You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							210 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							210 lines
						
					
					
						
							6.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#ifndef EIGEN_TESTSPARSE_H
							 | 
						|
								#define EIGEN_TESTSPARSE_H
							 | 
						|
								
							 | 
						|
								#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__)
							 | 
						|
								
							 | 
						|
								#ifdef min
							 | 
						|
								#undef min
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef max
							 | 
						|
								#undef max
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#include <tr1/unordered_map>
							 | 
						|
								#define EIGEN_UNORDERED_MAP_SUPPORT
							 | 
						|
								namespace std {
							 | 
						|
								  using std::tr1::unordered_map;
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_GOOGLEHASH_SUPPORT
							 | 
						|
								  #include <google/sparse_hash_map>
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#include <Eigen/Cholesky>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								#include <Eigen/Sparse>
							 | 
						|
								
							 | 
						|
								enum {
							 | 
						|
								  ForceNonZeroDiag = 1,
							 | 
						|
								  MakeLowerTriangular = 2,
							 | 
						|
								  MakeUpperTriangular = 4,
							 | 
						|
								  ForceRealDiag = 8
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								/* Initializes both a sparse and dense matrix with same random values,
							 | 
						|
								 * and a ratio of \a density non zero entries.
							 | 
						|
								 * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
							 | 
						|
								 *        allowing to control the shape of the matrix.
							 | 
						|
								 * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
							 | 
						|
								 *        and zero coefficients respectively.
							 | 
						|
								 */
							 | 
						|
								template<typename Scalar,int Opt1,int Opt2,typename StorageIndex> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,Dynamic,Opt1>& refMat,
							 | 
						|
								           SparseMatrix<Scalar,Opt2,StorageIndex>& sparseMat,
							 | 
						|
								           int flags = 0,
							 | 
						|
								           std::vector<Matrix<StorageIndex,2,1> >* zeroCoords = 0,
							 | 
						|
								           std::vector<Matrix<StorageIndex,2,1> >* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  enum { IsRowMajor = SparseMatrix<Scalar,Opt2,StorageIndex>::IsRowMajor };
							 | 
						|
								  sparseMat.setZero();
							 | 
						|
								  //sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
							 | 
						|
								  sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), int((1.5*density)*(IsRowMajor?refMat.cols():refMat.rows()))));
							 | 
						|
								  
							 | 
						|
								  for(Index j=0; j<sparseMat.outerSize(); j++)
							 | 
						|
								  {
							 | 
						|
								    //sparseMat.startVec(j);
							 | 
						|
								    for(Index i=0; i<sparseMat.innerSize(); i++)
							 | 
						|
								    {
							 | 
						|
								      Index ai(i), aj(j);
							 | 
						|
								      if(IsRowMajor)
							 | 
						|
								        std::swap(ai,aj);
							 | 
						|
								      Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
							 | 
						|
								      if ((flags&ForceNonZeroDiag) && (i==j))
							 | 
						|
								      {
							 | 
						|
								        // FIXME: the following is too conservative
							 | 
						|
								        v = internal::random<Scalar>()*Scalar(3.);
							 | 
						|
								        v = v*v;
							 | 
						|
								        if(numext::real(v)>0) v += Scalar(5);
							 | 
						|
								        else                  v -= Scalar(5);
							 | 
						|
								      }
							 | 
						|
								      if ((flags & MakeLowerTriangular) && aj>ai)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      else if ((flags & MakeUpperTriangular) && aj<ai)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								
							 | 
						|
								      if ((flags&ForceRealDiag) && (i==j))
							 | 
						|
								        v = numext::real(v);
							 | 
						|
								
							 | 
						|
								      if (v!=Scalar(0))
							 | 
						|
								      {
							 | 
						|
								        //sparseMat.insertBackByOuterInner(j,i) = v;
							 | 
						|
								        sparseMat.insertByOuterInner(j,i) = v;
							 | 
						|
								        if (nonzeroCoords)
							 | 
						|
								          nonzeroCoords->push_back(Matrix<StorageIndex,2,1> (ai,aj));
							 | 
						|
								      }
							 | 
						|
								      else if (zeroCoords)
							 | 
						|
								      {
							 | 
						|
								        zeroCoords->push_back(Matrix<StorageIndex,2,1> (ai,aj));
							 | 
						|
								      }
							 | 
						|
								      refMat(ai,aj) = v;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  //sparseMat.finalize();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar,int Opt1,int Opt2,typename Index> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,Dynamic, Opt1>& refMat,
							 | 
						|
								           DynamicSparseMatrix<Scalar, Opt2, Index>& sparseMat,
							 | 
						|
								           int flags = 0,
							 | 
						|
								           std::vector<Matrix<Index,2,1> >* zeroCoords = 0,
							 | 
						|
								           std::vector<Matrix<Index,2,1> >* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  enum { IsRowMajor = DynamicSparseMatrix<Scalar,Opt2,Index>::IsRowMajor };
							 | 
						|
								  sparseMat.setZero();
							 | 
						|
								  sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
							 | 
						|
								  for(int j=0; j<sparseMat.outerSize(); j++)
							 | 
						|
								  {
							 | 
						|
								    sparseMat.startVec(j); // not needed for DynamicSparseMatrix
							 | 
						|
								    for(int i=0; i<sparseMat.innerSize(); i++)
							 | 
						|
								    {
							 | 
						|
								      int ai(i), aj(j);
							 | 
						|
								      if(IsRowMajor)
							 | 
						|
								        std::swap(ai,aj);
							 | 
						|
								      Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
							 | 
						|
								      if ((flags&ForceNonZeroDiag) && (i==j))
							 | 
						|
								      {
							 | 
						|
								        v = internal::random<Scalar>()*Scalar(3.);
							 | 
						|
								        v = v*v + Scalar(5.);
							 | 
						|
								      }
							 | 
						|
								      if ((flags & MakeLowerTriangular) && aj>ai)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      else if ((flags & MakeUpperTriangular) && aj<ai)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								
							 | 
						|
								      if ((flags&ForceRealDiag) && (i==j))
							 | 
						|
								        v = numext::real(v);
							 | 
						|
								
							 | 
						|
								      if (v!=Scalar(0))
							 | 
						|
								      {
							 | 
						|
								        sparseMat.insertBackByOuterInner(j,i) = v;
							 | 
						|
								        if (nonzeroCoords)
							 | 
						|
								          nonzeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
							 | 
						|
								      }
							 | 
						|
								      else if (zeroCoords)
							 | 
						|
								      {
							 | 
						|
								        zeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
							 | 
						|
								      }
							 | 
						|
								      refMat(ai,aj) = v;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  sparseMat.finalize();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar,int Options,typename Index> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,1>& refVec,
							 | 
						|
								           SparseVector<Scalar,Options,Index>& sparseVec,
							 | 
						|
								           std::vector<int>* zeroCoords = 0,
							 | 
						|
								           std::vector<int>* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  sparseVec.reserve(int(refVec.size()*density));
							 | 
						|
								  sparseVec.setZero();
							 | 
						|
								  for(int i=0; i<refVec.size(); i++)
							 | 
						|
								  {
							 | 
						|
								    Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
							 | 
						|
								    if (v!=Scalar(0))
							 | 
						|
								    {
							 | 
						|
								      sparseVec.insertBack(i) = v;
							 | 
						|
								      if (nonzeroCoords)
							 | 
						|
								        nonzeroCoords->push_back(i);
							 | 
						|
								    }
							 | 
						|
								    else if (zeroCoords)
							 | 
						|
								        zeroCoords->push_back(i);
							 | 
						|
								    refVec[i] = v;
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar,int Options,typename Index> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,1,Dynamic>& refVec,
							 | 
						|
								           SparseVector<Scalar,Options,Index>& sparseVec,
							 | 
						|
								           std::vector<int>* zeroCoords = 0,
							 | 
						|
								           std::vector<int>* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  sparseVec.reserve(int(refVec.size()*density));
							 | 
						|
								  sparseVec.setZero();
							 | 
						|
								  for(int i=0; i<refVec.size(); i++)
							 | 
						|
								  {
							 | 
						|
								    Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
							 | 
						|
								    if (v!=Scalar(0))
							 | 
						|
								    {
							 | 
						|
								      sparseVec.insertBack(i) = v;
							 | 
						|
								      if (nonzeroCoords)
							 | 
						|
								        nonzeroCoords->push_back(i);
							 | 
						|
								    }
							 | 
						|
								    else if (zeroCoords)
							 | 
						|
								        zeroCoords->push_back(i);
							 | 
						|
								    refVec[i] = v;
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#include <unsupported/Eigen/SparseExtra>
							 | 
						|
								#endif // EIGEN_TESTSPARSE_H
							 |