You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							533 lines
						
					
					
						
							16 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							533 lines
						
					
					
						
							16 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| 
 | |
| #include <iostream> | |
| #include <fstream> | |
| #include "Eigen/SparseCore" | |
| #include <bench/BenchTimer.h> | |
| #include <cstdlib> | |
| #include <string> | |
| #include <Eigen/Cholesky> | |
| #include <Eigen/Jacobi> | |
| #include <Eigen/Householder> | |
| #include <Eigen/IterativeLinearSolvers> | |
| #include <unsupported/Eigen/IterativeSolvers> | |
| #include <Eigen/LU> | |
| #include <unsupported/Eigen/SparseExtra> | |
|  | |
| #ifdef EIGEN_CHOLMOD_SUPPORT | |
| #include <Eigen/CholmodSupport> | |
| #endif | |
|  | |
| #ifdef EIGEN_UMFPACK_SUPPORT | |
| #include <Eigen/UmfPackSupport> | |
| #endif | |
|  | |
| #ifdef EIGEN_PARDISO_SUPPORT | |
| #include <Eigen/PardisoSupport> | |
| #endif | |
|  | |
| #ifdef EIGEN_SUPERLU_SUPPORT | |
| #include <Eigen/SuperLUSupport> | |
| #endif | |
|  | |
| #ifdef EIGEN_PASTIX_SUPPORT | |
| #include <Eigen/PaStiXSupport> | |
| #endif | |
|  | |
| // CONSTANTS | |
| #define EIGEN_UMFPACK  0 | |
| #define EIGEN_SUPERLU  1 | |
| #define EIGEN_PASTIX  2 | |
| #define EIGEN_PARDISO  3 | |
| #define EIGEN_BICGSTAB  4 | |
| #define EIGEN_BICGSTAB_ILUT  5 | |
| #define EIGEN_GMRES 6 | |
| #define EIGEN_GMRES_ILUT 7 | |
| #define EIGEN_SIMPLICIAL_LDLT  8 | |
| #define EIGEN_CHOLMOD_LDLT  9 | |
| #define EIGEN_PASTIX_LDLT  10 | |
| #define EIGEN_PARDISO_LDLT  11 | |
| #define EIGEN_SIMPLICIAL_LLT  12 | |
| #define EIGEN_CHOLMOD_SUPERNODAL_LLT  13 | |
| #define EIGEN_CHOLMOD_SIMPLICIAL_LLT  14 | |
| #define EIGEN_PASTIX_LLT  15 | |
| #define EIGEN_PARDISO_LLT  16 | |
| #define EIGEN_CG  17 | |
| #define EIGEN_CG_PRECOND  18 | |
| #define EIGEN_ALL_SOLVERS  19 | |
|  | |
| using namespace Eigen; | |
| using namespace std;  | |
| 
 | |
| struct Stats{ | |
|   ComputationInfo info; | |
|   double total_time; | |
|   double compute_time; | |
|   double solve_time;  | |
|   double rel_error; | |
|   int memory_used;  | |
|   int iterations; | |
|   int isavail;  | |
|   int isIterative; | |
| };  | |
| 
 | |
| // Global variables for input parameters | |
| int MaximumIters; // Maximum number of iterations | |
| double RelErr; // Relative error of the computed solution | |
|  | |
| template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } | |
| template<> inline float test_precision<float>() { return 1e-3f; }                                                              | |
| template<> inline double test_precision<double>() { return 1e-6; }                                                             | |
| template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } | |
| template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } | |
| 
 | |
| void printStatheader(std::ofstream& out) | |
| { | |
|   int LUcnt = 0;  | |
|   string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT "; | |
|    | |
| #ifdef EIGEN_UMFPACK_SUPPORT | |
|   LUlist += "<TH > UMFPACK "; LUcnt++; | |
| #endif | |
| #ifdef EIGEN_SUPERLU_SUPPORT | |
|   LUlist += "<TH > SUPERLU "; LUcnt++; | |
| #endif | |
| #ifdef EIGEN_CHOLMOD_SUPPORT | |
|   LLTlist += "<TH > CHOLMOD SP LLT<TH > CHOLMOD LLT";  | |
|   LDLTlist += "<TH>CHOLMOD LDLT";  | |
| #endif | |
| #ifdef EIGEN_PARDISO_SUPPORT | |
|   LUlist += "<TH > PARDISO LU";  LUcnt++; | |
|   LLTlist += "<TH > PARDISO LLT";  | |
|   LDLTlist += "<TH > PARDISO LDLT"; | |
| #endif | |
| #ifdef EIGEN_PASTIX_SUPPORT | |
|   LUlist += "<TH > PASTIX LU";  LUcnt++; | |
|   LLTlist += "<TH > PASTIX LLT";  | |
|   LDLTlist += "<TH > PASTIX LDLT"; | |
| #endif | |
|    | |
|   out << "<TABLE border=\"1\" >\n "; | |
|   out << "<TR><TH>Matrix <TH> N <TH> NNZ <TH> "; | |
|   if (LUcnt) out << LUlist; | |
|   out << " <TH >BiCGSTAB <TH >BiCGSTAB+ILUT"<< "<TH >GMRES+ILUT" <<LDLTlist << LLTlist <<  "<TH> CG "<< std::endl; | |
| } | |
| 
 | |
| 
 | |
| template<typename Solver, typename Scalar> | |
| Stats call_solver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) | |
| { | |
|   Stats stat;  | |
|   Matrix<Scalar, Dynamic, 1> x;  | |
|   BenchTimer timer;  | |
|   timer.reset(); | |
|   timer.start(); | |
|   solver.compute(A);  | |
|   if (solver.info() != Success) | |
|   { | |
|     stat.info = NumericalIssue; | |
|     std::cerr << "Solver failed ... \n"; | |
|     return stat; | |
|   } | |
|   timer.stop();  | |
|   stat.compute_time = timer.value(); | |
|    | |
|   timer.reset(); | |
|   timer.start(); | |
|   x = solver.solve(b);  | |
|   if (solver.info() == NumericalIssue) | |
|   { | |
|     stat.info = NumericalIssue; | |
|     std::cerr << "Solver failed ... \n"; | |
|     return stat; | |
|   } | |
|    | |
|   timer.stop(); | |
|   stat.solve_time = timer.value(); | |
|   stat.total_time = stat.solve_time + stat.compute_time; | |
|   stat.memory_used = 0;  | |
|   // Verify the relative error | |
|   if(refX.size() != 0) | |
|     stat.rel_error = (refX - x).norm()/refX.norm(); | |
|   else  | |
|   { | |
|     // Compute the relative residual norm | |
|     Matrix<Scalar, Dynamic, 1> temp;  | |
|     temp = A * x;  | |
|     stat.rel_error = (b-temp).norm()/b.norm(); | |
|   } | |
|   if ( stat.rel_error > RelErr ) | |
|   { | |
|     stat.info = NoConvergence;  | |
|     return stat; | |
|   } | |
|   else  | |
|   { | |
|     stat.info = Success; | |
|     return stat;  | |
|   } | |
| } | |
| 
 | |
| template<typename Solver, typename Scalar> | |
| Stats call_directsolver(Solver& solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) | |
| { | |
|     Stats stat; | |
|     stat = call_solver(solver, A, b, refX); | |
|     return stat; | |
| } | |
| 
 | |
| template<typename Solver, typename Scalar> | |
| Stats call_itersolver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX) | |
| { | |
|   Stats stat; | |
|   solver.setTolerance(RelErr);  | |
|   solver.setMaxIterations(MaximumIters); | |
|    | |
|   stat = call_solver(solver, A, b, refX);  | |
|   stat.iterations = solver.iterations(); | |
|   return stat;  | |
| } | |
| 
 | |
| inline void printStatItem(Stats *stat, int solver_id, int& best_time_id, double& best_time_val) | |
| { | |
|   stat[solver_id].isavail = 1;   | |
|    | |
|   if (stat[solver_id].info == NumericalIssue) | |
|   { | |
|     cout << " SOLVER FAILED ... Probably a numerical issue \n"; | |
|     return; | |
|   } | |
|   if (stat[solver_id].info == NoConvergence){ | |
|     cout << "REL. ERROR " <<  stat[solver_id].rel_error; | |
|     if(stat[solver_id].isIterative == 1) | |
|       cout << " (" << stat[solver_id].iterations << ") \n";  | |
|     return; | |
|   } | |
|    | |
|   // Record the best CPU time  | |
|   if (!best_time_val)  | |
|   { | |
|     best_time_val = stat[solver_id].total_time; | |
|     best_time_id = solver_id; | |
|   } | |
|   else if (stat[solver_id].total_time < best_time_val) | |
|   { | |
|     best_time_val = stat[solver_id].total_time; | |
|     best_time_id = solver_id;  | |
|   } | |
|   // Print statistics to standard output | |
|   if (stat[solver_id].info == Success){ | |
|     cout<< "COMPUTE TIME : " << stat[solver_id].compute_time<< " \n"; | |
|     cout<< "SOLVE TIME : " << stat[solver_id].solve_time<< " \n"; | |
|     cout<< "TOTAL TIME : " << stat[solver_id].total_time<< " \n"; | |
|     cout << "REL. ERROR : " << stat[solver_id].rel_error ; | |
|     if(stat[solver_id].isIterative == 1) { | |
|       cout << " (" << stat[solver_id].iterations << ") "; | |
|     } | |
|     cout << std::endl; | |
|   } | |
|      | |
| } | |
| 
 | |
| 
 | |
| /* Print the results from all solvers corresponding to a particular matrix  | |
|  * The best CPU time is printed in bold | |
|  */ | |
| inline void printHtmlStatLine(Stats *stat, int best_time_id, string& statline) | |
| { | |
|    | |
|   string markup; | |
|   ostringstream compute,solve,total,error; | |
|   for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)  | |
|   { | |
|     if (stat[i].isavail == 0) continue; | |
|     if(i == best_time_id) | |
|       markup = "<TD style=\"background-color:red\">"; | |
|     else | |
|       markup = "<TD>"; | |
|      | |
|     if (stat[i].info == Success){ | |
|       compute << markup << stat[i].compute_time; | |
|       solve << markup << stat[i].solve_time; | |
|       total << markup << stat[i].total_time;  | |
|       error << " <TD> " << stat[i].rel_error; | |
|       if(stat[i].isIterative == 1) { | |
|         error << " (" << stat[i].iterations << ") "; | |
|       } | |
|     } | |
|     else { | |
|       compute << " <TD> -" ; | |
|       solve << " <TD> -" ; | |
|       total << " <TD> -" ; | |
|       if(stat[i].info == NoConvergence){ | |
|         error << " <TD> "<< stat[i].rel_error ; | |
|         if(stat[i].isIterative == 1) | |
|           error << " (" << stat[i].iterations << ") ";  | |
|       } | |
|       else    error << " <TD> - "; | |
|     } | |
|   } | |
|    | |
|   statline = "<TH>Compute Time " + compute.str() + "\n"  | |
|                         +  "<TR><TH>Solve Time " + solve.str() + "\n"  | |
|                         +  "<TR><TH>Total Time " + total.str() + "\n"  | |
|                         +"<TR><TH>Error(Iter)" + error.str() + "\n";  | |
|    | |
| } | |
| 
 | |
| template <typename Scalar> | |
| int SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, Stats *stat) | |
| { | |
|   typedef SparseMatrix<Scalar, ColMajor> SpMat;  | |
|   // First, deal with Nonsymmetric and symmetric matrices | |
|   int best_time_id = 0;  | |
|   double best_time_val = 0.0; | |
|   //UMFPACK | |
|   #ifdef EIGEN_UMFPACK_SUPPORT | |
|   { | |
|     cout << "Solving with UMFPACK LU ... \n";  | |
|     UmfPackLU<SpMat> solver;  | |
|     stat[EIGEN_UMFPACK] = call_directsolver(solver, A, b, refX);  | |
|     printStatItem(stat, EIGEN_UMFPACK, best_time_id, best_time_val);  | |
|   } | |
|   #endif | |
|     //SuperLU | |
|   #ifdef EIGEN_SUPERLU_SUPPORT | |
|   { | |
|     cout << "\nSolving with SUPERLU ... \n";  | |
|     SuperLU<SpMat> solver; | |
|     stat[EIGEN_SUPERLU] = call_directsolver(solver, A, b, refX);  | |
|     printStatItem(stat, EIGEN_SUPERLU, best_time_id, best_time_val);  | |
|   } | |
|   #endif | |
|      | |
|    // PaStix LU | |
|   #ifdef EIGEN_PASTIX_SUPPORT | |
|   { | |
|     cout << "\nSolving with PASTIX LU ... \n";  | |
|     PastixLU<SpMat> solver;  | |
|     stat[EIGEN_PASTIX] = call_directsolver(solver, A, b, refX) ; | |
|     printStatItem(stat, EIGEN_PASTIX, best_time_id, best_time_val);  | |
|   } | |
|   #endif | |
|  | |
|    //PARDISO LU | |
|   #ifdef EIGEN_PARDISO_SUPPORT | |
|   { | |
|     cout << "\nSolving with PARDISO LU ... \n";  | |
|     PardisoLU<SpMat>  solver;  | |
|     stat[EIGEN_PARDISO] = call_directsolver(solver, A, b, refX); | |
|     printStatItem(stat, EIGEN_PARDISO, best_time_id, best_time_val);  | |
|   } | |
|   #endif | |
|  | |
| 
 | |
|    | |
|   //BiCGSTAB | |
|   { | |
|     cout << "\nSolving with BiCGSTAB ... \n";  | |
|     BiCGSTAB<SpMat> solver;  | |
|     stat[EIGEN_BICGSTAB] = call_itersolver(solver, A, b, refX); | |
|     stat[EIGEN_BICGSTAB].isIterative = 1; | |
|     printStatItem(stat, EIGEN_BICGSTAB, best_time_id, best_time_val);  | |
|   } | |
|   //BiCGSTAB+ILUT | |
|   { | |
|     cout << "\nSolving with BiCGSTAB and ILUT ... \n";  | |
|     BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver;  | |
|     stat[EIGEN_BICGSTAB_ILUT] = call_itersolver(solver, A, b, refX); | |
|     stat[EIGEN_BICGSTAB_ILUT].isIterative = 1; | |
|     printStatItem(stat, EIGEN_BICGSTAB_ILUT, best_time_id, best_time_val);  | |
|   } | |
|    | |
|     | |
|   //GMRES | |
| //   { | |
| //     cout << "\nSolving with GMRES ... \n";  | |
| //     GMRES<SpMat> solver;  | |
| //     stat[EIGEN_GMRES] = call_itersolver(solver, A, b, refX); | |
| //     stat[EIGEN_GMRES].isIterative = 1; | |
| //     printStatItem(stat, EIGEN_GMRES, best_time_id, best_time_val);  | |
| //   } | |
|   //GMRES+ILUT | |
|   { | |
|     cout << "\nSolving with GMRES and ILUT ... \n";  | |
|     GMRES<SpMat, IncompleteLUT<Scalar> > solver;  | |
|     stat[EIGEN_GMRES_ILUT] = call_itersolver(solver, A, b, refX); | |
|     stat[EIGEN_GMRES_ILUT].isIterative = 1; | |
|     printStatItem(stat, EIGEN_GMRES_ILUT, best_time_id, best_time_val);  | |
|   } | |
|    | |
|   // Hermitian and not necessarily positive-definites | |
|   if (sym != NonSymmetric) | |
|   { | |
|     // Internal Cholesky | |
|     { | |
|       cout << "\nSolving with Simplicial LDLT ... \n";  | |
|       SimplicialLDLT<SpMat, Lower> solver; | |
|       stat[EIGEN_SIMPLICIAL_LDLT] = call_directsolver(solver, A, b, refX);  | |
|       printStatItem(stat, EIGEN_SIMPLICIAL_LDLT, best_time_id, best_time_val);  | |
|     } | |
|      | |
|     // CHOLMOD | |
|     #ifdef EIGEN_CHOLMOD_SUPPORT | |
|     { | |
|       cout << "\nSolving with CHOLMOD LDLT ... \n";  | |
|       CholmodDecomposition<SpMat, Lower> solver; | |
|       solver.setMode(CholmodLDLt); | |
|       stat[EIGEN_CHOLMOD_LDLT] =  call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_CHOLMOD_LDLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|      | |
|     //PASTIX LLT | |
|     #ifdef EIGEN_PASTIX_SUPPORT | |
|     { | |
|       cout << "\nSolving with PASTIX LDLT ... \n";  | |
|       PastixLDLT<SpMat, Lower> solver;  | |
|       stat[EIGEN_PASTIX_LDLT] = call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_PASTIX_LDLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|      | |
|     //PARDISO LLT | |
|     #ifdef EIGEN_PARDISO_SUPPORT | |
|     { | |
|       cout << "\nSolving with PARDISO LDLT ... \n";  | |
|       PardisoLDLT<SpMat, Lower> solver;  | |
|       stat[EIGEN_PARDISO_LDLT] = call_directsolver(solver, A, b, refX);  | |
|       printStatItem(stat,EIGEN_PARDISO_LDLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|   } | |
| 
 | |
|    // Now, symmetric POSITIVE DEFINITE matrices | |
|   if (sym == SPD) | |
|   { | |
|      | |
|     //Internal Sparse Cholesky | |
|     { | |
|       cout << "\nSolving with SIMPLICIAL LLT ... \n";  | |
|       SimplicialLLT<SpMat, Lower> solver;  | |
|       stat[EIGEN_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);  | |
|       printStatItem(stat,EIGEN_SIMPLICIAL_LLT, best_time_id, best_time_val);  | |
|     } | |
|      | |
|     // CHOLMOD | |
|     #ifdef EIGEN_CHOLMOD_SUPPORT | |
|     { | |
|       // CholMOD SuperNodal LLT | |
|       cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n";  | |
|       CholmodDecomposition<SpMat, Lower> solver; | |
|       solver.setMode(CholmodSupernodalLLt); | |
|       stat[EIGEN_CHOLMOD_SUPERNODAL_LLT] = call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_CHOLMOD_SUPERNODAL_LLT, best_time_id, best_time_val);  | |
|       // CholMod Simplicial LLT | |
|       cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n";  | |
|       solver.setMode(CholmodSimplicialLLt); | |
|       stat[EIGEN_CHOLMOD_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_CHOLMOD_SIMPLICIAL_LLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|      | |
|     //PASTIX LLT | |
|     #ifdef EIGEN_PASTIX_SUPPORT | |
|     { | |
|       cout << "\nSolving with PASTIX LLT ... \n";  | |
|       PastixLLT<SpMat, Lower> solver;  | |
|       stat[EIGEN_PASTIX_LLT] =  call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_PASTIX_LLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|      | |
|     //PARDISO LLT | |
|     #ifdef EIGEN_PARDISO_SUPPORT | |
|     { | |
|       cout << "\nSolving with PARDISO LLT ... \n";  | |
|       PardisoLLT<SpMat, Lower> solver;  | |
|       stat[EIGEN_PARDISO_LLT] = call_directsolver(solver, A, b, refX); | |
|       printStatItem(stat,EIGEN_PARDISO_LLT, best_time_id, best_time_val);  | |
|     } | |
|     #endif | |
|      | |
|     // Internal CG | |
|     { | |
|       cout << "\nSolving with CG ... \n";  | |
|       ConjugateGradient<SpMat, Lower> solver;  | |
|       stat[EIGEN_CG] = call_itersolver(solver, A, b, refX); | |
|       stat[EIGEN_CG].isIterative = 1; | |
|       printStatItem(stat,EIGEN_CG, best_time_id, best_time_val);  | |
|     } | |
|     //CG+IdentityPreconditioner | |
| //     { | |
| //       cout << "\nSolving with CG and IdentityPreconditioner ... \n";  | |
| //       ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver;  | |
| //       stat[EIGEN_CG_PRECOND] = call_itersolver(solver, A, b, refX); | |
| //       stat[EIGEN_CG_PRECOND].isIterative = 1; | |
| //       printStatItem(stat,EIGEN_CG_PRECOND, best_time_id, best_time_val);  | |
| //     } | |
|   } // End SPD matrices  | |
|    | |
|   return best_time_id; | |
| } | |
| 
 | |
| /* Browse all the matrices available in the specified folder  | |
|  * and solve the associated linear system. | |
|  * The results of each solve are printed in the standard output | |
|  * and optionally in the provided html file | |
|  */ | |
| template <typename Scalar> | |
| void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol) | |
| { | |
|   MaximumIters = maxiters; // Maximum number of iterations, global variable  | |
|   RelErr = tol;  //Relative residual error  as stopping criterion for iterative solvers | |
|   MatrixMarketIterator<Scalar> it(folder); | |
|   Stats stat[EIGEN_ALL_SOLVERS]; | |
|   for ( ; it; ++it) | |
|   {     | |
|     for (int i = 0; i < EIGEN_ALL_SOLVERS; i++) | |
|     { | |
|       stat[i].isavail = 0; | |
|       stat[i].isIterative = 0; | |
|     } | |
|      | |
|     int best_time_id; | |
|     cout<< "\n\n===================================================== \n"; | |
|     cout<< " ======  SOLVING WITH MATRIX " << it.matname() << " ====\n"; | |
|     cout<< " =================================================== \n\n"; | |
|     Matrix<Scalar, Dynamic, 1> refX; | |
|     if(it.hasrefX()) refX = it.refX(); | |
|     best_time_id = SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, &stat[0]); | |
|      | |
|     if(statFileExists) | |
|     { | |
|       string statline; | |
|       printHtmlStatLine(&stat[0], best_time_id, statline);  | |
|       std::ofstream statbuf(statFile.c_str(), std::ios::app); | |
|       statbuf << "<TR><TH rowspan=\"4\">" << it.matname() << " <TD rowspan=\"4\"> " | |
|       << it.matrix().rows() << " <TD rowspan=\"4\"> " << it.matrix().nonZeros()<< " "<< statline ; | |
|       statbuf.close(); | |
|     } | |
|   }  | |
| }  | |
| 
 | |
| bool get_options(int argc, char **args, string option, string* value=0) | |
| { | |
|   int idx = 1, found=false;  | |
|   while (idx<argc && !found){ | |
|     if (option.compare(args[idx]) == 0){ | |
|       found = true;  | |
|       if(value) *value = args[idx+1]; | |
|     } | |
|     idx+=2; | |
|   } | |
|   return found;  | |
| }
 |