You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							254 lines
						
					
					
						
							9.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							254 lines
						
					
					
						
							9.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
							 | 
						|
								{
							 | 
						|
								  const Index rows = ref.rows();
							 | 
						|
								  const Index cols = ref.cols();
							 | 
						|
								  const Index inner = ref.innerSize();
							 | 
						|
								  const Index outer = ref.outerSize();
							 | 
						|
								
							 | 
						|
								  typedef typename SparseMatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  double density = (std::max)(8./(rows*cols), 0.01);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
							 | 
						|
								
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								  {
							 | 
						|
								    SparseMatrixType m(rows, cols);
							 | 
						|
								    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat, m);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								    // test InnerIterators and Block expressions
							 | 
						|
								    for (int t=0; t<10; ++t)
							 | 
						|
								    {
							 | 
						|
								      Index j = internal::random<Index>(0,cols-2);
							 | 
						|
								      Index i = internal::random<Index>(0,rows-2);
							 | 
						|
								      Index w = internal::random<Index>(1,cols-j);
							 | 
						|
								      Index h = internal::random<Index>(1,rows-i);
							 | 
						|
								
							 | 
						|
								      VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
							 | 
						|
								      for(Index c=0; c<w; c++)
							 | 
						|
								      {
							 | 
						|
								        VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
							 | 
						|
								        for(Index r=0; r<h; r++)
							 | 
						|
								        {
							 | 
						|
								          VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
							 | 
						|
								          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      for(Index r=0; r<h; r++)
							 | 
						|
								      {
							 | 
						|
								        VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
							 | 
						|
								        for(Index c=0; c<w; c++)
							 | 
						|
								        {
							 | 
						|
								          VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
							 | 
						|
								          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
							 | 
						|
								      VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
							 | 
						|
								      for(Index r=0; r<h; r++)
							 | 
						|
								      {
							 | 
						|
								        VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
							 | 
						|
								        VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
							 | 
						|
								        for(Index c=0; c<w; c++)
							 | 
						|
								        {
							 | 
						|
								          VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
							 | 
						|
								          VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
							 | 
						|
								          
							 | 
						|
								          VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
							 | 
						|
								          VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
							 | 
						|
								          if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
							 | 
						|
								          {
							 | 
						|
								            VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
							 | 
						|
								          }
							 | 
						|
								          if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
							 | 
						|
								          {
							 | 
						|
								            VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
							 | 
						|
								          }
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      for(Index c=0; c<w; c++)
							 | 
						|
								      {
							 | 
						|
								        VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
							 | 
						|
								        VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    for(Index c=0; c<cols; c++)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
							 | 
						|
								      VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    for(Index r=0; r<rows; r++)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
							 | 
						|
								      VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test innerVector()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    Index j0 = internal::random<Index>(0,outer-1);
							 | 
						|
								    Index j1 = internal::random<Index>(0,outer-1);
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
							 | 
						|
								
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
							 | 
						|
								
							 | 
						|
								    SparseMatrixType m3(rows,cols);
							 | 
						|
								    m3.reserve(VectorXi::Constant(outer,int(inner/2)));
							 | 
						|
								    for(Index j=0; j<outer; ++j)
							 | 
						|
								      for(Index k=0; k<(std::min)(j,inner); ++k)
							 | 
						|
								        m3.insertByOuterInner(j,k) = k+1;
							 | 
						|
								    for(Index j=0; j<(std::min)(outer, inner); ++j)
							 | 
						|
								    {
							 | 
						|
								      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
							 | 
						|
								      if(j>0)
							 | 
						|
								        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
							 | 
						|
								    }
							 | 
						|
								    m3.makeCompressed();
							 | 
						|
								    for(Index j=0; j<(std::min)(outer, inner); ++j)
							 | 
						|
								    {
							 | 
						|
								      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
							 | 
						|
								      if(j>0)
							 | 
						|
								        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
							 | 
						|
								
							 | 
						|
								//     m2.innerVector(j0) = 2*m2.innerVector(j1);
							 | 
						|
								//     refMat2.col(j0) = 2*refMat2.col(j1);
							 | 
						|
								//     VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test innerVectors()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
							 | 
						|
								    Index j0 = internal::random<Index>(0,outer-2);
							 | 
						|
								    Index j1 = internal::random<Index>(0,outer-2);
							 | 
						|
								    Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
							 | 
						|
								                       refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
							 | 
						|
								                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								    
							 | 
						|
								    VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros());
							 | 
						|
								    
							 | 
						|
								    m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
							 | 
						|
								    else
							 | 
						|
								      refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test generic blocks
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
							 | 
						|
								    SparseMatrixType m2(rows, cols);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    Index j0 = internal::random<Index>(0,outer-2);
							 | 
						|
								    Index j1 = internal::random<Index>(0,outer-2);
							 | 
						|
								    Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
							 | 
						|
								    
							 | 
						|
								    if(SparseMatrixType::IsRowMajor)
							 | 
						|
								      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
							 | 
						|
								                      refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
							 | 
						|
								    else
							 | 
						|
								      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
							 | 
						|
								                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
							 | 
						|
								      
							 | 
						|
								    Index i = internal::random<Index>(0,m2.outerSize()-1);
							 | 
						|
								    if(SparseMatrixType::IsRowMajor) {
							 | 
						|
								      m2.innerVector(i) = m2.innerVector(i) * s1;
							 | 
						|
								      refMat2.row(i) = refMat2.row(i) * s1;
							 | 
						|
								      VERIFY_IS_APPROX(m2,refMat2);
							 | 
						|
								    } else {
							 | 
						|
								      m2.innerVector(i) = m2.innerVector(i) * s1;
							 | 
						|
								      refMat2.col(i) = refMat2.col(i) * s1;
							 | 
						|
								      VERIFY_IS_APPROX(m2,refMat2);
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    Index r0 = internal::random<Index>(0,rows-2);
							 | 
						|
								    Index c0 = internal::random<Index>(0,cols-2);
							 | 
						|
								    Index r1 = internal::random<Index>(1,rows-r0);
							 | 
						|
								    Index c1 = internal::random<Index>(1,cols-c0);
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
							 | 
						|
								    VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
							 | 
						|
								    VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1));
							 | 
						|
								    VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_sparse_block()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
							 | 
						|
								    if(Eigen::internal::random<int>(0,4) == 0) {
							 | 
						|
								      r = c; // check square matrices in 25% of tries
							 | 
						|
								    }
							 | 
						|
								    EIGEN_UNUSED_VARIABLE(r+c);
							 | 
						|
								    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) ));
							 | 
						|
								    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) ));
							 | 
						|
								    CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) ));
							 | 
						|
								    
							 | 
						|
								    r = Eigen::internal::random<int>(1,100);
							 | 
						|
								    c = Eigen::internal::random<int>(1,100);
							 | 
						|
								    if(Eigen::internal::random<int>(0,4) == 0) {
							 | 
						|
								      r = c; // check square matrices in 25% of tries
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
							 | 
						|
								    CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
							 | 
						|
								  }
							 | 
						|
								}
							 |