You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							6.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							6.1 KiB
						
					
					
				| // #define EIGEN_TAUCS_SUPPORT | |
| // #define EIGEN_CHOLMOD_SUPPORT | |
| #include <iostream> | |
| #include <Eigen/Sparse> | |
|  | |
| // g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG   -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/  -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out | |
|  | |
| #define NOGMM | |
| #define NOMTL | |
|  | |
| #ifndef SIZE | |
| #define SIZE 10 | |
| #endif | |
|  | |
| #ifndef DENSITY | |
| #define DENSITY 0.01 | |
| #endif | |
|  | |
| #ifndef REPEAT | |
| #define REPEAT 1 | |
| #endif | |
|  | |
| #include "BenchSparseUtil.h" | |
|  | |
| #ifndef MINDENSITY | |
| #define MINDENSITY 0.0004 | |
| #endif | |
|  | |
| #ifndef NBTRIES | |
| #define NBTRIES 10 | |
| #endif | |
|  | |
| #define BENCH(X) \ | |
|   timer.reset(); \ | |
|   for (int _j=0; _j<NBTRIES; ++_j) { \ | |
|     timer.start(); \ | |
|     for (int _k=0; _k<REPEAT; ++_k) { \ | |
|         X  \ | |
|   } timer.stop(); } | |
|  | |
| // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; | |
| typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix; | |
| 
 | |
| void fillSpdMatrix(float density, int rows, int cols,  EigenSparseSelfAdjointMatrix& dst) | |
| { | |
|   dst.startFill(rows*cols*density); | |
|   for(int j = 0; j < cols; j++) | |
|   { | |
|     dst.fill(j,j) = internal::random<Scalar>(10,20); | |
|     for(int i = j+1; i < rows; i++) | |
|     { | |
|       Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0; | |
|       if (v!=0) | |
|         dst.fill(i,j) = v; | |
|     } | |
| 
 | |
|   } | |
|   dst.endFill(); | |
| } | |
| 
 | |
| #include <Eigen/Cholesky> | |
|  | |
| template<int Backend> | |
| void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0) | |
| { | |
|   std::cout << name << "..." << std::flush; | |
|   BenchTimer timer; | |
|   timer.start(); | |
|   SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags); | |
|   timer.stop(); | |
|   std::cout << ":\t" << timer.value() << endl; | |
| 
 | |
|   std::cout << "  nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n"; | |
| //   std::cout << "sparse\n" << chol.matrixL() << "%\n"; | |
| } | |
| 
 | |
| int main(int argc, char *argv[]) | |
| { | |
|   int rows = SIZE; | |
|   int cols = SIZE; | |
|   float density = DENSITY; | |
|   BenchTimer timer; | |
| 
 | |
|   VectorXf b = VectorXf::Random(cols); | |
|   VectorXf x = VectorXf::Random(cols); | |
| 
 | |
|   bool densedone = false; | |
| 
 | |
|   //for (float density = DENSITY; density>=MINDENSITY; density*=0.5) | |
| //   float density = 0.5; | |
|   { | |
|     EigenSparseSelfAdjointMatrix sm1(rows, cols); | |
|     std::cout << "Generate sparse matrix (might take a while)...\n"; | |
|     fillSpdMatrix(density, rows, cols, sm1); | |
|     std::cout << "DONE\n\n"; | |
| 
 | |
|     // dense matrices | |
|     #ifdef DENSEMATRIX | |
|     if (!densedone) | |
|     { | |
|       densedone = true; | |
|       std::cout << "Eigen Dense\t" << density*100 << "%\n"; | |
|       DenseMatrix m1(rows,cols); | |
|       eiToDense(sm1, m1); | |
|       m1 = (m1 + m1.transpose()).eval(); | |
|       m1.diagonal() *= 0.5; | |
| 
 | |
| //       BENCH(LLT<DenseMatrix> chol(m1);) | |
| //       std::cout << "dense:\t" << timer.value() << endl; | |
|  | |
|       BenchTimer timer; | |
|       timer.start(); | |
|       LLT<DenseMatrix> chol(m1); | |
|       timer.stop(); | |
|       std::cout << "dense:\t" << timer.value() << endl; | |
|       int count = 0; | |
|       for (int j=0; j<cols; ++j) | |
|         for (int i=j; i<rows; ++i) | |
|           if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1)) | |
|             count++; | |
|       std::cout << "dense: " << "nnz = " << count << "\n"; | |
| //       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl; | |
|     } | |
|     #endif | |
|  | |
|     // eigen sparse matrices | |
|     doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization); | |
| 
 | |
|     #ifdef EIGEN_CHOLMOD_SUPPORT | |
|     doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization); | |
|     #endif | |
|  | |
|     #ifdef EIGEN_TAUCS_SUPPORT | |
|     doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization); | |
|     #endif | |
|  | |
|     #if 0 | |
|     // TAUCS | |
|     { | |
|       taucs_ccs_matrix A = sm1.asTaucsMatrix(); | |
|  | |
|       //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);) | |
| //       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));) | |
| //       std::cout << "taucs:\t" << timer.value() << endl; | |
|  | |
|       taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0); | |
|  | |
|       for (int j=0; j<cols; ++j) | |
|       { | |
|         for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) | |
|           std::cout << chol->values.d[i] << " "; | |
|       } | |
|     } | |
|  | |
|     // CHOLMOD | |
|     #ifdef EIGEN_CHOLMOD_SUPPORT | |
|     { | |
|       cholmod_common c; | |
|       cholmod_start (&c); | |
|       cholmod_sparse A; | |
|       cholmod_factor *L; | |
|  | |
|       A = sm1.asCholmodMatrix(); | |
|       BenchTimer timer; | |
| //       timer.reset(); | |
|       timer.start(); | |
|       std::vector<int> perm(cols); | |
| //       std::vector<int> set(ncols); | |
|       for (int i=0; i<cols; ++i) | |
|         perm[i] = i; | |
| //       c.nmethods = 1; | |
| //       c.method[0] = 1; | |
|  | |
|       c.nmethods = 1; | |
|       c.method [0].ordering = CHOLMOD_NATURAL; | |
|       c.postorder = 0; | |
|       c.final_ll = 1; | |
|  | |
|       L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c); | |
|       timer.stop(); | |
|       std::cout << "cholmod/analyze:\t" << timer.value() << endl; | |
|       timer.reset(); | |
|       timer.start(); | |
|       cholmod_factorize(&A, L, &c); | |
|       timer.stop(); | |
|       std::cout << "cholmod/factorize:\t" << timer.value() << endl; | |
|  | |
|       cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c); | |
|  | |
|       cholmod_print_factor(L, "Factors", &c); | |
|  | |
|       cholmod_print_sparse(cholmat, "Chol", &c); | |
|       cholmod_write_sparse(stdout, cholmat, 0, 0, &c); | |
| // | |
| //       cholmod_print_sparse(&A, "A", &c); | |
| //       cholmod_write_sparse(stdout, &A, 0, 0, &c); | |
|  | |
|  | |
| //       for (int j=0; j<cols; ++j) | |
| //       { | |
| //           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) | |
| //             std::cout << chol->values.s[i] << " "; | |
| //       } | |
|     } | |
|     #endif | |
|  | |
|     #endif | |
|  | |
| 
 | |
| 
 | |
|   } | |
| 
 | |
| 
 | |
|   return 0; | |
| } | |
| 
 |