You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							126 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							126 lines
						
					
					
						
							4.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Random(rows,cols);
							 | 
						|
								  HouseholderQR<MatrixType> qrOfA(a);
							 | 
						|
								
							 | 
						|
								  MatrixQType q = qrOfA.householderQ();
							 | 
						|
								  VERIFY_IS_UNITARY(q);
							 | 
						|
								
							 | 
						|
								  MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
							 | 
						|
								  VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int Cols2> void qr_fixedsize()
							 | 
						|
								{
							 | 
						|
								  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
							 | 
						|
								  HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
							 | 
						|
								
							 | 
						|
								  Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
							 | 
						|
								  // FIXME need better way to construct trapezoid
							 | 
						|
								  for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1, qr.householderQ() * r);
							 | 
						|
								
							 | 
						|
								  Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
							 | 
						|
								  Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
							 | 
						|
								  m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
							 | 
						|
								  m2 = qr.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr_invertible()
							 | 
						|
								{
							 | 
						|
								  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  int size = internal::random<int>(10,50);
							 | 
						|
								
							 | 
						|
								  MatrixType m1(size, size), m2(size, size), m3(size, size);
							 | 
						|
								  m1 = MatrixType::Random(size,size);
							 | 
						|
								
							 | 
						|
								  if (internal::is_same<RealScalar,float>::value)
							 | 
						|
								  {
							 | 
						|
								    // let's build a matrix more stable to inverse
							 | 
						|
								    MatrixType a = MatrixType::Random(size,size*2);
							 | 
						|
								    m1 += a * a.adjoint();
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  HouseholderQR<MatrixType> qr(m1);
							 | 
						|
								  m3 = MatrixType::Random(size,size);
							 | 
						|
								  m2 = qr.solve(m3);
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1*m2);
							 | 
						|
								
							 | 
						|
								  // now construct a matrix with prescribed determinant
							 | 
						|
								  m1.setZero();
							 | 
						|
								  for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
							 | 
						|
								  RealScalar absdet = internal::abs(m1.diagonal().prod());
							 | 
						|
								  m3 = qr.householderQ(); // get a unitary
							 | 
						|
								  m1 = m3 * m1 * m3;
							 | 
						|
								  qr.compute(m1);
							 | 
						|
								  VERIFY_IS_APPROX(absdet, qr.absDeterminant());
							 | 
						|
								  VERIFY_IS_APPROX(internal::log(absdet), qr.logAbsDeterminant());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void qr_verify_assert()
							 | 
						|
								{
							 | 
						|
								  MatrixType tmp;
							 | 
						|
								
							 | 
						|
								  HouseholderQR<MatrixType> qr;
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.matrixQR())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.solve(tmp))
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.householderQ())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.absDeterminant())
							 | 
						|
								  VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_qr()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								   CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
							 | 
						|
								   CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
							 | 
						|
								   CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
							 | 
						|
								   CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
							 | 
						|
								   CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
							 | 
						|
								   CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
							 | 
						|
								    CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
							 | 
						|
								    CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
							 | 
						|
								    CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
							 | 
						|
								  CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
							 | 
						|
								  CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
							 | 
						|
								  CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
							 | 
						|
								  CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
							 | 
						|
								  CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
							 | 
						|
								}
							 |