You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							62 lines
						
					
					
						
							2.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							62 lines
						
					
					
						
							2.1 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/MatrixFunctions> | |
|  | |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | |
| struct generateTestMatrix; | |
| 
 | |
| // for real matrices, make sure none of the eigenvalues are negative | |
| template <typename MatrixType> | |
| struct generateTestMatrix<MatrixType,0> | |
| { | |
|   static void run(MatrixType& result, typename MatrixType::Index size) | |
|   { | |
|     MatrixType mat = MatrixType::Random(size, size); | |
|     EigenSolver<MatrixType> es(mat); | |
|     typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues(); | |
|     for (typename MatrixType::Index i = 0; i < size; ++i) { | |
|       if (eivals(i).imag() == 0 && eivals(i).real() < 0) | |
| 	eivals(i) = -eivals(i); | |
|     } | |
|     result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real(); | |
|   } | |
| }; | |
| 
 | |
| // for complex matrices, any matrix is fine | |
| template <typename MatrixType> | |
| struct generateTestMatrix<MatrixType,1> | |
| { | |
|   static void run(MatrixType& result, typename MatrixType::Index size) | |
|   { | |
|     result = MatrixType::Random(size, size); | |
|   } | |
| }; | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrixSqrt(const MatrixType& m) | |
| { | |
|   MatrixType A; | |
|   generateTestMatrix<MatrixType>::run(A, m.rows()); | |
|   MatrixType sqrtA = A.sqrt(); | |
|   VERIFY_IS_APPROX(sqrtA * sqrtA, A); | |
| } | |
| 
 | |
| void test_matrix_square_root() | |
| { | |
|   for (int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf())); | |
|     CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12))); | |
|     CALL_SUBTEST_3(testMatrixSqrt(Matrix4f())); | |
|     CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9))); | |
|     CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>())); | |
|     CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>())); | |
|   } | |
| }
 |