You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							523 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							523 lines
						
					
					
						
							17 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								#include <Eigen/SparseCore>
							 | 
						|
								#include <sstream>
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
							 | 
						|
								void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::StorageIndex StorageIndex;
							 | 
						|
								
							 | 
						|
								  DenseRhs refX = dA.householderQr().solve(db);
							 | 
						|
								  {
							 | 
						|
								    Rhs x(A.cols(), b.cols());
							 | 
						|
								    Rhs oldb = b;
							 | 
						|
								
							 | 
						|
								    solver.compute(A);
							 | 
						|
								    if (solver.info() != Success)
							 | 
						|
								    {
							 | 
						|
								      std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
							 | 
						|
								      VERIFY(solver.info() == Success);
							 | 
						|
								    }
							 | 
						|
								    x = solver.solve(b);
							 | 
						|
								    if (solver.info() != Success)
							 | 
						|
								    {
							 | 
						|
								      std::cerr << "WARNING | sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n";
							 | 
						|
								      return;
							 | 
						|
								    }
							 | 
						|
								    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    
							 | 
						|
								    x.setZero();
							 | 
						|
								    // test the analyze/factorize API
							 | 
						|
								    solver.analyzePattern(A);
							 | 
						|
								    solver.factorize(A);
							 | 
						|
								    VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API");
							 | 
						|
								    x = solver.solve(b);
							 | 
						|
								    VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
							 | 
						|
								    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    
							 | 
						|
								    x.setZero();
							 | 
						|
								    // test with Map
							 | 
						|
								    MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr()));
							 | 
						|
								    solver.compute(Am);
							 | 
						|
								    VERIFY(solver.info() == Success && "factorization failed when using Map");
							 | 
						|
								    DenseRhs dx(refX);
							 | 
						|
								    dx.setZero();
							 | 
						|
								    Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols());
							 | 
						|
								    Map<const DenseRhs> bm(db.data(), db.rows(), db.cols());
							 | 
						|
								    xm = solver.solve(bm);
							 | 
						|
								    VERIFY(solver.info() == Success && "solving failed when using Map");
							 | 
						|
								    VERIFY(oldb.isApprox(bm) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								    VERIFY(xm.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // if not too large, do some extra check:
							 | 
						|
								  if(A.rows()<2000)
							 | 
						|
								  {
							 | 
						|
								    // test initialization ctor
							 | 
						|
								    {
							 | 
						|
								      Rhs x(b.rows(), b.cols());
							 | 
						|
								      Solver solver2(A);
							 | 
						|
								      VERIFY(solver2.info() == Success);
							 | 
						|
								      x = solver2.solve(b);
							 | 
						|
								      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test dense Block as the result and rhs:
							 | 
						|
								    {
							 | 
						|
								      DenseRhs x(refX.rows(), refX.cols());
							 | 
						|
								      DenseRhs oldb(db);
							 | 
						|
								      x.setZero();
							 | 
						|
								      x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
							 | 
						|
								      VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test uncompressed inputs
							 | 
						|
								    {
							 | 
						|
								      Mat A2 = A;
							 | 
						|
								      A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval());
							 | 
						|
								      solver.compute(A2);
							 | 
						|
								      Rhs x = solver.solve(b);
							 | 
						|
								      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // test expression as input
							 | 
						|
								    {
							 | 
						|
								      solver.compute(0.5*(A+A));
							 | 
						|
								      Rhs x = solver.solve(b);
							 | 
						|
								      VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								
							 | 
						|
								      Solver solver2(0.5*(A+A));
							 | 
						|
								      Rhs x2 = solver2.solve(b);
							 | 
						|
								      VERIFY(x2.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename Rhs>
							 | 
						|
								void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const typename Solver::MatrixType& fullA, const Rhs& refX)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::RealScalar RealScalar;
							 | 
						|
								  
							 | 
						|
								  Rhs x(A.cols(), b.cols());
							 | 
						|
								
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
							 | 
						|
								    VERIFY(solver.info() == Success);
							 | 
						|
								  }
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "WARNING | sparse solver testing, solving failed (" << typeid(Solver).name() << ")\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  RealScalar res_error = (fullA*x-b).norm()/b.norm();  
							 | 
						|
								  VERIFY( (res_error <= test_precision<Scalar>() ) && "sparse solver failed without noticing it"); 
							 | 
						|
								
							 | 
						|
								  
							 | 
						|
								  if(refX.size() != 0 && (refX - x).norm()/refX.norm() > test_precision<Scalar>())
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "WARNING | found solution is different from the provided reference one\n";
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								}
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_determinant)\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar refDet = dA.determinant();
							 | 
						|
								  VERIFY_IS_APPROX(refDet,solver.determinant());
							 | 
						|
								}
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
							 | 
						|
								{
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar refDet = abs(dA.determinant());
							 | 
						|
								  VERIFY_IS_APPROX(refDet,solver.absDeterminant());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  int size = internal::random<int>(1,maxSize);
							 | 
						|
								  double density = (std::max)(8./(size*size), 0.01);
							 | 
						|
								
							 | 
						|
								  Mat M(size, size);
							 | 
						|
								  DenseMatrix dM(size, size);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
							 | 
						|
								
							 | 
						|
								  A = M * M.adjoint();
							 | 
						|
								  dA = dM * dM.adjoint();
							 | 
						|
								  
							 | 
						|
								  halfA.resize(size,size);
							 | 
						|
								  if(Solver::UpLo==(Lower|Upper))
							 | 
						|
								    halfA = A;
							 | 
						|
								  else
							 | 
						|
								    halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
							 | 
						|
								  
							 | 
						|
								  return size;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#ifdef TEST_REAL_CASES
							 | 
						|
								template<typename Scalar>
							 | 
						|
								inline std::string get_matrixfolder()
							 | 
						|
								{
							 | 
						|
								  std::string mat_folder = TEST_REAL_CASES; 
							 | 
						|
								  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
							 | 
						|
								    mat_folder  = mat_folder + static_cast<std::string>("/complex/");
							 | 
						|
								  else
							 | 
						|
								    mat_folder = mat_folder + static_cast<std::string>("/real/");
							 | 
						|
								  return mat_folder;
							 | 
						|
								}
							 | 
						|
								std::string sym_to_string(int sym)
							 | 
						|
								{
							 | 
						|
								  if(sym==Symmetric) return "Symmetric ";
							 | 
						|
								  if(sym==SPD)       return "SPD ";
							 | 
						|
								  return "";
							 | 
						|
								}
							 | 
						|
								template<typename Derived>
							 | 
						|
								std::string solver_stats(const IterativeSolverBase<Derived> &solver)
							 | 
						|
								{
							 | 
						|
								  std::stringstream ss;
							 | 
						|
								  ss << solver.iterations() << " iters, error: " << solver.error();
							 | 
						|
								  return ss.str();
							 | 
						|
								}
							 | 
						|
								template<typename Derived>
							 | 
						|
								std::string solver_stats(const SparseSolverBase<Derived> &/*solver*/)
							 | 
						|
								{
							 | 
						|
								  return "";
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::StorageIndex StorageIndex;
							 | 
						|
								  typedef SparseMatrix<Scalar,ColMajor, StorageIndex> SpMat;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								
							 | 
						|
								  // generate the problem
							 | 
						|
								  Mat A, halfA;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    int size = generate_sparse_spd_problem(solver, A, halfA, dA, maxSize);
							 | 
						|
								
							 | 
						|
								    // generate the right hand sides
							 | 
						|
								    int rhsCols = internal::random<int>(1,16);
							 | 
						|
								    double density = (std::max)(8./(size*rhsCols), 0.1);
							 | 
						|
								    SpMat B(size,rhsCols);
							 | 
						|
								    DenseVector b = DenseVector::Random(size);
							 | 
						|
								    DenseMatrix dB(size,rhsCols);
							 | 
						|
								    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
							 | 
						|
								  
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, A,     b,  dA, b)  );
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, halfA, b,  dA, b)  );
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, A,     dB, dA, dB) );
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, halfA, dB, dA, dB) );
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, A,     B,  dA, dB) );
							 | 
						|
								    CALL_SUBTEST( check_sparse_solving(solver, halfA, B,  dA, dB) );
							 | 
						|
								    
							 | 
						|
								    // check only once
							 | 
						|
								    if(i==0)
							 | 
						|
								    {
							 | 
						|
								      b = DenseVector::Zero(size);
							 | 
						|
								      check_sparse_solving(solver, A, b, dA, b);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // First, get the folder 
							 | 
						|
								#ifdef TEST_REAL_CASES
							 | 
						|
								  // Test real problems with double precision only
							 | 
						|
								  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
							 | 
						|
								  {
							 | 
						|
								    std::string mat_folder = get_matrixfolder<Scalar>();
							 | 
						|
								    MatrixMarketIterator<Scalar> it(mat_folder);
							 | 
						|
								    for (; it; ++it)
							 | 
						|
								    {
							 | 
						|
								      if (it.sym() == SPD){
							 | 
						|
								        A = it.matrix();
							 | 
						|
								        if(A.diagonal().size() <= maxRealWorldSize)
							 | 
						|
								        {
							 | 
						|
								          DenseVector b = it.rhs();
							 | 
						|
								          DenseVector refX = it.refX();
							 | 
						|
								          PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull;
							 | 
						|
								          halfA.resize(A.rows(), A.cols());
							 | 
						|
								          if(Solver::UpLo == (Lower|Upper))
							 | 
						|
								            halfA = A;
							 | 
						|
								          else
							 | 
						|
								            halfA.template selfadjointView<Solver::UpLo>() = A.template triangularView<Eigen::Lower>().twistedBy(pnull);
							 | 
						|
								          
							 | 
						|
								          std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
							 | 
						|
								                  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
							 | 
						|
								          CALL_SUBTEST( check_sparse_solving_real_cases(solver, A,     b, A, refX) );
							 | 
						|
								          std::string stats = solver_stats(solver);
							 | 
						|
								          if(stats.size()>0)
							 | 
						|
								            std::cout << "INFO |  " << stats << std::endl;
							 | 
						|
								          CALL_SUBTEST( check_sparse_solving_real_cases(solver, halfA, b, A, refX) );
							 | 
						|
								        }
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          std::cout << "INFO | Skip sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								#else
							 | 
						|
								  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  // generate the problem
							 | 
						|
								  Mat A, halfA;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
							 | 
						|
								  
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    check_sparse_determinant(solver, A,     dA);
							 | 
						|
								    check_sparse_determinant(solver, halfA, dA );
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  Index size = internal::random<int>(1,maxSize);
							 | 
						|
								  double density = (std::max)(8./(size*size), 0.01);
							 | 
						|
								  
							 | 
						|
								  A.resize(size,size);
							 | 
						|
								  dA.resize(size,size);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(density, dA, A, options);
							 | 
						|
								  
							 | 
						|
								  return size;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								struct prune_column {
							 | 
						|
								  Index m_col;
							 | 
						|
								  prune_column(Index col) : m_col(col) {}
							 | 
						|
								  template<class Scalar>
							 | 
						|
								  bool operator()(Index, Index col, const Scalar&) const {
							 | 
						|
								    return col != m_col;
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								
							 | 
						|
								  int rhsCols = internal::random<int>(1,16);
							 | 
						|
								
							 | 
						|
								  Mat A;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    Index size = generate_sparse_square_problem(solver, A, dA, maxSize);
							 | 
						|
								
							 | 
						|
								    A.makeCompressed();
							 | 
						|
								    DenseVector b = DenseVector::Random(size);
							 | 
						|
								    DenseMatrix dB(size,rhsCols);
							 | 
						|
								    SpMat B(size,rhsCols);
							 | 
						|
								    double density = (std::max)(8./(size*rhsCols), 0.1);
							 | 
						|
								    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
							 | 
						|
								    B.makeCompressed();
							 | 
						|
								    CALL_SUBTEST(check_sparse_solving(solver, A, b,  dA, b));
							 | 
						|
								    CALL_SUBTEST(check_sparse_solving(solver, A, dB, dA, dB));
							 | 
						|
								    CALL_SUBTEST(check_sparse_solving(solver, A, B,  dA, dB));
							 | 
						|
								    
							 | 
						|
								    // check only once
							 | 
						|
								    if(i==0)
							 | 
						|
								    {
							 | 
						|
								      b = DenseVector::Zero(size);
							 | 
						|
								      check_sparse_solving(solver, A, b, dA, b);
							 | 
						|
								    }
							 | 
						|
								    // regression test for Bug 792 (structurally rank deficient matrices):
							 | 
						|
								    if(checkDeficient && size>1) {
							 | 
						|
								      Index col = internal::random<int>(0,int(size-1));
							 | 
						|
								      A.prune(prune_column(col));
							 | 
						|
								      solver.compute(A);
							 | 
						|
								      VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // First, get the folder 
							 | 
						|
								#ifdef TEST_REAL_CASES
							 | 
						|
								  // Test real problems with double precision only
							 | 
						|
								  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
							 | 
						|
								  {
							 | 
						|
								    std::string mat_folder = get_matrixfolder<Scalar>();
							 | 
						|
								    MatrixMarketIterator<Scalar> it(mat_folder);
							 | 
						|
								    for (; it; ++it)
							 | 
						|
								    {
							 | 
						|
								      A = it.matrix();
							 | 
						|
								      if(A.diagonal().size() <= maxRealWorldSize)
							 | 
						|
								      {
							 | 
						|
								        DenseVector b = it.rhs();
							 | 
						|
								        DenseVector refX = it.refX();
							 | 
						|
								        std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
							 | 
						|
								                  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
							 | 
						|
								        CALL_SUBTEST(check_sparse_solving_real_cases(solver, A, b, A, refX));
							 | 
						|
								        std::string stats = solver_stats(solver);
							 | 
						|
								        if(stats.size()>0)
							 | 
						|
								          std::cout << "INFO |  " << stats << std::endl;
							 | 
						|
								      }
							 | 
						|
								      else
							 | 
						|
								      {
							 | 
						|
								        std::cout << "INFO | SKIP sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								#else
							 | 
						|
								  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_square_determinant(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    // generate the problem
							 | 
						|
								    Mat A;
							 | 
						|
								    DenseMatrix dA;
							 | 
						|
								    
							 | 
						|
								    int size = internal::random<int>(1,30);
							 | 
						|
								    dA.setRandom(size,size);
							 | 
						|
								    
							 | 
						|
								    dA = (dA.array().abs()<0.3).select(0,dA);
							 | 
						|
								    dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal());
							 | 
						|
								    A = dA.sparseView();
							 | 
						|
								    A.makeCompressed();
							 | 
						|
								  
							 | 
						|
								    check_sparse_determinant(solver, A, dA);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    // generate the problem
							 | 
						|
								    Mat A;
							 | 
						|
								    DenseMatrix dA;
							 | 
						|
								    generate_sparse_square_problem(solver, A, dA, 30);
							 | 
						|
								    A.makeCompressed();
							 | 
						|
								    check_sparse_abs_determinant(solver, A, dA);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  int rows = internal::random<int>(1,maxSize);
							 | 
						|
								  int cols = internal::random<int>(1,rows);
							 | 
						|
								  double density = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  
							 | 
						|
								  A.resize(rows,cols);
							 | 
						|
								  dA.resize(rows,cols);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(density, dA, A, options);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								
							 | 
						|
								  int rhsCols = internal::random<int>(1,16);
							 | 
						|
								
							 | 
						|
								  Mat A;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    generate_sparse_leastsquare_problem(solver, A, dA);
							 | 
						|
								
							 | 
						|
								    A.makeCompressed();
							 | 
						|
								    DenseVector b = DenseVector::Random(A.rows());
							 | 
						|
								    DenseMatrix dB(A.rows(),rhsCols);
							 | 
						|
								    SpMat B(A.rows(),rhsCols);
							 | 
						|
								    double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
							 | 
						|
								    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
							 | 
						|
								    B.makeCompressed();
							 | 
						|
								    check_sparse_solving(solver, A, b,  dA, b);
							 | 
						|
								    check_sparse_solving(solver, A, dB, dA, dB);
							 | 
						|
								    check_sparse_solving(solver, A, B,  dA, dB);
							 | 
						|
								    
							 | 
						|
								    // check only once
							 | 
						|
								    if(i==0)
							 | 
						|
								    {
							 | 
						|
								      b = DenseVector::Zero(A.rows());
							 | 
						|
								      check_sparse_solving(solver, A, b, dA, b);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								}
							 |