You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							161 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							161 lines
						
					
					
						
							4.8 KiB
						
					
					
				
								
							 | 
						|
								
							 | 
						|
								// workaround issue between gcc >= 4.7 and cuda 5.5
							 | 
						|
								#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
							 | 
						|
								  #undef _GLIBCXX_ATOMIC_BUILTINS
							 | 
						|
								  #undef _GLIBCXX_USE_INT128
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#define EIGEN_TEST_NO_LONGDOUBLE
							 | 
						|
								#define EIGEN_TEST_NO_COMPLEX
							 | 
						|
								#define EIGEN_TEST_FUNC cuda_basic
							 | 
						|
								#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
							 | 
						|
								
							 | 
						|
								#include <math_constants.h>
							 | 
						|
								#include "main.h"
							 | 
						|
								#include "cuda_common.h"
							 | 
						|
								
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								// struct Foo{
							 | 
						|
								//   EIGEN_DEVICE_FUNC
							 | 
						|
								//   void operator()(int i, const float* mats, float* vecs) const {
							 | 
						|
								//     using namespace Eigen;
							 | 
						|
								//   //   Matrix3f M(data);
							 | 
						|
								//   //   Vector3f x(data+9);
							 | 
						|
								//   //   Map<Vector3f>(data+9) = M.inverse() * x;
							 | 
						|
								//     Matrix3f M(mats+i/16);
							 | 
						|
								//     Vector3f x(vecs+i*3);
							 | 
						|
								//   //   using std::min;
							 | 
						|
								//   //   using std::sqrt;
							 | 
						|
								//     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x();
							 | 
						|
								//     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
							 | 
						|
								//   }
							 | 
						|
								// };
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								struct coeff_wise {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    T x1(in+i);
							 | 
						|
								    T x2(in+i+1);
							 | 
						|
								    T x3(in+i+2);
							 | 
						|
								    Map<T> res(out+i*T::MaxSizeAtCompileTime);
							 | 
						|
								    
							 | 
						|
								    res.array() += (in[0] * x1 + x2).array() * x3.array();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								struct replicate {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    T x1(in+i);
							 | 
						|
								    int step   = x1.size() * 4;
							 | 
						|
								    int stride = 3 * step;
							 | 
						|
								    
							 | 
						|
								    typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
							 | 
						|
								    MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
							 | 
						|
								    MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
							 | 
						|
								    MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								struct redux {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    int N = 10;
							 | 
						|
								    T x1(in+i);
							 | 
						|
								    out[i*N+0] = x1.minCoeff();
							 | 
						|
								    out[i*N+1] = x1.maxCoeff();
							 | 
						|
								    out[i*N+2] = x1.sum();
							 | 
						|
								    out[i*N+3] = x1.prod();
							 | 
						|
								    out[i*N+4] = x1.matrix().squaredNorm();
							 | 
						|
								    out[i*N+5] = x1.matrix().norm();
							 | 
						|
								    out[i*N+6] = x1.colwise().sum().maxCoeff();
							 | 
						|
								    out[i*N+7] = x1.rowwise().maxCoeff().sum();
							 | 
						|
								    out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename T1, typename T2>
							 | 
						|
								struct prod_test {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
							 | 
						|
								    T1 x1(in+i);
							 | 
						|
								    T2 x2(in+i+1);
							 | 
						|
								    Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
							 | 
						|
								    res += in[i] * x1 * x2;
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename T1, typename T2>
							 | 
						|
								struct diagonal {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    T1 x1(in+i);
							 | 
						|
								    Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
							 | 
						|
								    res += x1.diagonal();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename T>
							 | 
						|
								struct eigenvalues {
							 | 
						|
								  EIGEN_DEVICE_FUNC
							 | 
						|
								  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
							 | 
						|
								  {
							 | 
						|
								    using namespace Eigen;
							 | 
						|
								    typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
							 | 
						|
								    T M(in+i);
							 | 
						|
								    Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
							 | 
						|
								    T A = M*M.adjoint();
							 | 
						|
								    SelfAdjointEigenSolver<T> eig;
							 | 
						|
								    eig.computeDirect(M);
							 | 
						|
								    res = eig.eigenvalues();
							 | 
						|
								  }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								void test_cuda_basic()
							 | 
						|
								{
							 | 
						|
								  ei_test_init_cuda();
							 | 
						|
								  
							 | 
						|
								  int nthreads = 100;
							 | 
						|
								  Eigen::VectorXf in, out;
							 | 
						|
								  
							 | 
						|
								  #ifndef __CUDA_ARCH__
							 | 
						|
								  int data_size = nthreads * 512;
							 | 
						|
								  in.setRandom(data_size);
							 | 
						|
								  out.setRandom(data_size);
							 | 
						|
								  #endif
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Vector3f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Array44f>(), nthreads, in, out) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array4f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array33f>(), nthreads, in, out) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(redux<Array4f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(redux<Matrix3f>(), nthreads, in, out) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
							 | 
						|
								  
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) );
							 | 
						|
								  CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) );
							 | 
						|
								
							 | 
						|
								}
							 |