You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							487 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							487 lines
						
					
					
						
							17 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <Eigen/Geometry> | |
| #include <Eigen/LU> | |
| #include <Eigen/SVD> | |
|  | |
| template<typename Scalar, int Mode, int Options> void non_projective_only() | |
| { | |
|     /* this test covers the following files: | |
|      Cross.h Quaternion.h, Transform.cpp | |
|   */ | |
|   typedef Matrix<Scalar,2,2> Matrix2; | |
|   typedef Matrix<Scalar,3,3> Matrix3; | |
|   typedef Matrix<Scalar,4,4> Matrix4; | |
|   typedef Matrix<Scalar,2,1> Vector2; | |
|   typedef Matrix<Scalar,3,1> Vector3; | |
|   typedef Matrix<Scalar,4,1> Vector4; | |
|   typedef Quaternion<Scalar> Quaternionx; | |
|   typedef AngleAxis<Scalar> AngleAxisx; | |
|   typedef Transform<Scalar,2,Mode,Options> Transform2; | |
|   typedef Transform<Scalar,3,Mode,Options> Transform3; | |
|   typedef Transform<Scalar,2,Isometry,Options> Isometry2; | |
|   typedef Transform<Scalar,3,Isometry,Options> Isometry3; | |
|   typedef typename Transform3::MatrixType MatrixType; | |
|   typedef DiagonalMatrix<Scalar,2> AlignedScaling2; | |
|   typedef DiagonalMatrix<Scalar,3> AlignedScaling3; | |
|   typedef Translation<Scalar,2> Translation2; | |
|   typedef Translation<Scalar,3> Translation3; | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), | |
|           v1 = Vector3::Random(); | |
| 
 | |
|   Transform3 t0, t1, t2; | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
| 
 | |
|   Quaternionx q1, q2; | |
| 
 | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
| 
 | |
|   t0 = Transform3::Identity(); | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | |
| 
 | |
|   t0.linear() = q1.toRotationMatrix(); | |
| 
 | |
|   v0 << 50, 2, 1; | |
|   t0.scale(v0); | |
| 
 | |
|   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x()); | |
| 
 | |
|   t0.setIdentity(); | |
|   t1.setIdentity(); | |
|   v1 << 1, 2, 3; | |
|   t0.linear() = q1.toRotationMatrix(); | |
|   t0.pretranslate(v0); | |
|   t0.scale(v1); | |
|   t1.linear() = q1.conjugate().toRotationMatrix(); | |
|   t1.prescale(v1.cwiseInverse()); | |
|   t1.translate(-v0); | |
| 
 | |
|   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1); | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | |
|   VERIFY_IS_APPROX(t1*v1, t0*v1); | |
| 
 | |
|   // translation * vector | |
|   t0.setIdentity(); | |
|   t0.translate(v0); | |
|   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | |
| 
 | |
|   // AlignedScaling * vector | |
|   t0.setIdentity(); | |
|   t0.scale(v0); | |
|   VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); | |
| } | |
| 
 | |
| template<typename Scalar, int Mode, int Options> void transformations() | |
| { | |
|   /* this test covers the following files: | |
|      Cross.h Quaternion.h, Transform.cpp | |
|   */ | |
|   typedef Matrix<Scalar,2,2> Matrix2; | |
|   typedef Matrix<Scalar,3,3> Matrix3; | |
|   typedef Matrix<Scalar,4,4> Matrix4; | |
|   typedef Matrix<Scalar,2,1> Vector2; | |
|   typedef Matrix<Scalar,3,1> Vector3; | |
|   typedef Matrix<Scalar,4,1> Vector4; | |
|   typedef Quaternion<Scalar> Quaternionx; | |
|   typedef AngleAxis<Scalar> AngleAxisx; | |
|   typedef Transform<Scalar,2,Mode,Options> Transform2; | |
|   typedef Transform<Scalar,3,Mode,Options> Transform3; | |
|   typedef Transform<Scalar,2,Isometry,Options> Isometry2; | |
|   typedef Transform<Scalar,3,Isometry,Options> Isometry3; | |
|   typedef typename Transform3::MatrixType MatrixType; | |
|   typedef DiagonalMatrix<Scalar,2> AlignedScaling2; | |
|   typedef DiagonalMatrix<Scalar,3> AlignedScaling3; | |
|   typedef Translation<Scalar,2> Translation2; | |
|   typedef Translation<Scalar,3> Translation3; | |
| 
 | |
|   Vector3 v0 = Vector3::Random(), | |
|           v1 = Vector3::Random(); | |
|   Matrix3 matrot1, m; | |
| 
 | |
|   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
|   Scalar s0 = internal::random<Scalar>(); | |
| 
 | |
|   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); | |
|   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); | |
|   VERIFY_IS_APPROX(internal::cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); | |
|   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); | |
|   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); | |
| 
 | |
|   Quaternionx q1, q2; | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   q2 = AngleAxisx(a, v1.normalized()); | |
| 
 | |
|   // rotation matrix conversion | |
|   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) | |
|           * AngleAxisx(Scalar(0.2), Vector3::UnitY()) | |
|           * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); | |
|   VERIFY_IS_APPROX(matrot1 * v1, | |
|        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() | |
|     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() | |
|     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); | |
| 
 | |
|   // angle-axis conversion | |
|   AngleAxisx aa = AngleAxisx(q1); | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | |
|   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | |
| 
 | |
|   aa.fromRotationMatrix(aa.toRotationMatrix()); | |
|   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | |
|   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); | |
| 
 | |
|   // AngleAxis | |
|   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), | |
|     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); | |
| 
 | |
|   AngleAxisx aa1; | |
|   m = q1.toRotationMatrix(); | |
|   aa1 = m; | |
|   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), | |
|     Quaternionx(m).toRotationMatrix()); | |
| 
 | |
|   // Transform | |
|   // TODO complete the tests ! | |
|   a = 0; | |
|   while (internal::abs(a)<Scalar(0.1)) | |
|     a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); | |
|   q1 = AngleAxisx(a, v0.normalized()); | |
|   Transform3 t0, t1, t2; | |
| 
 | |
|   // first test setIdentity() and Identity() | |
|   t0.setIdentity(); | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | |
|   t0.matrix().setZero(); | |
|   t0 = Transform3::Identity(); | |
|   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | |
| 
 | |
|   t0.setIdentity(); | |
|   t1.setIdentity(); | |
|   v1 << 1, 2, 3; | |
|   t0.linear() = q1.toRotationMatrix(); | |
|   t0.pretranslate(v0); | |
|   t0.scale(v1); | |
|   t1.linear() = q1.conjugate().toRotationMatrix(); | |
|   t1.prescale(v1.cwiseInverse()); | |
|   t1.translate(-v0); | |
| 
 | |
|   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | |
| 
 | |
|   t1.fromPositionOrientationScale(v0, q1, v1); | |
|   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | |
| 
 | |
|   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); | |
|   t1.setIdentity(); t1.scale(v0).rotate(q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); | |
|   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); | |
| 
 | |
|   // More transform constructors, operator=, operator*= | |
|  | |
|   Matrix3 mat3 = Matrix3::Random(); | |
|   Matrix4 mat4; | |
|   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); | |
|   Transform3 tmat3(mat3), tmat4(mat4); | |
|   if(Mode!=int(AffineCompact)) | |
|     tmat4.matrix()(3,3) = Scalar(1); | |
|   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); | |
| 
 | |
|   Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); | |
|   Vector3 v3 = Vector3::Random().normalized(); | |
|   AngleAxisx aa3(a3, v3); | |
|   Transform3 t3(aa3); | |
|   Transform3 t4; | |
|   t4 = aa3; | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | |
|   t4.rotate(AngleAxisx(-a3,v3)); | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | |
|   t4 *= aa3; | |
|   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | |
| 
 | |
|   v3 = Vector3::Random(); | |
|   Translation3 tv3(v3); | |
|   Transform3 t5(tv3); | |
|   t4 = tv3; | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | |
|   t4.translate(-v3); | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | |
|   t4 *= tv3; | |
|   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | |
| 
 | |
|   AlignedScaling3 sv3(v3); | |
|   Transform3 t6(sv3); | |
|   t4 = sv3; | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | |
|   t4.scale(v3.cwiseInverse()); | |
|   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | |
|   t4 *= sv3; | |
|   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | |
| 
 | |
|   // matrix * transform | |
|   VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix()); | |
| 
 | |
|   // chained Transform product | |
|   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); | |
| 
 | |
|   // check that Transform product doesn't have aliasing problems | |
|   t5 = t4; | |
|   t5 = t5*t5; | |
|   VERIFY_IS_APPROX(t5, t4*t4); | |
| 
 | |
|   // 2D transformation | |
|   Transform2 t20, t21; | |
|   Vector2 v20 = Vector2::Random(); | |
|   Vector2 v21 = Vector2::Random(); | |
|   for (int k=0; k<2; ++k) | |
|     if (internal::abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); | |
|   t21.setIdentity(); | |
|   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); | |
|   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), | |
|     t21.pretranslate(v20).scale(v21).matrix()); | |
| 
 | |
|   t21.setIdentity(); | |
|   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); | |
|   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) | |
|         * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); | |
| 
 | |
|   // Transform - new API | |
|   // 3D | |
|   t0.setIdentity(); | |
|   t0.rotate(q1).scale(v0).translate(v0); | |
|   // mat * aligned scaling and mat * translation | |
|   t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // mat * transformation and aligned scaling * translation | |
|   t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
| 
 | |
|   t0.setIdentity(); | |
|   t0.scale(s0).translate(v0); | |
|   t1 = Eigen::Scaling(s0) * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   t0.prescale(s0); | |
|   t1 = Eigen::Scaling(s0) * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|    | |
|   t0 = t3; | |
|   t0.scale(s0); | |
|   t1 = t3 * Eigen::Scaling(s0,s0,s0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   t0.prescale(s0); | |
|   t1 = Eigen::Scaling(s0,s0,s0) * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
| 
 | |
|   t0.setIdentity(); | |
|   t0.prerotate(q1).prescale(v0).pretranslate(v0); | |
|   // translation * aligned scaling and transformation * mat | |
|   t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // scaling * mat and translation * mat | |
|   t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   t0.setIdentity(); | |
|   t0.scale(v0).translate(v0).rotate(q1); | |
|   // translation * mat and aligned scaling * transformation | |
|   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // transformation * aligned scaling | |
|   t0.scale(v0); | |
|   t1 *= AlignedScaling3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // transformation * translation | |
|   t0.translate(v0); | |
|   t1 = t1 * Translation3(v0); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
|   // translation * transformation | |
|   t0.pretranslate(v0); | |
|   t1 = Translation3(v0) * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // transform * quaternion | |
|   t0.rotate(q1); | |
|   t1 = t1 * q1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // translation * quaternion | |
|   t0.translate(v1).rotate(q1); | |
|   t1 = t1 * (Translation3(v1) * q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // aligned scaling * quaternion | |
|   t0.scale(v1).rotate(q1); | |
|   t1 = t1 * (AlignedScaling3(v1) * q1); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * transform | |
|   t0.prerotate(q1); | |
|   t1 = q1 * t1; | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * translation | |
|   t0.rotate(q1).translate(v1); | |
|   t1 = t1 * (q1 * Translation3(v1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // quaternion * aligned scaling | |
|   t0.rotate(q1).scale(v1); | |
|   t1 = t1 * (q1 * AlignedScaling3(v1)); | |
|   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | |
| 
 | |
|   // test transform inversion | |
|   t0.setIdentity(); | |
|   t0.translate(v0); | |
|   t0.linear().setRandom(); | |
|   Matrix4 t044 = Matrix4::Zero(); | |
|   t044(3,3) = 1; | |
|   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | |
|   VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | |
|   t0.setIdentity(); | |
|   t0.translate(v0).rotate(q1); | |
|   t044 = Matrix4::Zero(); | |
|   t044(3,3) = 1; | |
|   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); | |
|   VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); | |
| 
 | |
|   Matrix3 mat_rotation, mat_scaling; | |
|   t0.setIdentity(); | |
|   t0.translate(v0).rotate(q1).scale(v1); | |
|   t0.computeRotationScaling(&mat_rotation, &mat_scaling); | |
|   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); | |
|   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | |
|   t0.computeScalingRotation(&mat_scaling, &mat_rotation); | |
|   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); | |
|   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); | |
|   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | |
| 
 | |
|   // test casting | |
|   Transform<float,3,Mode> t1f = t1.template cast<float>(); | |
|   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); | |
|   Transform<double,3,Mode> t1d = t1.template cast<double>(); | |
|   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); | |
| 
 | |
|   Translation3 tr1(v0); | |
|   Translation<float,3> tr1f = tr1.template cast<float>(); | |
|   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); | |
|   Translation<double,3> tr1d = tr1.template cast<double>(); | |
|   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); | |
| 
 | |
|   AngleAxis<float> aa1f = aa1.template cast<float>(); | |
|   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); | |
|   AngleAxis<double> aa1d = aa1.template cast<double>(); | |
|   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); | |
| 
 | |
|   Rotation2D<Scalar> r2d1(internal::random<Scalar>()); | |
|   Rotation2D<float> r2d1f = r2d1.template cast<float>(); | |
|   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); | |
|   Rotation2D<double> r2d1d = r2d1.template cast<double>(); | |
|   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); | |
| 
 | |
|   t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Scaling(s0)); | |
|   t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Scaling(s0); | |
|   VERIFY_IS_APPROX(t20,t21); | |
| } | |
| 
 | |
| template<typename Scalar> void transform_alignment() | |
| { | |
|   typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a; | |
|   typedef Transform<Scalar,3,Projective,DontAlign> Projective3u; | |
| 
 | |
|   EIGEN_ALIGN16 Scalar array1[16]; | |
|   EIGEN_ALIGN16 Scalar array2[16]; | |
|   EIGEN_ALIGN16 Scalar array3[16+1]; | |
|   Scalar* array3u = array3+1; | |
| 
 | |
|   Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a; | |
|   Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u; | |
|   Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u; | |
|    | |
|   p1->matrix().setRandom(); | |
|   *p2 = *p1; | |
|   *p3 = *p1; | |
| 
 | |
|   VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); | |
|   VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); | |
|    | |
|   VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); | |
|    | |
|   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY | |
|   if(internal::packet_traits<Scalar>::Vectorizable) | |
|     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a)); | |
|   #endif | |
| } | |
| 
 | |
| template<typename Scalar, int Dim, int Options> void transform_products() | |
| { | |
|   typedef Matrix<Scalar,Dim+1,Dim+1> Mat; | |
|   typedef Transform<Scalar,Dim,Projective,Options> Proj; | |
|   typedef Transform<Scalar,Dim,Affine,Options> Aff; | |
|   typedef Transform<Scalar,Dim,AffineCompact,Options> AffC; | |
| 
 | |
|   Proj p; p.matrix().setRandom(); | |
|   Aff a; a.linear().setRandom(); a.translation().setRandom(); | |
|   AffC ac = a; | |
| 
 | |
|   Mat p_m(p.matrix()), a_m(a.matrix()); | |
| 
 | |
|   VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m); | |
|   VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m); | |
|   VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m); | |
|   VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m); | |
|   VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m); | |
|   VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m); | |
|   VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m); | |
|   VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m); | |
| } | |
| 
 | |
| void test_geo_transformations() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() )); | |
|     CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() )); | |
|      | |
|     CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() )); | |
|     CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() )); | |
|     CALL_SUBTEST_2(( transform_alignment<float>() )); | |
|      | |
|     CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() )); | |
|     CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() )); | |
|     CALL_SUBTEST_3(( transform_alignment<double>() )); | |
|      | |
|     CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() )); | |
|     CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() )); | |
|      | |
|     CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() )); | |
|     CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() )); | |
| 
 | |
|     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() )); | |
|     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() )); | |
| 
 | |
| 
 | |
|     CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() )); | |
|     CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() )); | |
|   } | |
| }
 |