You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							138 lines
						
					
					
						
							7.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							138 lines
						
					
					
						
							7.2 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| static int nb_temporaries; | |
| 
 | |
| void on_temporary_creation(int size) { | |
|   // here's a great place to set a breakpoint when debugging failures in this test! | |
|   if(size!=0) nb_temporaries++; | |
| } | |
|    | |
| 
 | |
| #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } | |
|  | |
| #include "main.h" | |
|  | |
| #define VERIFY_EVALUATION_COUNT(XPR,N) {\ | |
|     nb_temporaries = 0; \ | |
|     XPR; \ | |
|     if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ | |
|     VERIFY( (#XPR) && nb_temporaries==N ); \ | |
|   } | |
|  | |
| template<typename MatrixType> void product_notemporary(const MatrixType& m) | |
| { | |
|   /* This test checks the number of temporaries created | |
|    * during the evaluation of a complex expression */ | |
|   typedef typename MatrixType::Index Index; | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | |
|   typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType; | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   ColMajorMatrixType m1 = MatrixType::Random(rows, cols), | |
|                      m2 = MatrixType::Random(rows, cols), | |
|                      m3(rows, cols); | |
|   RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows); | |
|   ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols); | |
|   RowMajorMatrixType rm3(rows, cols); | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), | |
|          s2 = internal::random<Scalar>(), | |
|          s3 = internal::random<Scalar>(); | |
| 
 | |
|   Index c0 = internal::random<Index>(4,cols-8), | |
|         c1 = internal::random<Index>(8,cols-c0), | |
|         r0 = internal::random<Index>(4,cols-8), | |
|         r1 = internal::random<Index>(8,rows-r0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0); | |
|   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() -= s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1) ), 0); | |
| 
 | |
|   // NOTE this is because the Block expression is not handled yet by our expression analyser | |
|   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() = s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1) ), 1); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0); | |
|   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1); | |
|   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0); | |
| 
 | |
|   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products | |
|   VERIFY_EVALUATION_COUNT( rm3.col(c0).noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * (s2*m2.row(c0)).adjoint(), 1); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m1.template triangularView<Lower>().solveInPlace(m3), 0); | |
|   VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<Lower>().solveInPlace(m3.transpose()), 0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2*s3).adjoint(), 0); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<Upper>(), 0); | |
|   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(), 0); | |
| 
 | |
|   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products | |
|   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() = (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2.row(c0)*s3).adjoint(), 1); | |
|   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() -= (s1 * m1).adjoint().template selfadjointView<Upper>() * (-m2.row(c0)*s3).adjoint(), 1); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() += m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * (s1*m2.block(r0,c0,r1,c1)), 0); | |
|   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * m2.block(r0,c0,r1,c1), 0); | |
| 
 | |
|   VERIFY_EVALUATION_COUNT( m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0); | |
| 
 | |
|   // Here we will get 1 temporary for each resize operation of the lhs operator; resize(r1,c1) would lead to zero temporaries | |
|   m3.resize(1,1); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Lower>() * m2.block(r0,c0,r1,c1), 1); | |
|   m3.resize(1,1); | |
|   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template triangularView<UnitUpper>()  * m2.block(r0,c0,r1,c1), 1); | |
| 
 | |
|   // Zero temporaries for lazy products ... | |
|   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose().lazyProduct(m3)).diagonal().sum(), 0 ); | |
| 
 | |
|   // ... and even no temporary for even deeply (>=2) nested products | |
|   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().sum(), 0 ); | |
|   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().array().abs().sum(), 0 ); | |
| 
 | |
|   // Zero temporaries for ... CoeffBasedProductMode | |
|   // - does not work with GCC because of the <..>, we'ld need variadic macros ... | |
|   //VERIFY_EVALUATION_COUNT( m3.col(0).head<5>() * m3.col(0).transpose() + m3.col(0).head<5>() * m3.col(0).transpose(), 0 ); | |
|  | |
|   // Check matrix * vectors | |
|   VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 ); | |
|   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * cv1, 0 ); | |
|   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.col(0), 0 ); | |
|   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * rv1.adjoint(), 0 ); | |
|   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.row(0).transpose(), 0 ); | |
| } | |
| 
 | |
| void test_product_notemporary() | |
| { | |
|   int s; | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE); | |
|     CALL_SUBTEST_1( product_notemporary(MatrixXf(s, s)) ); | |
|     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE); | |
|     CALL_SUBTEST_2( product_notemporary(MatrixXd(s, s)) ); | |
|     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2); | |
|     CALL_SUBTEST_3( product_notemporary(MatrixXcf(s,s)) ); | |
|     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2); | |
|     CALL_SUBTEST_4( product_notemporary(MatrixXcd(s,s)) ); | |
|   } | |
| }
 |