You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							62 lines
						
					
					
						
							2.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							62 lines
						
					
					
						
							2.1 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <unsupported/Eigen/MatrixFunctions>
							 | 
						|
								
							 | 
						|
								template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
							 | 
						|
								struct generateTestMatrix;
							 | 
						|
								
							 | 
						|
								// for real matrices, make sure none of the eigenvalues are negative
							 | 
						|
								template <typename MatrixType>
							 | 
						|
								struct generateTestMatrix<MatrixType,0>
							 | 
						|
								{
							 | 
						|
								  static void run(MatrixType& result, typename MatrixType::Index size)
							 | 
						|
								  {
							 | 
						|
								    MatrixType mat = MatrixType::Random(size, size);
							 | 
						|
								    EigenSolver<MatrixType> es(mat);
							 | 
						|
								    typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
							 | 
						|
								    for (typename MatrixType::Index i = 0; i < size; ++i) {
							 | 
						|
								      if (eivals(i).imag() == 0 && eivals(i).real() < 0)
							 | 
						|
									eivals(i) = -eivals(i);
							 | 
						|
								    }
							 | 
						|
								    result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// for complex matrices, any matrix is fine
							 | 
						|
								template <typename MatrixType>
							 | 
						|
								struct generateTestMatrix<MatrixType,1>
							 | 
						|
								{
							 | 
						|
								  static void run(MatrixType& result, typename MatrixType::Index size)
							 | 
						|
								  {
							 | 
						|
								    result = MatrixType::Random(size, size);
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void testMatrixSqrt(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  MatrixType A;
							 | 
						|
								  generateTestMatrix<MatrixType>::run(A, m.rows());
							 | 
						|
								  MatrixType sqrtA = A.sqrt();
							 | 
						|
								  VERIFY_IS_APPROX(sqrtA * sqrtA, A);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_matrix_square_root()
							 | 
						|
								{
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf()));
							 | 
						|
								    CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12)));
							 | 
						|
								    CALL_SUBTEST_3(testMatrixSqrt(Matrix4f()));
							 | 
						|
								    CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9)));
							 | 
						|
								    CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>()));
							 | 
						|
								    CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>()));
							 | 
						|
								  }
							 | 
						|
								}
							 |