You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							157 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							157 lines
						
					
					
						
							5.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/Geometry>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								#include <Eigen/QR>
							 | 
						|
								
							 | 
						|
								template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     Hyperplane.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename HyperplaneType::Index Index;
							 | 
						|
								  const Index dim = _plane.dim();
							 | 
						|
								  enum { Options = HyperplaneType::Options };
							 | 
						|
								  typedef typename HyperplaneType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
							 | 
						|
								  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
							 | 
						|
								                         HyperplaneType::AmbientDimAtCompileTime> MatrixType;
							 | 
						|
								
							 | 
						|
								  VectorType p0 = VectorType::Random(dim);
							 | 
						|
								  VectorType p1 = VectorType::Random(dim);
							 | 
						|
								
							 | 
						|
								  VectorType n0 = VectorType::Random(dim).normalized();
							 | 
						|
								  VectorType n1 = VectorType::Random(dim).normalized();
							 | 
						|
								
							 | 
						|
								  HyperplaneType pl0(n0, p0);
							 | 
						|
								  HyperplaneType pl1(n1, p1);
							 | 
						|
								  HyperplaneType pl2 = pl1;
							 | 
						|
								
							 | 
						|
								  Scalar s0 = internal::random<Scalar>();
							 | 
						|
								  Scalar s1 = internal::random<Scalar>();
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
							 | 
						|
								  VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 );
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );
							 | 
						|
								
							 | 
						|
								  // transform
							 | 
						|
								  if (!NumTraits<Scalar>::IsComplex)
							 | 
						|
								  {
							 | 
						|
								    MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
							 | 
						|
								    DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
							 | 
						|
								    Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
							 | 
						|
								
							 | 
						|
								    pl2 = pl1;
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
							 | 
						|
								    pl2 = pl1;
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
							 | 
						|
								    pl2 = pl1;
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
							 | 
						|
								    pl2 = pl1;
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
							 | 
						|
								                                 .absDistance((rot*scaling*translation) * p1), Scalar(1) );
							 | 
						|
								    pl2 = pl1;
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
							 | 
						|
								                                 .absDistance((rot*translation) * p1), Scalar(1) );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // casting
							 | 
						|
								  const int Dim = HyperplaneType::AmbientDimAtCompileTime;
							 | 
						|
								  typedef typename GetDifferentType<Scalar>::type OtherScalar;
							 | 
						|
								  Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
							 | 
						|
								  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
							 | 
						|
								  Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
							 | 
						|
								  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void lines()
							 | 
						|
								{
							 | 
						|
								  typedef Hyperplane<Scalar, 2> HLine;
							 | 
						|
								  typedef ParametrizedLine<Scalar, 2> PLine;
							 | 
						|
								  typedef Matrix<Scalar,2,1> Vector;
							 | 
						|
								  typedef Matrix<Scalar,3,1> CoeffsType;
							 | 
						|
								
							 | 
						|
								  for(int i = 0; i < 10; i++)
							 | 
						|
								  {
							 | 
						|
								    Vector center = Vector::Random();
							 | 
						|
								    Vector u = Vector::Random();
							 | 
						|
								    Vector v = Vector::Random();
							 | 
						|
								    Scalar a = internal::random<Scalar>();
							 | 
						|
								    while (internal::abs(a-1) < 1e-4) a = internal::random<Scalar>();
							 | 
						|
								    while (u.norm() < 1e-4) u = Vector::Random();
							 | 
						|
								    while (v.norm() < 1e-4) v = Vector::Random();
							 | 
						|
								
							 | 
						|
								    HLine line_u = HLine::Through(center + u, center + a*u);
							 | 
						|
								    HLine line_v = HLine::Through(center + v, center + a*v);
							 | 
						|
								
							 | 
						|
								    // the line equations should be normalized so that a^2+b^2=1
							 | 
						|
								    VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
							 | 
						|
								    VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
							 | 
						|
								
							 | 
						|
								    Vector result = line_u.intersection(line_v);
							 | 
						|
								
							 | 
						|
								    // the lines should intersect at the point we called "center"
							 | 
						|
								    VERIFY_IS_APPROX(result, center);
							 | 
						|
								
							 | 
						|
								    // check conversions between two types of lines
							 | 
						|
								    PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
							 | 
						|
								    CoeffsType converted_coeffs = HLine(pl).coeffs();
							 | 
						|
								    converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]);
							 | 
						|
								    VERIFY(line_u.coeffs().isApprox(converted_coeffs));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void hyperplane_alignment()
							 | 
						|
								{
							 | 
						|
								  typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
							 | 
						|
								  typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
							 | 
						|
								
							 | 
						|
								  EIGEN_ALIGN16 Scalar array1[4];
							 | 
						|
								  EIGEN_ALIGN16 Scalar array2[4];
							 | 
						|
								  EIGEN_ALIGN16 Scalar array3[4+1];
							 | 
						|
								  Scalar* array3u = array3+1;
							 | 
						|
								
							 | 
						|
								  Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
							 | 
						|
								  Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
							 | 
						|
								  Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
							 | 
						|
								  
							 | 
						|
								  p1->coeffs().setRandom();
							 | 
						|
								  *p2 = *p1;
							 | 
						|
								  *p3 = *p1;
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
							 | 
						|
								  VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
							 | 
						|
								  
							 | 
						|
								  #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
							 | 
						|
								  if(internal::packet_traits<Scalar>::Vectorizable)
							 | 
						|
								    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
							 | 
						|
								  #endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								void test_geo_hyperplane()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
							 | 
						|
								    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
							 | 
						|
								    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
							 | 
						|
								    CALL_SUBTEST_2( hyperplane_alignment<float>() );
							 | 
						|
								    CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
							 | 
						|
								    CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
							 | 
						|
								    CALL_SUBTEST_1( lines<float>() );
							 | 
						|
								    CALL_SUBTEST_3( lines<double>() );
							 | 
						|
								  }
							 | 
						|
								}
							 |