You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							222 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							222 lines
						
					
					
						
							7.0 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/StdVector>
							 | 
						|
								#include <Eigen/Geometry>
							 | 
						|
								#include <unsupported/Eigen/BVH>
							 | 
						|
								
							 | 
						|
								namespace Eigen {
							 | 
						|
								
							 | 
						|
								template<typename Scalar, int Dim> AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) { return AlignedBox<Scalar, Dim>(v); }
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<int Dim>
							 | 
						|
								struct Ball
							 | 
						|
								{
							 | 
						|
								EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
							 | 
						|
								
							 | 
						|
								  typedef Matrix<double, Dim, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  Ball() {}
							 | 
						|
								  Ball(const VectorType &c, double r) : center(c), radius(r) {}
							 | 
						|
								
							 | 
						|
								  VectorType center;
							 | 
						|
								  double radius;
							 | 
						|
								};
							 | 
						|
								template<int Dim> AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b)
							 | 
						|
								{ return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); }
							 | 
						|
								
							 | 
						|
								inline double SQR(double x) { return x * x; }
							 | 
						|
								
							 | 
						|
								template<int Dim>
							 | 
						|
								struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees
							 | 
						|
								{
							 | 
						|
								  typedef double Scalar;
							 | 
						|
								  typedef Matrix<double, Dim, 1> VectorType;
							 | 
						|
								  typedef Ball<Dim> BallType;
							 | 
						|
								  typedef AlignedBox<double, Dim> BoxType;
							 | 
						|
								
							 | 
						|
								  BallPointStuff() : calls(0), count(0) {}
							 | 
						|
								  BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); }
							 | 
						|
								  bool intersectObject(const BallType &b) {
							 | 
						|
								    ++calls;
							 | 
						|
								    if((b.center - p).squaredNorm() < SQR(b.radius))
							 | 
						|
								      ++count;
							 | 
						|
								    return false; //continue
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); }
							 | 
						|
								  bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
							 | 
						|
								  bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
							 | 
						|
								  bool intersectObjectObject(const BallType &b1, const BallType &b2){
							 | 
						|
								    ++calls;
							 | 
						|
								    if((b1.center - b2.center).norm() < b1.radius + b2.radius)
							 | 
						|
								      ++count;
							 | 
						|
								    return false;
							 | 
						|
								  }
							 | 
						|
								  bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); }
							 | 
						|
								  bool intersectObjectObject(const BallType &b, const VectorType &v){
							 | 
						|
								    ++calls;
							 | 
						|
								    if((b.center - v).squaredNorm() < SQR(b.radius))
							 | 
						|
								      ++count;
							 | 
						|
								    return false;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); }
							 | 
						|
								  double minimumOnObject(const BallType &b) { ++calls; return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
							 | 
						|
								  double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); }
							 | 
						|
								  double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); }
							 | 
						|
								  double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); }
							 | 
						|
								  double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); }
							 | 
						|
								  double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); }
							 | 
						|
								  double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR((std::max)(0., (b.center - v).norm() - b.radius)); }
							 | 
						|
								
							 | 
						|
								  VectorType p;
							 | 
						|
								  int calls;
							 | 
						|
								  int count;
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<int Dim>
							 | 
						|
								struct TreeTest
							 | 
						|
								{
							 | 
						|
								  typedef Matrix<double, Dim, 1> VectorType;
							 | 
						|
								  typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList;
							 | 
						|
								  typedef Ball<Dim> BallType;
							 | 
						|
								  typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList;
							 | 
						|
								  typedef AlignedBox<double, Dim> BoxType;
							 | 
						|
								
							 | 
						|
								  void testIntersect1()
							 | 
						|
								  {
							 | 
						|
								    BallTypeList b;
							 | 
						|
								    for(int i = 0; i < 500; ++i) {
							 | 
						|
								        b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
							 | 
						|
								    }
							 | 
						|
								    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
							 | 
						|
								
							 | 
						|
								    VectorType pt = VectorType::Random();
							 | 
						|
								    BallPointStuff<Dim> i1(pt), i2(pt);
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < (int)b.size(); ++i)
							 | 
						|
								      i1.intersectObject(b[i]);
							 | 
						|
								
							 | 
						|
								    BVIntersect(tree, i2);
							 | 
						|
								
							 | 
						|
								    VERIFY(i1.count == i2.count);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  void testMinimize1()
							 | 
						|
								  {
							 | 
						|
								    BallTypeList b;
							 | 
						|
								    for(int i = 0; i < 500; ++i) {
							 | 
						|
								        b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.)));
							 | 
						|
								    }
							 | 
						|
								    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
							 | 
						|
								
							 | 
						|
								    VectorType pt = VectorType::Random();
							 | 
						|
								    BallPointStuff<Dim> i1(pt), i2(pt);
							 | 
						|
								
							 | 
						|
								    double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < (int)b.size(); ++i)
							 | 
						|
								      m1 = (std::min)(m1, i1.minimumOnObject(b[i]));
							 | 
						|
								
							 | 
						|
								    m2 = BVMinimize(tree, i2);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1, m2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  void testIntersect2()
							 | 
						|
								  {
							 | 
						|
								    BallTypeList b;
							 | 
						|
								    VectorTypeList v;
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < 50; ++i) {
							 | 
						|
								        b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
							 | 
						|
								        for(int j = 0; j < 3; ++j)
							 | 
						|
								            v.push_back(VectorType::Random());
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
							 | 
						|
								    KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
							 | 
						|
								
							 | 
						|
								    BallPointStuff<Dim> i1, i2;
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < (int)b.size(); ++i)
							 | 
						|
								        for(int j = 0; j < (int)v.size(); ++j)
							 | 
						|
								            i1.intersectObjectObject(b[i], v[j]);
							 | 
						|
								
							 | 
						|
								    BVIntersect(tree, vTree, i2);
							 | 
						|
								
							 | 
						|
								    VERIFY(i1.count == i2.count);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  void testMinimize2()
							 | 
						|
								  {
							 | 
						|
								    BallTypeList b;
							 | 
						|
								    VectorTypeList v;
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < 50; ++i) {
							 | 
						|
								        b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.)));
							 | 
						|
								        for(int j = 0; j < 3; ++j)
							 | 
						|
								            v.push_back(VectorType::Random());
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
							 | 
						|
								    KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
							 | 
						|
								
							 | 
						|
								    BallPointStuff<Dim> i1, i2;
							 | 
						|
								
							 | 
						|
								    double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
							 | 
						|
								
							 | 
						|
								    for(int i = 0; i < (int)b.size(); ++i)
							 | 
						|
								        for(int j = 0; j < (int)v.size(); ++j)
							 | 
						|
								            m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j]));
							 | 
						|
								
							 | 
						|
								    m2 = BVMinimize(tree, vTree, i2);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1, m2);
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								void test_BVH()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								#ifdef EIGEN_TEST_PART_1
							 | 
						|
								    TreeTest<2> test2;
							 | 
						|
								    CALL_SUBTEST(test2.testIntersect1());
							 | 
						|
								    CALL_SUBTEST(test2.testMinimize1());
							 | 
						|
								    CALL_SUBTEST(test2.testIntersect2());
							 | 
						|
								    CALL_SUBTEST(test2.testMinimize2());
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_TEST_PART_2
							 | 
						|
								    TreeTest<3> test3;
							 | 
						|
								    CALL_SUBTEST(test3.testIntersect1());
							 | 
						|
								    CALL_SUBTEST(test3.testMinimize1());
							 | 
						|
								    CALL_SUBTEST(test3.testIntersect2());
							 | 
						|
								    CALL_SUBTEST(test3.testMinimize2());
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_TEST_PART_3
							 | 
						|
								    TreeTest<4> test4;
							 | 
						|
								    CALL_SUBTEST(test4.testIntersect1());
							 | 
						|
								    CALL_SUBTEST(test4.testMinimize1());
							 | 
						|
								    CALL_SUBTEST(test4.testIntersect2());
							 | 
						|
								    CALL_SUBTEST(test4.testMinimize2());
							 | 
						|
								#endif
							 | 
						|
								  }
							 | 
						|
								}
							 |