You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							707 lines
						
					
					
						
							20 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							707 lines
						
					
					
						
							20 KiB
						
					
					
				
								/**CFile***********************************************************************
							 | 
						|
								
							 | 
						|
								  FileName    [cuddMatMult.c]
							 | 
						|
								
							 | 
						|
								  PackageName [cudd]
							 | 
						|
								
							 | 
						|
								  Synopsis    [Matrix multiplication functions.]
							 | 
						|
								
							 | 
						|
								  Description [External procedures included in this module:
							 | 
						|
										<ul>
							 | 
						|
										<li> Cudd_addMatrixMultiply()
							 | 
						|
										<li> Cudd_addTimesPlus()
							 | 
						|
										<li> Cudd_addTriangle()
							 | 
						|
										<li> Cudd_addOuterSum()
							 | 
						|
										</ul>
							 | 
						|
									Static procedures included in this module:
							 | 
						|
										<ul>
							 | 
						|
										<li> addMMRecur()
							 | 
						|
										<li> addTriangleRecur()
							 | 
						|
										<li> cuddAddOuterSumRecur()
							 | 
						|
										</ul>]
							 | 
						|
								
							 | 
						|
								  Author      [Fabio Somenzi]
							 | 
						|
								
							 | 
						|
								  Copyright   [Copyright (c) 1995-2012, Regents of the University of Colorado
							 | 
						|
								
							 | 
						|
								  All rights reserved.
							 | 
						|
								
							 | 
						|
								  Redistribution and use in source and binary forms, with or without
							 | 
						|
								  modification, are permitted provided that the following conditions
							 | 
						|
								  are met:
							 | 
						|
								
							 | 
						|
								  Redistributions of source code must retain the above copyright
							 | 
						|
								  notice, this list of conditions and the following disclaimer.
							 | 
						|
								
							 | 
						|
								  Redistributions in binary form must reproduce the above copyright
							 | 
						|
								  notice, this list of conditions and the following disclaimer in the
							 | 
						|
								  documentation and/or other materials provided with the distribution.
							 | 
						|
								
							 | 
						|
								  Neither the name of the University of Colorado nor the names of its
							 | 
						|
								  contributors may be used to endorse or promote products derived from
							 | 
						|
								  this software without specific prior written permission.
							 | 
						|
								
							 | 
						|
								  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
							 | 
						|
								  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
							 | 
						|
								  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
							 | 
						|
								  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
							 | 
						|
								  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						|
								  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
							 | 
						|
								  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
							 | 
						|
								  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
							 | 
						|
								  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
							 | 
						|
								  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
							 | 
						|
								  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
							 | 
						|
								  POSSIBILITY OF SUCH DAMAGE.]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								
							 | 
						|
								#include "util.h"
							 | 
						|
								#include "cuddInt.h"
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Constant declarations                                                     */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Stucture declarations                                                     */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Type declarations                                                         */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Variable declarations                                                     */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								#ifndef lint
							 | 
						|
								static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.18 2012/02/05 01:07:19 fabio Exp $";
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Macro declarations                                                        */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**AutomaticStart*************************************************************/
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Static function prototypes                                                */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars);
							 | 
						|
								static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube);
							 | 
						|
								static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c);
							 | 
						|
								
							 | 
						|
								/**AutomaticEnd***************************************************************/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Definition of exported functions                                          */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis [Calculates the product of two matrices represented as
							 | 
						|
								  ADDs.]
							 | 
						|
								
							 | 
						|
								  Description [Calculates the product of two matrices, A and B,
							 | 
						|
								  represented as ADDs. This procedure implements the quasiring multiplication
							 | 
						|
								  algorithm.  A is assumed to depend on variables x (rows) and z
							 | 
						|
								  (columns).  B is assumed to depend on variables z (rows) and y
							 | 
						|
								  (columns).  The product of A and B then depends on x (rows) and y
							 | 
						|
								  (columns).  Only the z variables have to be explicitly identified;
							 | 
						|
								  they are the "summation" variables.  Returns a pointer to the
							 | 
						|
								  result if successful; NULL otherwise.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								  SeeAlso     [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								DdNode *
							 | 
						|
								Cudd_addMatrixMultiply(
							 | 
						|
								  DdManager * dd,
							 | 
						|
								  DdNode * A,
							 | 
						|
								  DdNode * B,
							 | 
						|
								  DdNode ** z,
							 | 
						|
								  int  nz)
							 | 
						|
								{
							 | 
						|
								    int i, nvars, *vars;
							 | 
						|
								    DdNode *res; 
							 | 
						|
								
							 | 
						|
								    /* Array vars says what variables are "summation" variables. */
							 | 
						|
								    nvars = dd->size;
							 | 
						|
								    vars = ALLOC(int,nvars);
							 | 
						|
								    if (vars == NULL) {
							 | 
						|
									dd->errorCode = CUDD_MEMORY_OUT;
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    for (i = 0; i < nvars; i++) {
							 | 
						|
								        vars[i] = 0;
							 | 
						|
								    }
							 | 
						|
								    for (i = 0; i < nz; i++) {
							 | 
						|
								        vars[z[i]->index] = 1;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    do {
							 | 
						|
									dd->reordered = 0;
							 | 
						|
									res = addMMRecur(dd,A,B,-1,vars);
							 | 
						|
								    } while (dd->reordered == 1);
							 | 
						|
								    FREE(vars);
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of Cudd_addMatrixMultiply */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Calculates the product of two matrices represented as
							 | 
						|
								  ADDs.]
							 | 
						|
								
							 | 
						|
								  Description [Calculates the product of two matrices, A and B,
							 | 
						|
								  represented as ADDs, using the CMU matrix by matrix multiplication
							 | 
						|
								  procedure by Clarke et al..  Matrix A has x's as row variables and z's
							 | 
						|
								  as column variables, while matrix B has z's as row variables and y's
							 | 
						|
								  as column variables. Returns the pointer to the result if successful;
							 | 
						|
								  NULL otherwise. The resulting matrix has x's as row variables and y's
							 | 
						|
								  as column variables.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								  SeeAlso     [Cudd_addMatrixMultiply]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								DdNode *
							 | 
						|
								Cudd_addTimesPlus(
							 | 
						|
								  DdManager * dd,
							 | 
						|
								  DdNode * A,
							 | 
						|
								  DdNode * B,
							 | 
						|
								  DdNode ** z,
							 | 
						|
								  int  nz)
							 | 
						|
								{
							 | 
						|
								    DdNode *w, *cube, *tmp, *res; 
							 | 
						|
								    int i;
							 | 
						|
								    tmp = Cudd_addApply(dd,Cudd_addTimes,A,B);
							 | 
						|
								    if (tmp == NULL) return(NULL);
							 | 
						|
								    Cudd_Ref(tmp);
							 | 
						|
								    Cudd_Ref(cube = DD_ONE(dd));
							 | 
						|
								    for (i = nz-1; i >= 0; i--) {
							 | 
						|
									 w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd));
							 | 
						|
									 if (w == NULL) {
							 | 
						|
									    Cudd_RecursiveDeref(dd,tmp);
							 | 
						|
									    return(NULL);
							 | 
						|
									 }
							 | 
						|
									 Cudd_Ref(w);
							 | 
						|
									 Cudd_RecursiveDeref(dd,cube);
							 | 
						|
									 cube = w;
							 | 
						|
								    }
							 | 
						|
								    res = Cudd_addExistAbstract(dd,tmp,cube);
							 | 
						|
								    if (res == NULL) {
							 | 
						|
									Cudd_RecursiveDeref(dd,tmp);
							 | 
						|
									Cudd_RecursiveDeref(dd,cube);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    Cudd_Ref(res);
							 | 
						|
								    Cudd_RecursiveDeref(dd,cube);
							 | 
						|
								    Cudd_RecursiveDeref(dd,tmp);
							 | 
						|
								    Cudd_Deref(res);
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of Cudd_addTimesPlus */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Performs the triangulation step for the shortest path
							 | 
						|
								  computation.]
							 | 
						|
								
							 | 
						|
								  Description [Implements the semiring multiplication algorithm used in
							 | 
						|
								  the triangulation step for the shortest path computation.  f
							 | 
						|
								  is assumed to depend on variables x (rows) and z (columns).  g is
							 | 
						|
								  assumed to depend on variables z (rows) and y (columns).  The product
							 | 
						|
								  of f and g then depends on x (rows) and y (columns).  Only the z
							 | 
						|
								  variables have to be explicitly identified; they are the
							 | 
						|
								  "abstraction" variables.  Returns a pointer to the result if
							 | 
						|
								  successful; NULL otherwise. ]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								  SeeAlso     [Cudd_addMatrixMultiply Cudd_bddAndAbstract]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								DdNode *
							 | 
						|
								Cudd_addTriangle(
							 | 
						|
								  DdManager * dd,
							 | 
						|
								  DdNode * f,
							 | 
						|
								  DdNode * g,
							 | 
						|
								  DdNode ** z,
							 | 
						|
								  int  nz)
							 | 
						|
								{
							 | 
						|
								    int    i, nvars, *vars;
							 | 
						|
								    DdNode *res, *cube;
							 | 
						|
								
							 | 
						|
								    nvars = dd->size;
							 | 
						|
								    vars = ALLOC(int, nvars);
							 | 
						|
								    if (vars == NULL) {
							 | 
						|
									dd->errorCode = CUDD_MEMORY_OUT;
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    for (i = 0; i < nvars; i++) vars[i] = -1;
							 | 
						|
								    for (i = 0; i < nz; i++) vars[z[i]->index] = i;
							 | 
						|
								    cube = Cudd_addComputeCube(dd, z, NULL, nz);
							 | 
						|
								    if (cube == NULL) {
							 | 
						|
									FREE(vars);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    cuddRef(cube);
							 | 
						|
								
							 | 
						|
								    do {
							 | 
						|
									dd->reordered = 0;
							 | 
						|
									res = addTriangleRecur(dd, f, g, vars, cube);
							 | 
						|
								    } while (dd->reordered == 1);
							 | 
						|
								    if (res != NULL) cuddRef(res);
							 | 
						|
								    Cudd_RecursiveDeref(dd,cube);
							 | 
						|
								    if (res != NULL) cuddDeref(res);
							 | 
						|
								    FREE(vars);
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of Cudd_addTriangle */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Takes the minimum of a matrix and the outer sum of two vectors.]
							 | 
						|
								
							 | 
						|
								  Description [Takes the pointwise minimum of a matrix and the outer
							 | 
						|
								  sum of two vectors.  This procedure is used in the Floyd-Warshall
							 | 
						|
								  all-pair shortest path algorithm.  Returns a pointer to the result if
							 | 
						|
								  successful; NULL otherwise.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								  SeeAlso     []
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								DdNode *
							 | 
						|
								Cudd_addOuterSum(
							 | 
						|
								  DdManager *dd,
							 | 
						|
								  DdNode *M,
							 | 
						|
								  DdNode *r,
							 | 
						|
								  DdNode *c)
							 | 
						|
								{
							 | 
						|
								    DdNode *res;
							 | 
						|
								
							 | 
						|
								    do {
							 | 
						|
									dd->reordered = 0;
							 | 
						|
									res = cuddAddOuterSumRecur(dd, M, r, c);
							 | 
						|
								    } while (dd->reordered == 1);
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of Cudd_addOuterSum */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Definition of internal functions                                          */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								/* Definition of static functions                                            */
							 | 
						|
								/*---------------------------------------------------------------------------*/
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Performs the recursive step of Cudd_addMatrixMultiply.]
							 | 
						|
								
							 | 
						|
								  Description [Performs the recursive step of Cudd_addMatrixMultiply.
							 | 
						|
								  Returns a pointer to the result if successful; NULL otherwise.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								static DdNode *
							 | 
						|
								addMMRecur(
							 | 
						|
								  DdManager * dd,
							 | 
						|
								  DdNode * A,
							 | 
						|
								  DdNode * B,
							 | 
						|
								  int  topP,
							 | 
						|
								  int * vars)
							 | 
						|
								{
							 | 
						|
								    DdNode *zero,
							 | 
						|
								           *At,		/* positive cofactor of first operand */
							 | 
						|
									   *Ae,		/* negative cofactor of first operand */
							 | 
						|
									   *Bt,		/* positive cofactor of second operand */
							 | 
						|
									   *Be,		/* negative cofactor of second operand */
							 | 
						|
									   *t,		/* positive cofactor of result */
							 | 
						|
									   *e,		/* negative cofactor of result */
							 | 
						|
									   *scaled,	/* scaled result */
							 | 
						|
									   *add_scale,	/* ADD representing the scaling factor */
							 | 
						|
									   *res;
							 | 
						|
								    int	i;		/* loop index */
							 | 
						|
								    double scale;	/* scaling factor */
							 | 
						|
								    int index;		/* index of the top variable */
							 | 
						|
								    CUDD_VALUE_TYPE value;
							 | 
						|
								    unsigned int topA, topB, topV;
							 | 
						|
								    DD_CTFP cacheOp;
							 | 
						|
								
							 | 
						|
								    statLine(dd);
							 | 
						|
								    zero = DD_ZERO(dd);
							 | 
						|
								
							 | 
						|
								    if (A == zero || B == zero) {
							 | 
						|
								        return(zero);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    if (cuddIsConstant(A) && cuddIsConstant(B)) {
							 | 
						|
									/* Compute the scaling factor. It is 2^k, where k is the
							 | 
						|
									** number of summation variables below the current variable.
							 | 
						|
									** Indeed, these constants represent blocks of 2^k identical
							 | 
						|
									** constant values in both A and B.
							 | 
						|
									*/
							 | 
						|
									value = cuddV(A) * cuddV(B);
							 | 
						|
									for (i = 0; i < dd->size; i++) {
							 | 
						|
									    if (vars[i]) {
							 | 
						|
										if (dd->perm[i] > topP) {
							 | 
						|
										    value *= (CUDD_VALUE_TYPE) 2;
							 | 
						|
										}
							 | 
						|
									    }
							 | 
						|
									}
							 | 
						|
									res = cuddUniqueConst(dd, value);
							 | 
						|
									return(res);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /* Standardize to increase cache efficiency. Clearly, A*B != B*A
							 | 
						|
								    ** in matrix multiplication. However, which matrix is which is
							 | 
						|
								    ** determined by the variables appearing in the ADDs and not by
							 | 
						|
								    ** which one is passed as first argument.
							 | 
						|
								    */
							 | 
						|
								    if (A > B) {
							 | 
						|
									DdNode *tmp = A;
							 | 
						|
									A = B;
							 | 
						|
									B = tmp;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    topA = cuddI(dd,A->index); topB = cuddI(dd,B->index);
							 | 
						|
								    topV = ddMin(topA,topB);
							 | 
						|
								
							 | 
						|
								    cacheOp = (DD_CTFP) addMMRecur;
							 | 
						|
								    res = cuddCacheLookup2(dd,cacheOp,A,B);
							 | 
						|
								    if (res != NULL) {
							 | 
						|
									/* If the result is 0, there is no need to normalize.
							 | 
						|
									** Otherwise we count the number of z variables between
							 | 
						|
									** the current depth and the top of the ADDs. These are
							 | 
						|
									** the missing variables that determine the size of the
							 | 
						|
									** constant blocks.
							 | 
						|
									*/
							 | 
						|
									if (res == zero) return(res);
							 | 
						|
									scale = 1.0;
							 | 
						|
									for (i = 0; i < dd->size; i++) {
							 | 
						|
									    if (vars[i]) {
							 | 
						|
										if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
							 | 
						|
										    scale *= 2;
							 | 
						|
										}
							 | 
						|
									    }
							 | 
						|
									}
							 | 
						|
									if (scale > 1.0) {
							 | 
						|
									    cuddRef(res);
							 | 
						|
									    add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
							 | 
						|
									    if (add_scale == NULL) {
							 | 
						|
										Cudd_RecursiveDeref(dd, res);
							 | 
						|
										return(NULL);
							 | 
						|
									    }
							 | 
						|
									    cuddRef(add_scale);
							 | 
						|
									    scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
							 | 
						|
									    if (scaled == NULL) {
							 | 
						|
										Cudd_RecursiveDeref(dd, add_scale);
							 | 
						|
										Cudd_RecursiveDeref(dd, res);
							 | 
						|
										return(NULL);
							 | 
						|
									    }
							 | 
						|
									    cuddRef(scaled);
							 | 
						|
									    Cudd_RecursiveDeref(dd, add_scale);
							 | 
						|
									    Cudd_RecursiveDeref(dd, res);
							 | 
						|
									    res = scaled;
							 | 
						|
									    cuddDeref(res);
							 | 
						|
									}
							 | 
						|
								        return(res);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /* compute the cofactors */
							 | 
						|
								    if (topV == topA) {
							 | 
						|
									At = cuddT(A);
							 | 
						|
									Ae = cuddE(A);
							 | 
						|
								    } else {
							 | 
						|
									At = Ae = A;
							 | 
						|
								    }
							 | 
						|
								    if (topV == topB) {
							 | 
						|
									Bt = cuddT(B);
							 | 
						|
									Be = cuddE(B);
							 | 
						|
								    } else {
							 | 
						|
									Bt = Be = B;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    t = addMMRecur(dd, At, Bt, (int)topV, vars);
							 | 
						|
								    if (t == NULL) return(NULL);
							 | 
						|
								    cuddRef(t);
							 | 
						|
								    e = addMMRecur(dd, Ae, Be, (int)topV, vars);
							 | 
						|
								    if (e == NULL) {
							 | 
						|
									Cudd_RecursiveDeref(dd, t);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    cuddRef(e);
							 | 
						|
								
							 | 
						|
								    index = dd->invperm[topV];
							 | 
						|
								    if (vars[index] == 0) {
							 | 
						|
									/* We have split on either the rows of A or the columns
							 | 
						|
									** of B. We just need to connect the two subresults,
							 | 
						|
									** which correspond to two submatrices of the result.
							 | 
						|
									*/
							 | 
						|
									res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
							 | 
						|
									if (res == NULL) {
							 | 
						|
									    Cudd_RecursiveDeref(dd, t);
							 | 
						|
									    Cudd_RecursiveDeref(dd, e);
							 | 
						|
									    return(NULL);
							 | 
						|
									}
							 | 
						|
									cuddRef(res);
							 | 
						|
									cuddDeref(t);
							 | 
						|
									cuddDeref(e);
							 | 
						|
								    } else {
							 | 
						|
									/* we have simultaneously split on the columns of A and
							 | 
						|
									** the rows of B. The two subresults must be added.
							 | 
						|
									*/
							 | 
						|
									res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e);
							 | 
						|
									if (res == NULL) {
							 | 
						|
									    Cudd_RecursiveDeref(dd, t);
							 | 
						|
									    Cudd_RecursiveDeref(dd, e);
							 | 
						|
									    return(NULL);
							 | 
						|
									}
							 | 
						|
									cuddRef(res);
							 | 
						|
									Cudd_RecursiveDeref(dd, t);
							 | 
						|
									Cudd_RecursiveDeref(dd, e);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    cuddCacheInsert2(dd,cacheOp,A,B,res);
							 | 
						|
								
							 | 
						|
								    /* We have computed (and stored in the computed table) a minimal
							 | 
						|
								    ** result; that is, a result that assumes no summation variables
							 | 
						|
								    ** between the current depth of the recursion and its top
							 | 
						|
								    ** variable. We now take into account the z variables by properly
							 | 
						|
								    ** scaling the result.
							 | 
						|
								    */
							 | 
						|
								    if (res != zero) {
							 | 
						|
									scale = 1.0;
							 | 
						|
									for (i = 0; i < dd->size; i++) {
							 | 
						|
									    if (vars[i]) {
							 | 
						|
										if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
							 | 
						|
										    scale *= 2;
							 | 
						|
										}
							 | 
						|
									    }
							 | 
						|
									}
							 | 
						|
									if (scale > 1.0) {
							 | 
						|
									    add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
							 | 
						|
									    if (add_scale == NULL) {
							 | 
						|
										Cudd_RecursiveDeref(dd, res);
							 | 
						|
										return(NULL);
							 | 
						|
									    }
							 | 
						|
									    cuddRef(add_scale);
							 | 
						|
									    scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
							 | 
						|
									    if (scaled == NULL) {
							 | 
						|
										Cudd_RecursiveDeref(dd, res);
							 | 
						|
										Cudd_RecursiveDeref(dd, add_scale);
							 | 
						|
										return(NULL);
							 | 
						|
									    }
							 | 
						|
									    cuddRef(scaled);
							 | 
						|
									    Cudd_RecursiveDeref(dd, add_scale);
							 | 
						|
									    Cudd_RecursiveDeref(dd, res);
							 | 
						|
									    res = scaled;
							 | 
						|
									}
							 | 
						|
								    }
							 | 
						|
								    cuddDeref(res);
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of addMMRecur */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Performs the recursive step of Cudd_addTriangle.]
							 | 
						|
								
							 | 
						|
								  Description [Performs the recursive step of Cudd_addTriangle. Returns
							 | 
						|
								  a pointer to the result if successful; NULL otherwise.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								static DdNode *
							 | 
						|
								addTriangleRecur(
							 | 
						|
								  DdManager * dd,
							 | 
						|
								  DdNode * f,
							 | 
						|
								  DdNode * g,
							 | 
						|
								  int * vars,
							 | 
						|
								  DdNode *cube)
							 | 
						|
								{
							 | 
						|
								    DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res;
							 | 
						|
								    CUDD_VALUE_TYPE value;
							 | 
						|
								    int top, topf, topg, index;
							 | 
						|
								
							 | 
						|
								    statLine(dd);
							 | 
						|
								    if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) {
							 | 
						|
									return(DD_PLUS_INFINITY(dd));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    if (cuddIsConstant(f) && cuddIsConstant(g)) {
							 | 
						|
									value = cuddV(f) + cuddV(g);
							 | 
						|
									res = cuddUniqueConst(dd, value);
							 | 
						|
									return(res);
							 | 
						|
								    }
							 | 
						|
								    if (f < g) {
							 | 
						|
									DdNode *tmp = f;
							 | 
						|
									f = g;
							 | 
						|
									g = tmp;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    if (f->ref != 1 || g->ref != 1) {
							 | 
						|
									res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube);
							 | 
						|
									if (res != NULL) {
							 | 
						|
									    return(res);
							 | 
						|
									}
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    topf = cuddI(dd,f->index); topg = cuddI(dd,g->index);
							 | 
						|
								    top = ddMin(topf,topg);
							 | 
						|
								
							 | 
						|
								    if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
							 | 
						|
								    if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}
							 | 
						|
								
							 | 
						|
								    t = addTriangleRecur(dd, fv, gv, vars, cube);
							 | 
						|
								    if (t == NULL) return(NULL);
							 | 
						|
								    cuddRef(t);
							 | 
						|
								    e = addTriangleRecur(dd, fvn, gvn, vars, cube);
							 | 
						|
								    if (e == NULL) {
							 | 
						|
									Cudd_RecursiveDeref(dd, t);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    cuddRef(e);
							 | 
						|
								
							 | 
						|
								    index = dd->invperm[top];
							 | 
						|
								    if (vars[index] < 0) {
							 | 
						|
									res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
							 | 
						|
									if (res == NULL) {
							 | 
						|
									    Cudd_RecursiveDeref(dd, t);
							 | 
						|
									    Cudd_RecursiveDeref(dd, e);
							 | 
						|
									    return(NULL);
							 | 
						|
									}
							 | 
						|
									cuddDeref(t);
							 | 
						|
									cuddDeref(e);
							 | 
						|
								    } else {
							 | 
						|
									res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e);
							 | 
						|
									if (res == NULL) {
							 | 
						|
									    Cudd_RecursiveDeref(dd, t);
							 | 
						|
									    Cudd_RecursiveDeref(dd, e);
							 | 
						|
									    return(NULL);
							 | 
						|
									}
							 | 
						|
									cuddRef(res);
							 | 
						|
									Cudd_RecursiveDeref(dd, t);
							 | 
						|
									Cudd_RecursiveDeref(dd, e);
							 | 
						|
									cuddDeref(res);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    if (f->ref != 1 || g->ref != 1) {
							 | 
						|
									cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res);
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    return(res);
							 | 
						|
								
							 | 
						|
								} /* end of addTriangleRecur */
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								/**Function********************************************************************
							 | 
						|
								
							 | 
						|
								  Synopsis    [Performs the recursive step of Cudd_addOuterSum.]
							 | 
						|
								
							 | 
						|
								  Description [Performs the recursive step of Cudd_addOuterSum.
							 | 
						|
								  Returns a pointer to the result if successful; NULL otherwise.]
							 | 
						|
								
							 | 
						|
								  SideEffects [None]
							 | 
						|
								
							 | 
						|
								  SeeAlso     []
							 | 
						|
								
							 | 
						|
								******************************************************************************/
							 | 
						|
								static DdNode *
							 | 
						|
								cuddAddOuterSumRecur(
							 | 
						|
								  DdManager *dd,
							 | 
						|
								  DdNode *M,
							 | 
						|
								  DdNode *r,
							 | 
						|
								  DdNode *c)
							 | 
						|
								{
							 | 
						|
								    DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re;
							 | 
						|
								    int topM, topc, topr;
							 | 
						|
								    int v, index;
							 | 
						|
								
							 | 
						|
								    statLine(dd);
							 | 
						|
								    /* Check special cases. */
							 | 
						|
								    if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); 
							 | 
						|
								
							 | 
						|
								    if (cuddIsConstant(c) && cuddIsConstant(r)) {
							 | 
						|
									R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r));
							 | 
						|
									cuddRef(R);
							 | 
						|
									if (cuddIsConstant(M)) {
							 | 
						|
									    if (cuddV(R) <= cuddV(M)) {
							 | 
						|
										cuddDeref(R);
							 | 
						|
									        return(R);
							 | 
						|
									    } else {
							 | 
						|
									        Cudd_RecursiveDeref(dd,R);       
							 | 
						|
										return(M);
							 | 
						|
									    }
							 | 
						|
									} else {
							 | 
						|
									    P = Cudd_addApply(dd,Cudd_addMinimum,R,M);
							 | 
						|
									    cuddRef(P);
							 | 
						|
									    Cudd_RecursiveDeref(dd,R);
							 | 
						|
									    cuddDeref(P);
							 | 
						|
									    return(P);
							 | 
						|
									}
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /* Check the cache. */
							 | 
						|
								    R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c);
							 | 
						|
								    if (R != NULL) return(R);
							 | 
						|
								
							 | 
						|
								    topM = cuddI(dd,M->index); topr = cuddI(dd,r->index);
							 | 
						|
								    topc = cuddI(dd,c->index);
							 | 
						|
								    v = ddMin(topM,ddMin(topr,topc));
							 | 
						|
								
							 | 
						|
								    /* Compute cofactors. */
							 | 
						|
								    if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; }
							 | 
						|
								    if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; }
							 | 
						|
								    if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; }
							 | 
						|
								
							 | 
						|
								    /* Recursively solve. */
							 | 
						|
								    Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct);
							 | 
						|
								    if (Rt == NULL) return(NULL);
							 | 
						|
								    cuddRef(Rt);
							 | 
						|
								    Re = cuddAddOuterSumRecur(dd,Me,re,ce);
							 | 
						|
								    if (Re == NULL) {
							 | 
						|
									Cudd_RecursiveDeref(dd, Rt);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    cuddRef(Re);
							 | 
						|
								    index = dd->invperm[v];
							 | 
						|
								    R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re);
							 | 
						|
								    if (R == NULL) {
							 | 
						|
									Cudd_RecursiveDeref(dd, Rt);
							 | 
						|
									Cudd_RecursiveDeref(dd, Re);
							 | 
						|
									return(NULL);
							 | 
						|
								    }
							 | 
						|
								    cuddDeref(Rt);
							 | 
						|
								    cuddDeref(Re);
							 | 
						|
								
							 | 
						|
								    /* Store the result in the cache. */
							 | 
						|
								    cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R);
							 | 
						|
								
							 | 
						|
								    return(R);
							 | 
						|
								
							 | 
						|
								} /* end of cuddAddOuterSumRecur */
							 |