2] = { 6, 7 }; | |
|   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c)); | |
| } | |
| 
 | |
| // Tests CopyArray(). | |
|  | |
| TEST(CopyArrayTest, WorksForDegeneratedArrays) { | |
|   int n = 0; | |
|   CopyArray('a', &n); | |
|   EXPECT_EQ('a', n); | |
| } | |
| 
 | |
| TEST(CopyArrayTest, WorksForOneDimensionalArrays) { | |
|   const char a[3] = "hi"; | |
|   int b[3]; | |
| #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions. | |
|   CopyArray(a, &b); | |
|   EXPECT_TRUE(ArrayEq(a, b)); | |
| #endif | |
|  | |
|   int c[3]; | |
|   CopyArray(a, 3, c); | |
|   EXPECT_TRUE(ArrayEq(a, c)); | |
| } | |
| 
 | |
| TEST(CopyArrayTest, WorksForTwoDimensionalArrays) { | |
|   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; | |
|   int b[2][3]; | |
| #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions. | |
|   CopyArray(a, &b); | |
|   EXPECT_TRUE(ArrayEq(a, b)); | |
| #endif | |
|  | |
|   int c[2][3]; | |
|   CopyArray(a, 2, c); | |
|   EXPECT_TRUE(ArrayEq(a, c)); | |
| } | |
| 
 | |
| // Tests NativeArray. | |
|  | |
| TEST(NativeArrayTest, ConstructorFromArrayWorks) { | |
|   const int a[3] = { 0, 1, 2 }; | |
|   NativeArray<int> na(a, 3, kReference); | |
|   EXPECT_EQ(3U, na.size()); | |
|   EXPECT_EQ(a, na.begin()); | |
| } | |
| 
 | |
| TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) { | |
|   typedef int Array[2]; | |
|   Array* a = new Array[1]; | |
|   (*a)[0] = 0; | |
|   (*a)[1] = 1; | |
|   NativeArray<int> na(*a, 2, kCopy); | |
|   EXPECT_NE(*a, na.begin()); | |
|   delete[] a; | |
|   EXPECT_EQ(0, na.begin()[0]); | |
|   EXPECT_EQ(1, na.begin()[1]); | |
| 
 | |
|   // We rely on the heap checker to verify that na deletes the copy of | |
|   // array. | |
| } | |
| 
 | |
| TEST(NativeArrayTest, TypeMembersAreCorrect) { | |
|   StaticAssertTypeEq<char, NativeArray<char>::value_type>(); | |
|   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>(); | |
| 
 | |
|   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>(); | |
|   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>(); | |
| } | |
| 
 | |
| TEST(NativeArrayTest, MethodsWork) { | |
|   const int a[3] = { 0, 1, 2 }; | |
|   NativeArray<int> na(a, 3, kCopy); | |
|   ASSERT_EQ(3U, na.size()); | |
|   EXPECT_EQ(3, na.end() - na.begin()); | |
| 
 | |
|   NativeArray<int>::const_iterator it = na.begin(); | |
|   EXPECT_EQ(0, *it); | |
|   ++it; | |
|   EXPECT_EQ(1, *it); | |
|   it++; | |
|   EXPECT_EQ(2, *it); | |
|   ++it; | |
|   EXPECT_EQ(na.end(), it); | |
| 
 | |
|   EXPECT_TRUE(na == na); | |
| 
 | |
|   NativeArray<int> na2(a, 3, kReference); | |
|   EXPECT_TRUE(na == na2); | |
| 
 | |
|   const int b1[3] = { 0, 1, 1 }; | |
|   const int b2[4] = { 0, 1, 2, 3 }; | |
|   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference)); | |
|   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy)); | |
| } | |
| 
 | |
| TEST(NativeArrayTest, WorksForTwoDimensionalArray) { | |
|   const char a[2][3] = { "hi", "lo" }; | |
|   NativeArray<char[3]> na(a, 2, kReference); | |
|   ASSERT_EQ(2U, na.size()); | |
|   EXPECT_EQ(a, na.begin()); | |
| } | |
| 
 | |
| // Tests SkipPrefix(). | |
|  | |
| TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { | |
|   const char* const str = "hello"; | |
| 
 | |
|   const char* p = str; | |
|   EXPECT_TRUE(SkipPrefix("", &p)); | |
|   EXPECT_EQ(str, p); | |
| 
 | |
|   p = str; | |
|   EXPECT_TRUE(SkipPrefix("hell", &p)); | |
|   EXPECT_EQ(str + 4, p); | |
| } | |
| 
 | |
| TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { | |
|   const char* const str = "world"; | |
| 
 | |
|   const char* p = str; | |
|   EXPECT_FALSE(SkipPrefix("W", &p)); | |
|   EXPECT_EQ(str, p); | |
| 
 | |
|   p = str; | |
|   EXPECT_FALSE(SkipPrefix("world!", &p)); | |
|   EXPECT_EQ(str, p); | |
| }
 |