You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							345 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							345 lines
						
					
					
						
							11 KiB
						
					
					
				| #include <typeinfo> | |
| #include <iostream> | |
| #include <Eigen/Core> | |
| #include "BenchTimer.h" | |
| using namespace Eigen; | |
| using namespace std; | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v) | |
| { | |
|   return v.norm(); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v) | |
| { | |
|   return v.hypotNorm(); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v) | |
| { | |
|   return v.blueNorm(); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) | |
| { | |
|   typedef typename T::Scalar Scalar; | |
|   int n = v.size(); | |
|   Scalar scale = 0; | |
|   Scalar ssq = 1; | |
|   for (int i=0;i<n;++i) | |
|   { | |
|     Scalar ax = internal::abs(v.coeff(i)); | |
|     if (scale >= ax) | |
|     { | |
|       ssq += internal::abs2(ax/scale); | |
|     } | |
|     else | |
|     { | |
|       ssq = Scalar(1) + ssq * internal::abs2(scale/ax); | |
|       scale = ax; | |
|     } | |
|   } | |
|   return scale * internal::sqrt(ssq); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) | |
| { | |
|   typedef typename T::Scalar Scalar; | |
|   Scalar s = v.cwise().abs().maxCoeff(); | |
|   return s*(v/s).norm(); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) | |
| { | |
|   return v.stableNorm(); | |
| } | |
| 
 | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) | |
| { | |
|   int n =v.size() / 2; | |
|   for (int i=0;i<n;++i) | |
|     v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); | |
|   n = n/2; | |
|   while (n>0) | |
|   { | |
|     for (int i=0;i<n;++i) | |
|       v(i) = v(2*i) + v(2*i+1); | |
|     n = n/2; | |
|   } | |
|   return internal::sqrt(v(0)); | |
| } | |
| 
 | |
| #ifdef EIGEN_VECTORIZE | |
| Packet4f internal::plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } | |
| Packet2d internal::plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } | |
| 
 | |
| Packet4f internal::pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } | |
| Packet2d internal::pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } | |
| #endif | |
|  | |
| template<typename T> | |
| EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) | |
| { | |
|   #ifndef EIGEN_VECTORIZE | |
|   return v.blueNorm(); | |
|   #else | |
|   typedef typename T::Scalar Scalar; | |
| 
 | |
|   static int nmax = 0; | |
|   static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; | |
|   int n; | |
| 
 | |
|   if(nmax <= 0) | |
|   { | |
|     int nbig, ibeta, it, iemin, iemax, iexp; | |
|     Scalar abig, eps; | |
| 
 | |
|     nbig  = std::numeric_limits<int>::max();            // largest integer | |
|     ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base;                    // base for floating-point numbers | |
|     it    = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa;                // number of base-beta digits in mantissa | |
|     iemin = std::numeric_limits<Scalar>::min_exponent;  // minimum exponent | |
|     iemax = std::numeric_limits<Scalar>::max_exponent;  // maximum exponent | |
|     rbig  = std::numeric_limits<Scalar>::max();         // largest floating-point number | |
|  | |
|     // Check the basic machine-dependent constants. | |
|     if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) | |
|       || (it<=4 && ibeta <= 3 ) || it<2) | |
|     { | |
|       eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); | |
|     } | |
|     iexp  = -((1-iemin)/2); | |
|     b1    = std::pow(ibeta, iexp);  // lower boundary of midrange | |
|     iexp  = (iemax + 1 - it)/2; | |
|     b2    = std::pow(ibeta,iexp);   // upper boundary of midrange | |
|  | |
|     iexp  = (2-iemin)/2; | |
|     s1m   = std::pow(ibeta,iexp);   // scaling factor for lower range | |
|     iexp  = - ((iemax+it)/2); | |
|     s2m   = std::pow(ibeta,iexp);   // scaling factor for upper range | |
|  | |
|     overfl  = rbig*s2m;          // overfow boundary for abig | |
|     eps     = std::pow(ibeta, 1-it); | |
|     relerr  = internal::sqrt(eps);      // tolerance for neglecting asml | |
|     abig    = 1.0/eps - 1.0; | |
|     if (Scalar(nbig)>abig)  nmax = abig;  // largest safe n | |
|     else                    nmax = nbig; | |
|   } | |
| 
 | |
|   typedef typename internal::packet_traits<Scalar>::type Packet; | |
|   const int ps = internal::packet_traits<Scalar>::size; | |
|   Packet pasml = internal::pset1(Scalar(0)); | |
|   Packet pamed = internal::pset1(Scalar(0)); | |
|   Packet pabig = internal::pset1(Scalar(0)); | |
|   Packet ps2m = internal::pset1(s2m); | |
|   Packet ps1m = internal::pset1(s1m); | |
|   Packet pb2  = internal::pset1(b2); | |
|   Packet pb1  = internal::pset1(b1); | |
|   for(int j=0; j<v.size(); j+=ps) | |
|   { | |
|     Packet ax = internal::pabs(v.template packet<Aligned>(j)); | |
|     Packet ax_s2m = internal::pmul(ax,ps2m); | |
|     Packet ax_s1m = internal::pmul(ax,ps1m); | |
|     Packet maskBig = internal::plt(pb2,ax); | |
|     Packet maskSml = internal::plt(ax,pb1); | |
| 
 | |
| //     Packet maskMed = internal::pand(maskSml,maskBig); | |
| //     Packet scale = internal::pset1(Scalar(0)); | |
| //     scale = internal::por(scale, internal::pand(maskBig,ps2m)); | |
| //     scale = internal::por(scale, internal::pand(maskSml,ps1m)); | |
| //     scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); | |
| //     ax = internal::pmul(ax,scale); | |
| //     ax = internal::pmul(ax,ax); | |
| //     pabig = internal::padd(pabig, internal::pand(maskBig, ax)); | |
| //     pasml = internal::padd(pasml, internal::pand(maskSml, ax)); | |
| //     pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); | |
|  | |
| 
 | |
|     pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m))); | |
|     pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m))); | |
|     pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig))); | |
|   } | |
|   Scalar abig = internal::predux(pabig); | |
|   Scalar asml = internal::predux(pasml); | |
|   Scalar amed = internal::predux(pamed); | |
|   if(abig > Scalar(0)) | |
|   { | |
|     abig = internal::sqrt(abig); | |
|     if(abig > overfl) | |
|     { | |
|       eigen_assert(false && "overflow"); | |
|       return rbig; | |
|     } | |
|     if(amed > Scalar(0)) | |
|     { | |
|       abig = abig/s2m; | |
|       amed = internal::sqrt(amed); | |
|     } | |
|     else | |
|     { | |
|       return abig/s2m; | |
|     } | |
| 
 | |
|   } | |
|   else if(asml > Scalar(0)) | |
|   { | |
|     if (amed > Scalar(0)) | |
|     { | |
|       abig = internal::sqrt(amed); | |
|       amed = internal::sqrt(asml) / s1m; | |
|     } | |
|     else | |
|     { | |
|       return internal::sqrt(asml)/s1m; | |
|     } | |
|   } | |
|   else | |
|   { | |
|     return internal::sqrt(amed); | |
|   } | |
|   asml = std::min(abig, amed); | |
|   abig = std::max(abig, amed); | |
|   if(asml <= abig*relerr) | |
|     return abig; | |
|   else | |
|     return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)); | |
|   #endif | |
| } | |
| 
 | |
| #define BENCH_PERF(NRM) { \ | |
|   Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ | |
|   for (int k=0; k<tries; ++k) { \ | |
|     tf.start(); \ | |
|     for (int i=0; i<iters; ++i) NRM(vf); \ | |
|     tf.stop(); \ | |
|   } \ | |
|   for (int k=0; k<tries; ++k) { \ | |
|     td.start(); \ | |
|     for (int i=0; i<iters; ++i) NRM(vd); \ | |
|     td.stop(); \ | |
|   } \ | |
|   for (int k=0; k<std::max(1,tries/3); ++k) { \ | |
|     tcf.start(); \ | |
|     for (int i=0; i<iters; ++i) NRM(vcf); \ | |
|     tcf.stop(); \ | |
|   } \ | |
|   std::cout << #NRM << "\t" << tf.value() << "   " << td.value() <<  "    " << tcf.value() << "\n"; \ | |
| } | |
|  | |
| void check_accuracy(double basef, double based, int s) | |
| { | |
|   double yf = basef * internal::abs(internal::random<double>()); | |
|   double yd = based * internal::abs(internal::random<double>()); | |
|   VectorXf vf = VectorXf::Ones(s) * yf; | |
|   VectorXd vd = VectorXd::Ones(s) * yd; | |
| 
 | |
|   std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; | |
|   std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; | |
|   std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; | |
|   std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; | |
|   std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; | |
|   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; | |
|   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; | |
|   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; | |
| } | |
| 
 | |
| void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) | |
| { | |
|   VectorXf vf(s); | |
|   VectorXd vd(s); | |
|   for (int i=0; i<s; ++i) | |
|   { | |
|     vf[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1)); | |
|     vd[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1)); | |
|   } | |
| 
 | |
|   //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; | |
|   std::cout << "sqsumNorm\t"  << sqsumNorm(vf)  << "\t" << sqsumNorm(vd)  << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; | |
|   std::cout << "hypotNorm\t"  << hypotNorm(vf)  << "\t" << hypotNorm(vd)  << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; | |
|   std::cout << "blueNorm\t"   << blueNorm(vf)   << "\t" << blueNorm(vd)   << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | |
|   std::cout << "pblueNorm\t"  << pblueNorm(vf)  << "\t" << pblueNorm(vd)  << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | |
|   std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; | |
|   std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; | |
| //   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; | |
| } | |
| 
 | |
| int main(int argc, char** argv) | |
| { | |
|   int tries = 10; | |
|   int iters = 100000; | |
|   double y = 1.1345743233455785456788e12 * internal::random<double>(); | |
|   VectorXf v = VectorXf::Ones(1024) * y; | |
| 
 | |
| // return 0; | |
|   int s = 10000; | |
|   double basef_ok = 1.1345743233455785456788e15; | |
|   double based_ok = 1.1345743233455785456788e95; | |
| 
 | |
|   double basef_under = 1.1345743233455785456788e-27; | |
|   double based_under = 1.1345743233455785456788e-303; | |
| 
 | |
|   double basef_over = 1.1345743233455785456788e+27; | |
|   double based_over = 1.1345743233455785456788e+302; | |
| 
 | |
|   std::cout.precision(20); | |
| 
 | |
|   std::cerr << "\nNo under/overflow:\n"; | |
|   check_accuracy(basef_ok, based_ok, s); | |
| 
 | |
|   std::cerr << "\nUnderflow:\n"; | |
|   check_accuracy(basef_under, based_under, s); | |
| 
 | |
|   std::cerr << "\nOverflow:\n"; | |
|   check_accuracy(basef_over, based_over, s); | |
| 
 | |
|   std::cerr << "\nVarying (over):\n"; | |
|   for (int k=0; k<1; ++k) | |
|   { | |
|     check_accuracy_var(20,27,190,302,s); | |
|     std::cout << "\n"; | |
|   } | |
| 
 | |
|   std::cerr << "\nVarying (under):\n"; | |
|   for (int k=0; k<1; ++k) | |
|   { | |
|     check_accuracy_var(-27,20,-302,-190,s); | |
|     std::cout << "\n"; | |
|   } | |
| 
 | |
|   std::cout.precision(4); | |
|   std::cerr << "Performance (out of cache):\n"; | |
|   { | |
|     int iters = 1; | |
|     VectorXf vf = VectorXf::Random(1024*1024*32) * y; | |
|     VectorXd vd = VectorXd::Random(1024*1024*32) * y; | |
|     VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y; | |
|     BENCH_PERF(sqsumNorm); | |
|     BENCH_PERF(blueNorm); | |
| //     BENCH_PERF(pblueNorm); | |
| //     BENCH_PERF(lapackNorm); | |
| //     BENCH_PERF(hypotNorm); | |
| //     BENCH_PERF(twopassNorm); | |
|     BENCH_PERF(bl2passNorm); | |
|   } | |
| 
 | |
|   std::cerr << "\nPerformance (in cache):\n"; | |
|   { | |
|     int iters = 100000; | |
|     VectorXf vf = VectorXf::Random(512) * y; | |
|     VectorXd vd = VectorXd::Random(512) * y; | |
|     VectorXcf vcf = VectorXcf::Random(512) * y; | |
|     BENCH_PERF(sqsumNorm); | |
|     BENCH_PERF(blueNorm); | |
| //     BENCH_PERF(pblueNorm); | |
| //     BENCH_PERF(lapackNorm); | |
| //     BENCH_PERF(hypotNorm); | |
| //     BENCH_PERF(twopassNorm); | |
|     BENCH_PERF(bl2passNorm); | |
|   } | |
| }
 |