You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <limits>
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
							 | 
						|
								{
							 | 
						|
								  typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
							 | 
						|
								  typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
							 | 
						|
								
							 | 
						|
								  // Test basic functionality: T is triangular and A = U T U*
							 | 
						|
								  for(int counter = 0; counter < g_repeat; ++counter) {
							 | 
						|
								    MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								    ComplexSchur<MatrixType> schurOfA(A);
							 | 
						|
								    VERIFY_IS_EQUAL(schurOfA.info(), Success);
							 | 
						|
								    ComplexMatrixType U = schurOfA.matrixU();
							 | 
						|
								    ComplexMatrixType T = schurOfA.matrixT();
							 | 
						|
								    for(int row = 1; row < size; ++row) {
							 | 
						|
								      for(int col = 0; col < row; ++col) {
							 | 
						|
								        VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // Test asserts when not initialized
							 | 
						|
								  ComplexSchur<MatrixType> csUninitialized;
							 | 
						|
								  VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
							 | 
						|
								  VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
							 | 
						|
								  VERIFY_RAISES_ASSERT(csUninitialized.info());
							 | 
						|
								  
							 | 
						|
								  // Test whether compute() and constructor returns same result
							 | 
						|
								  MatrixType A = MatrixType::Random(size, size);
							 | 
						|
								  ComplexSchur<MatrixType> cs1;
							 | 
						|
								  cs1.compute(A);
							 | 
						|
								  ComplexSchur<MatrixType> cs2(A);
							 | 
						|
								  VERIFY_IS_EQUAL(cs1.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs2.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
							 | 
						|
								  VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
							 | 
						|
								
							 | 
						|
								  // Test maximum number of iterations
							 | 
						|
								  ComplexSchur<MatrixType> cs3;
							 | 
						|
								  cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
							 | 
						|
								  cs3.setMaxIterations(1).compute(A);
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
							 | 
						|
								
							 | 
						|
								  MatrixType Atriangular = A;
							 | 
						|
								  Atriangular.template triangularView<StrictlyLower>().setZero(); 
							 | 
						|
								  cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
							 | 
						|
								  VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
							 | 
						|
								
							 | 
						|
								  // Test computation of only T, not U
							 | 
						|
								  ComplexSchur<MatrixType> csOnlyT(A, false);
							 | 
						|
								  VERIFY_IS_EQUAL(csOnlyT.info(), Success);
							 | 
						|
								  VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
							 | 
						|
								  VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
							 | 
						|
								
							 | 
						|
								  if (size > 1 && size < 20)
							 | 
						|
								  {
							 | 
						|
								    // Test matrix with NaN
							 | 
						|
								    A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
							 | 
						|
								    ComplexSchur<MatrixType> csNaN(A);
							 | 
						|
								    VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_schur_complex()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_1(( schur<Matrix4cd>() ));
							 | 
						|
								  CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
							 | 
						|
								  CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
							 | 
						|
								  CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
							 | 
						|
								}
							 |