You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							150 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							150 lines
						
					
					
						
							5.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr()
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								
							 | 
						|
								  Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
							 | 
						|
								  Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
							 | 
						|
								  MatrixType m1;
							 | 
						|
								  createRandomPIMatrixOfRank(rank,rows,cols,m1);
							 | 
						|
								  ColPivHouseholderQR<MatrixType> qr(m1);
							 | 
						|
								  VERIFY_IS_EQUAL(rank, qr.rank());
							 | 
						|
								  VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
							 | 
						|
								  VERIFY(!qr.isInjective());
							 | 
						|
								  VERIFY(!qr.isInvertible());
							 | 
						|
								  VERIFY(!qr.isSurjective());
							 | 
						|
								
							 | 
						|
								  MatrixQType q = qr.householderQ();
							 | 
						|
								  VERIFY_IS_UNITARY(q);
							 | 
						|
								
							 | 
						|
								  MatrixType r = qr.matrixQR().template triangularView<Upper>();
							 | 
						|
								  MatrixType c = q * r * qr.colsPermutation().inverse();
							 | 
						|
								  VERIFY_IS_APPROX(m1, c);
							 | 
						|
								
							 | 
						|
								  MatrixType m2 = MatrixType::Random(cols,cols2);
							 | 
						|
								  MatrixType m3 = m1*m2;
							 | 
						|
								  m2 = MatrixType::Random(cols,cols2);
							 | 
						|
								  m2 = qr.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int Cols2> void qr_fixedsize()
							 | 
						|
								{
							 | 
						|
								  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
							 | 
						|
								  Matrix<Scalar,Rows,Cols> m1;
							 | 
						|
								  createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
							 | 
						|
								  ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
							 | 
						|
								  VERIFY_IS_EQUAL(rank, qr.rank());
							 | 
						|
								  VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
							 | 
						|
								  VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
							 | 
						|
								  VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
							 | 
						|
								  VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
							 | 
						|
								
							 | 
						|
								  Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
							 | 
						|
								  Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
							 | 
						|
								  VERIFY_IS_APPROX(m1, c);
							 | 
						|
								
							 | 
						|
								  Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
							 | 
						|
								  Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
							 | 
						|
								  m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
							 | 
						|
								  m2 = qr.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr_invertible()
							 | 
						|
								{
							 | 
						|
								  using std::log;
							 | 
						|
								  using std::abs;
							 | 
						|
								  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  int size = internal::random<int>(10,50);
							 | 
						|
								
							 | 
						|
								  MatrixType m1(size, size), m2(size, size), m3(size, size);
							 | 
						|
								  m1 = MatrixType::Random(size,size);
							 | 
						|
								
							 | 
						|
								  if (internal::is_same<RealScalar,float>::value)
							 | 
						|
								  {
							 | 
						|
								    // let's build a matrix more stable to inverse
							 | 
						|
								    MatrixType a = MatrixType::Random(size,size*2);
							 | 
						|
								    m1 += a * a.adjoint();
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  ColPivHouseholderQR<MatrixType> qr(m1);
							 | 
						|
								  m3 = MatrixType::Random(size,size);
							 | 
						|
								  m2 = qr.solve(m3);
							 | 
						|
								  //VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								
							 | 
						|
								  // now construct a matrix with prescribed determinant
							 | 
						|
								  m1.setZero();
							 | 
						|
								  for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
							 | 
						|
								  RealScalar absdet = abs(m1.diagonal().prod());
							 | 
						|
								  m3 = qr.householderQ(); // get a unitary
							 | 
						|
								  m1 = m3 * m1 * m3;
							 | 
						|
								  qr.compute(m1);
							 | 
						|
								  VERIFY_IS_APPROX(absdet, qr.absDeterminant());
							 | 
						|
								  VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr_verify_assert()
							 | 
						|
								{
							 | 
						|
								  MatrixType tmp;
							 | 
						|
								
							 | 
						|
								  ColPivHouseholderQR<MatrixType> qr;
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.matrixQR())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.solve(tmp))
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.householderQ())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.isInjective())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.isSurjective())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.isInvertible())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.inverse())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.absDeterminant())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_qr_colpivoting()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( qr<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_2( qr<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_3( qr<MatrixXcd>() );
							 | 
						|
								    CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
							 | 
						|
								    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
							 | 
						|
								    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
							 | 
						|
								  CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
							 | 
						|
								  CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
							 | 
						|
								  CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
							 | 
						|
								  CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
							 | 
						|
								  CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
							 | 
						|
								}
							 |