618 lines
36 KiB

#include "src/generator/JaniNextStateGenerator.h"
#include "src/models/sparse/StateLabeling.h"
#include "src/storage/expressions/SimpleValuation.h"
#include "src/solver/SmtSolver.h"
#include "src/utility/constants.h"
#include "src/utility/macros.h"
#include "src/utility/solver.h"
#include "src/exceptions/InvalidSettingsException.h"
#include "src/exceptions/WrongFormatException.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace generator {
template<typename ValueType, typename StateType>
JaniNextStateGenerator<ValueType, StateType>::JaniNextStateGenerator(storm::jani::Model const& model, NextStateGeneratorOptions const& options) : JaniNextStateGenerator(model.substituteConstants(), options, false) {
// Intentionally left empty.
}
template<typename ValueType, typename StateType>
JaniNextStateGenerator<ValueType, StateType>::JaniNextStateGenerator(storm::jani::Model const& model, NextStateGeneratorOptions const& options, bool flag) : NextStateGenerator<ValueType, StateType>(model.getExpressionManager(), VariableInformation(model), options), model(model), rewardVariables() {
STORM_LOG_THROW(model.hasDefaultComposition(), storm::exceptions::WrongFormatException, "The explicit next-state generator currently does not support custom system compositions.");
STORM_LOG_THROW(!model.hasNonGlobalTransientVariable(), storm::exceptions::InvalidSettingsException, "The explicit next-state generator currently does not support automata-local transient variables.");
STORM_LOG_THROW(!this->options.isBuildChoiceLabelsSet(), storm::exceptions::InvalidSettingsException, "JANI next-state generator cannot generate choice labels.");
if (this->options.isBuildAllRewardModelsSet()) {
for (auto const& variable : model.getGlobalVariables()) {
if (variable.isTransient()) {
rewardVariables.push_back(variable.getExpressionVariable());
}
}
} else {
// Extract the reward models from the program based on the names we were given.
auto const& globalVariables = model.getGlobalVariables();
for (auto const& rewardModelName : this->options.getRewardModelNames()) {
if (globalVariables.hasVariable(rewardModelName)) {
rewardVariables.push_back(globalVariables.getVariable(rewardModelName).getExpressionVariable());
} else {
STORM_LOG_THROW(rewardModelName.empty(), storm::exceptions::InvalidArgumentException, "Cannot build unknown reward model '" << rewardModelName << "'.");
STORM_LOG_THROW(globalVariables.getNumberOfTransientVariables() == 1, storm::exceptions::InvalidArgumentException, "Reference to standard reward model is ambiguous.");
}
}
// If no reward model was yet added, but there was one that was given in the options, we try to build the
// standard reward model.
if (rewardVariables.empty() && !this->options.getRewardModelNames().empty()) {
rewardVariables.push_back(globalVariables.getTransientVariables().front()->getExpressionVariable());
}
}
// Build the information structs for the reward models.
buildRewardModelInformation();
// If there are terminal states we need to handle, we now need to translate all labels to expressions.
if (this->options.hasTerminalStates()) {
for (auto const& expressionOrLabelAndBool : this->options.getTerminalStates()) {
if (expressionOrLabelAndBool.first.isExpression()) {
this->terminalStates.push_back(std::make_pair(expressionOrLabelAndBool.first.getExpression(), expressionOrLabelAndBool.second));
} else {
STORM_LOG_THROW(expressionOrLabelAndBool.first.getLabel() == "init" || expressionOrLabelAndBool.first.getLabel() == "deadlock", storm::exceptions::InvalidSettingsException, "Terminal states refer to illegal label '" << expressionOrLabelAndBool.first.getLabel() << "'.");
}
}
}
}
template<typename ValueType, typename StateType>
ModelType JaniNextStateGenerator<ValueType, StateType>::getModelType() const {
switch (model.getModelType()) {
case storm::jani::ModelType::DTMC: return ModelType::DTMC;
case storm::jani::ModelType::CTMC: return ModelType::CTMC;
case storm::jani::ModelType::MDP: return ModelType::MDP;
case storm::jani::ModelType::MA: return ModelType::MA;
default:
STORM_LOG_THROW(false, storm::exceptions::WrongFormatException, "Invalid model type.");
}
}
template<typename ValueType, typename StateType>
bool JaniNextStateGenerator<ValueType, StateType>::isDeterministicModel() const {
return model.isDeterministicModel();
}
template<typename ValueType, typename StateType>
bool JaniNextStateGenerator<ValueType, StateType>::isDiscreteTimeModel() const {
return model.isDiscreteTimeModel();
}
template<typename ValueType, typename StateType>
uint64_t JaniNextStateGenerator<ValueType, StateType>::getLocation(CompressedState const& state, LocationVariableInformation const& locationVariable) const {
if (locationVariable.bitWidth == 0) {
return 0;
} else {
return state.getAsInt(locationVariable.bitOffset, locationVariable.bitWidth);
}
}
template<typename ValueType, typename StateType>
void JaniNextStateGenerator<ValueType, StateType>::setLocation(CompressedState& state, LocationVariableInformation const& locationVariable, uint64_t locationIndex) const {
if (locationVariable.bitWidth != 0) {
state.setFromInt(locationVariable.bitOffset, locationVariable.bitWidth, locationIndex);
}
}
template<typename ValueType, typename StateType>
std::vector<uint64_t> JaniNextStateGenerator<ValueType, StateType>::getLocations(CompressedState const& state) const {
std::vector<uint64_t> result(this->variableInformation.locationVariables.size());
auto resultIt = result.begin();
for (auto it = this->variableInformation.locationVariables.begin(), ite = this->variableInformation.locationVariables.end(); it != ite; ++it, ++resultIt) {
*resultIt = getLocation(state, *it);
}
return result;
}
template<typename ValueType, typename StateType>
std::vector<StateType> JaniNextStateGenerator<ValueType, StateType>::getInitialStates(StateToIdCallback const& stateToIdCallback) {
// Prepare an SMT solver to enumerate all initial states.
storm::utility::solver::SmtSolverFactory factory;
std::unique_ptr<storm::solver::SmtSolver> solver = factory.create(model.getExpressionManager());
std::vector<storm::expressions::Expression> rangeExpressions = model.getAllRangeExpressions();
for (auto const& expression : rangeExpressions) {
solver->add(expression);
}
solver->add(model.getInitialStatesExpression(true));
// Proceed as long as the solver can still enumerate initial states.
std::vector<StateType> initialStateIndices;
while (solver->check() == storm::solver::SmtSolver::CheckResult::Sat) {
// Create fresh state.
CompressedState initialState(this->variableInformation.getTotalBitOffset());
// Read variable assignment from the solution of the solver. Also, create an expression we can use to
// prevent the variable assignment from being enumerated again.
storm::expressions::Expression blockingExpression;
std::shared_ptr<storm::solver::SmtSolver::ModelReference> model = solver->getModel();
for (auto const& booleanVariable : this->variableInformation.booleanVariables) {
bool variableValue = model->getBooleanValue(booleanVariable.variable);
storm::expressions::Expression localBlockingExpression = variableValue ? !booleanVariable.variable : booleanVariable.variable;
blockingExpression = blockingExpression.isInitialized() ? blockingExpression || localBlockingExpression : localBlockingExpression;
initialState.set(booleanVariable.bitOffset, variableValue);
}
for (auto const& integerVariable : this->variableInformation.integerVariables) {
int_fast64_t variableValue = model->getIntegerValue(integerVariable.variable);
storm::expressions::Expression localBlockingExpression = integerVariable.variable != model->getManager().integer(variableValue);
blockingExpression = blockingExpression.isInitialized() ? blockingExpression || localBlockingExpression : localBlockingExpression;
initialState.setFromInt(integerVariable.bitOffset, integerVariable.bitWidth, static_cast<uint_fast64_t>(variableValue - integerVariable.lowerBound));
}
// Gather iterators to the initial locations of all the automata.
std::vector<std::set<uint64_t>::const_iterator> initialLocationsIterators;
uint64_t currentLocationVariable = 0;
for (auto const& automaton : this->model.getAutomata()) {
initialLocationsIterators.push_back(automaton.getInitialLocationIndices().cbegin());
// Initialize the locations to the first possible combination.
setLocation(initialState, this->variableInformation.locationVariables[currentLocationVariable], *initialLocationsIterators.back());
++currentLocationVariable;
}
// Now iterate through all combinations of initial locations.
while (true) {
// Register initial state.
StateType id = stateToIdCallback(initialState);
initialStateIndices.push_back(id);
uint64_t index = 0;
for (; index < initialLocationsIterators.size(); ++index) {
++initialLocationsIterators[index];
if (initialLocationsIterators[index] == this->model.getAutomata()[index].getInitialLocationIndices().cend()) {
initialLocationsIterators[index] = this->model.getAutomata()[index].getInitialLocationIndices().cbegin();
} else {
break;
}
}
// If we are at the end, leave the loop. Otherwise, create the next initial state.
if (index == initialLocationsIterators.size()) {
break;
} else {
for (uint64_t j = 0; j <= index; ++j) {
setLocation(initialState, this->variableInformation.locationVariables[j], *initialLocationsIterators[j]);
}
}
}
// Block the current initial state to search for the next one.
if (!blockingExpression.isInitialized()) {
break;
}
solver->add(blockingExpression);
}
return initialStateIndices;
}
template<typename ValueType, typename StateType>
CompressedState JaniNextStateGenerator<ValueType, StateType>::applyUpdate(CompressedState const& state, storm::jani::EdgeDestination const& destination) {
CompressedState newState(state);
auto assignmentIt = destination.getNonTransientAssignments().begin();
auto assignmentIte = destination.getNonTransientAssignments().end();
// Iterate over all boolean assignments and carry them out.
auto boolIt = this->variableInformation.booleanVariables.begin();
for (; assignmentIt != assignmentIte && assignmentIt->getAssignedExpression().hasBooleanType(); ++assignmentIt) {
while (assignmentIt->getExpressionVariable() != boolIt->variable) {
++boolIt;
}
newState.set(boolIt->bitOffset, this->evaluator.asBool(assignmentIt->getAssignedExpression()));
}
// Iterate over all integer assignments and carry them out.
auto integerIt = this->variableInformation.integerVariables.begin();
for (; assignmentIt != assignmentIte && assignmentIt->getAssignedExpression().hasIntegerType(); ++assignmentIt) {
while (assignmentIt->getExpressionVariable() != integerIt->variable) {
++integerIt;
}
int_fast64_t assignedValue = this->evaluator.asInt(assignmentIt->getAssignedExpression());
STORM_LOG_THROW(assignedValue <= integerIt->upperBound, storm::exceptions::WrongFormatException, "The update " << assignmentIt->getExpressionVariable().getName() << " := " << assignmentIt->getAssignedExpression() << " leads to an out-of-bounds value (" << assignedValue << ") for the variable '" << assignmentIt->getExpressionVariable().getName() << "'.");
newState.setFromInt(integerIt->bitOffset, integerIt->bitWidth, assignedValue - integerIt->lowerBound);
STORM_LOG_ASSERT(static_cast<int_fast64_t>(newState.getAsInt(integerIt->bitOffset, integerIt->bitWidth)) + integerIt->lowerBound == assignedValue, "Writing to the bit vector bucket failed (read " << newState.getAsInt(integerIt->bitOffset, integerIt->bitWidth) << " but wrote " << assignedValue << ").");
}
// Check that we processed all assignments.
STORM_LOG_ASSERT(assignmentIt == assignmentIte, "Not all assignments were consumed.");
return newState;
}
template<typename ValueType, typename StateType>
StateBehavior<ValueType, StateType> JaniNextStateGenerator<ValueType, StateType>::expand(StateToIdCallback const& stateToIdCallback) {
// Prepare the result, in case we return early.
StateBehavior<ValueType, StateType> result;
// Retrieve the locations from the state.
std::vector<uint64_t> locations = getLocations(*this->state);
// First, construct the state rewards, as we may return early if there are no choices later and we already
// need the state rewards then.
std::vector<ValueType> stateRewards(this->rewardVariables.size(), storm::utility::zero<ValueType>());
uint64_t automatonIndex = 0;
for (auto const& automaton : model.getAutomata()) {
uint64_t currentLocationIndex = locations[automatonIndex];
storm::jani::Location const& location = automaton.getLocation(currentLocationIndex);
auto valueIt = stateRewards.begin();
performTransientAssignments(location.getAssignments().getTransientAssignments(), [&valueIt] (ValueType const& value) { *valueIt += value; ++valueIt; } );
++automatonIndex;
}
result.addStateRewards(std::move(stateRewards));
// If a terminal expression was set and we must not expand this state, return now.
if (!this->terminalStates.empty()) {
for (auto const& expressionBool : this->terminalStates) {
if (this->evaluator.asBool(expressionBool.first) == expressionBool.second) {
return result;
}
}
}
// Get all choices for the state.
std::vector<Choice<ValueType>> allChoices = getSilentActionChoices(locations, *this->state, stateToIdCallback);
std::vector<Choice<ValueType>> allLabeledChoices = getNonsilentActionChoices(locations, *this->state, stateToIdCallback);
for (auto& choice : allLabeledChoices) {
allChoices.push_back(std::move(choice));
}
std::size_t totalNumberOfChoices = allChoices.size();
// If there is not a single choice, we return immediately, because the state has no behavior (other than
// the state reward).
if (totalNumberOfChoices == 0) {
return result;
}
// If the model is a deterministic model, we need to fuse the choices into one.
if (this->isDeterministicModel() && totalNumberOfChoices > 1) {
Choice<ValueType> globalChoice;
// Iterate over all choices and combine the probabilities/rates into one choice.
for (auto const& choice : allChoices) {
for (auto const& stateProbabilityPair : choice) {
if (this->isDiscreteTimeModel()) {
globalChoice.addProbability(stateProbabilityPair.first, stateProbabilityPair.second / totalNumberOfChoices);
} else {
globalChoice.addProbability(stateProbabilityPair.first, stateProbabilityPair.second);
}
}
if (this->options.isBuildChoiceLabelsSet()) {
globalChoice.addChoiceLabels(choice.getChoiceLabels());
}
}
// Move the newly fused choice in place.
allChoices.clear();
allChoices.push_back(std::move(globalChoice));
}
// Move all remaining choices in place.
for (auto& choice : allChoices) {
result.addChoice(std::move(choice));
}
result.setExpanded();
return result;
}
template<typename ValueType, typename StateType>
std::vector<Choice<ValueType>> JaniNextStateGenerator<ValueType, StateType>::getSilentActionChoices(std::vector<uint64_t> const& locations, CompressedState const& state, StateToIdCallback stateToIdCallback) {
std::vector<Choice<ValueType>> result;
// Iterate over all automata.
uint64_t automatonIndex = 0;
for (auto const& automaton : model.getAutomata()) {
uint64_t location = locations[automatonIndex];
// Iterate over all edges from the source location.
for (auto const& edge : automaton.getEdgesFromLocation(location)) {
// Skip the edge if it is labeled with a non-silent action.
if (edge.getActionIndex() != model.getSilentActionIndex()) {
continue;
}
// Skip the command, if it is not enabled.
if (!this->evaluator.asBool(edge.getGuard())) {
continue;
}
result.push_back(Choice<ValueType>(edge.getActionIndex()));
Choice<ValueType>& choice = result.back();
// Iterate over all updates of the current command.
ValueType probabilitySum = storm::utility::zero<ValueType>();
for (auto const& destination : edge.getDestinations()) {
// Obtain target state index and add it to the list of known states. If it has not yet been
// seen, we also add it to the set of states that have yet to be explored.
StateType stateIndex = stateToIdCallback(applyUpdate(state, destination));
// Update the choice by adding the probability/target state to it.
ValueType probability = this->evaluator.asRational(destination.getProbability());
choice.addProbability(stateIndex, probability);
probabilitySum += probability;
}
// Create the state-action reward for the newly created choice.
performTransientAssignments(edge.getAssignments().getTransientAssignments(), [&choice] (ValueType const& value) { choice.addChoiceReward(value); } );
// Check that the resulting distribution is in fact a distribution.
STORM_LOG_THROW(!this->isDiscreteTimeModel() || this->comparator.isOne(probabilitySum), storm::exceptions::WrongFormatException, "Probabilities do not sum to one for edge (actually sum to " << probabilitySum << ").");
}
++automatonIndex;
}
return result;
}
template<typename ValueType, typename StateType>
std::vector<Choice<ValueType>> JaniNextStateGenerator<ValueType, StateType>::getNonsilentActionChoices(std::vector<uint64_t> const& locations, CompressedState const& state, StateToIdCallback stateToIdCallback) {
std::vector<Choice<ValueType>> result;
for (uint64_t actionIndex : model.getNonsilentActionIndices()) {
std::vector<std::vector<storm::jani::Edge const*>> enabledEdges = getEnabledEdges(locations, actionIndex);
// Only process this action, if there is at least one feasible solution.
if (!enabledEdges.empty()) {
// Check whether a global variable is written multiple times in any combination.
checkGlobalVariableWritesValid(enabledEdges);
std::vector<std::vector<storm::jani::Edge const*>::const_iterator> iteratorList(enabledEdges.size());
// Initialize the list of iterators.
for (size_t i = 0; i < enabledEdges.size(); ++i) {
iteratorList[i] = enabledEdges[i].cbegin();
}
// As long as there is one feasible combination of commands, keep on expanding it.
bool done = false;
while (!done) {
boost::container::flat_map<CompressedState, ValueType>* currentTargetStates = new boost::container::flat_map<CompressedState, ValueType>();
boost::container::flat_map<CompressedState, ValueType>* newTargetStates = new boost::container::flat_map<CompressedState, ValueType>();
currentTargetStates->emplace(state, storm::utility::one<ValueType>());
for (uint_fast64_t i = 0; i < iteratorList.size(); ++i) {
storm::jani::Edge const& edge = **iteratorList[i];
for (auto const& destination : edge.getDestinations()) {
for (auto const& stateProbabilityPair : *currentTargetStates) {
// Compute the new state under the current update and add it to the set of new target states.
CompressedState newTargetState = applyUpdate(stateProbabilityPair.first, destination);
// If the new state was already found as a successor state, update the probability
// and otherwise insert it.
auto targetStateIt = newTargetStates->find(newTargetState);
if (targetStateIt != newTargetStates->end()) {
targetStateIt->second += stateProbabilityPair.second * this->evaluator.asRational(destination.getProbability());
} else {
newTargetStates->emplace(newTargetState, stateProbabilityPair.second * this->evaluator.asRational(destination.getProbability()));
}
}
}
// If there is one more command to come, shift the target states one time step back.
if (i < iteratorList.size() - 1) {
delete currentTargetStates;
currentTargetStates = newTargetStates;
newTargetStates = new boost::container::flat_map<CompressedState, ValueType>();
}
}
// At this point, we applied all commands of the current command combination and newTargetStates
// contains all target states and their respective probabilities. That means we are now ready to
// add the choice to the list of transitions.
result.push_back(Choice<ValueType>(actionIndex));
// Now create the actual distribution.
Choice<ValueType>& choice = result.back();
// Add the probabilities/rates to the newly created choice.
ValueType probabilitySum = storm::utility::zero<ValueType>();
for (auto const& stateProbabilityPair : *newTargetStates) {
StateType actualIndex = stateToIdCallback(stateProbabilityPair.first);
choice.addProbability(actualIndex, stateProbabilityPair.second);
probabilitySum += stateProbabilityPair.second;
}
// Check that the resulting distribution is in fact a distribution.
STORM_LOG_THROW(!this->isDiscreteTimeModel() || !this->comparator.isConstant(probabilitySum) || this->comparator.isOne(probabilitySum), storm::exceptions::WrongFormatException, "Sum of update probabilities do not some to one for some command (actually sum to " << probabilitySum << ").");
// Dispose of the temporary maps.
delete currentTargetStates;
delete newTargetStates;
// Now, check whether there is one more command combination to consider.
bool movedIterator = false;
for (uint64_t j = 0; !movedIterator && j < iteratorList.size(); ++j) {
++iteratorList[j];
if (iteratorList[j] != enabledEdges[j].end()) {
movedIterator = true;
} else {
// Reset the iterator to the beginning of the list.
iteratorList[j] = enabledEdges[j].begin();
}
}
done = !movedIterator;
}
}
}
return result;
}
template<typename ValueType, typename StateType>
std::vector<std::vector<storm::jani::Edge const*>> JaniNextStateGenerator<ValueType, StateType>::getEnabledEdges(std::vector<uint64_t> const& locationIndices, uint64_t actionIndex) {
std::vector<std::vector<storm::jani::Edge const*>> result;
// Iterate over all automata.
uint64_t automatonIndex = 0;
for (auto const& automaton : model.getAutomata()) {
// If the automaton has no edge labeled with the given action, we can skip it.
if (!automaton.hasEdgeLabeledWithActionIndex(actionIndex)) {
continue;
}
auto edges = automaton.getEdgesFromLocation(locationIndices[automatonIndex], actionIndex);
// If the automaton contains the action, but there is no edge available labeled with
// this action, we don't have any feasible command combinations.
if (edges.empty()) {
return std::vector<std::vector<storm::jani::Edge const*>>();
}
std::vector<storm::jani::Edge const*> edgePointers;
for (auto const& edge : edges) {
if (this->evaluator.asBool(edge.getGuard())) {
edgePointers.push_back(&edge);
}
}
// If there was no enabled edge although the automaton has some edge with the required action, we must
// not return anything.
if (edgePointers.empty()) {
return std::vector<std::vector<storm::jani::Edge const*>>();
}
result.emplace_back(std::move(edgePointers));
++automatonIndex;
}
return result;
}
template<typename ValueType, typename StateType>
void JaniNextStateGenerator<ValueType, StateType>::checkGlobalVariableWritesValid(std::vector<std::vector<storm::jani::Edge const*>> const& enabledEdges) const {
std::map<storm::expressions::Variable, uint64_t> writtenGlobalVariables;
for (auto edgeSetIt = enabledEdges.begin(), edgeSetIte = enabledEdges.end(); edgeSetIt != edgeSetIte; ++edgeSetIt) {
for (auto const& edge : *edgeSetIt) {
for (auto const& globalVariable : edge->getWrittenGlobalVariables()) {
auto it = writtenGlobalVariables.find(globalVariable);
auto index = std::distance(enabledEdges.begin(), edgeSetIt);
if (it != writtenGlobalVariables.end()) {
STORM_LOG_THROW(it->second == index, storm::exceptions::WrongFormatException, "Multiple writes to global variable '" << globalVariable.getName() << "' in synchronizing edges.");
} else {
writtenGlobalVariables.emplace(globalVariable, index);
}
}
}
}
}
template<typename ValueType, typename StateType>
std::size_t JaniNextStateGenerator<ValueType, StateType>::getNumberOfRewardModels() const {
return rewardVariables.size();
}
template<typename ValueType, typename StateType>
RewardModelInformation JaniNextStateGenerator<ValueType, StateType>::getRewardModelInformation(uint64_t const& index) const {
return rewardModelInformation[index];
}
template<typename ValueType, typename StateType>
storm::models::sparse::StateLabeling JaniNextStateGenerator<ValueType, StateType>::label(storm::storage::BitVectorHashMap<StateType> const& states, std::vector<StateType> const& initialStateIndices, std::vector<StateType> const& deadlockStateIndices) {
return NextStateGenerator<ValueType, StateType>::label(states, initialStateIndices, deadlockStateIndices, {});
}
template<typename ValueType, typename StateType>
void JaniNextStateGenerator<ValueType, StateType>::performTransientAssignments(storm::jani::detail::ConstAssignments const& transientAssignments, std::function<void (ValueType const&)> const& callback) {
// If there are no reward variables, there is no need to iterate at all.
if (rewardVariables.empty()) {
return;
}
// Otherwise, perform the callback for all selected reward variables.
auto rewardVariableIt = rewardVariables.begin();
auto rewardVariableIte = rewardVariables.end();
for (auto const& assignment : transientAssignments) {
while (rewardVariableIt != rewardVariableIte && *rewardVariableIt < assignment.getExpressionVariable()) {
callback(storm::utility::zero<ValueType>());
++rewardVariableIt;
}
if (rewardVariableIt == rewardVariableIte) {
break;
} else if (*rewardVariableIt == assignment.getExpressionVariable()) {
callback(ValueType(this->evaluator.asRational(assignment.getAssignedExpression())));
++rewardVariableIt;
}
}
// Add a value of zero for all variables that have no assignment.
for (; rewardVariableIt != rewardVariableIte; ++rewardVariableIt) {
callback(storm::utility::zero<ValueType>());
}
}
template<typename ValueType, typename StateType>
void JaniNextStateGenerator<ValueType, StateType>::buildRewardModelInformation() {
// Prepare all reward model information structs.
for (auto const& variable : rewardVariables) {
rewardModelInformation.emplace_back(variable.getName(), false, false, false);
}
// Then fill them.
for (auto const& automaton : model.getAutomata()) {
for (auto const& location : automaton.getLocations()) {
auto rewardVariableIt = rewardVariables.begin();
auto rewardVariableIte = rewardVariables.end();
for (auto const& assignment : location.getAssignments().getTransientAssignments()) {
while (rewardVariableIt != rewardVariableIte && *rewardVariableIt < assignment.getExpressionVariable()) {
++rewardVariableIt;
}
if (rewardVariableIt == rewardVariableIte) {
break;
}
if (*rewardVariableIt == assignment.getExpressionVariable()) {
rewardModelInformation[std::distance(rewardVariables.begin(), rewardVariableIt)].setHasStateRewards();
++rewardVariableIt;
}
}
}
for (auto const& edge : automaton.getEdges()) {
auto rewardVariableIt = rewardVariables.begin();
auto rewardVariableIte = rewardVariables.end();
for (auto const& assignment : edge.getAssignments().getTransientAssignments()) {
while (rewardVariableIt != rewardVariableIte && *rewardVariableIt < assignment.getExpressionVariable()) {
++rewardVariableIt;
}
if (rewardVariableIt == rewardVariableIte) {
break;
}
if (*rewardVariableIt == assignment.getExpressionVariable()) {
rewardModelInformation[std::distance(rewardVariables.begin(), rewardVariableIt)].setHasStateActionRewards();
++rewardVariableIt;
}
}
}
}
}
template class JaniNextStateGenerator<double>;
#ifdef STORM_HAVE_CARL
template class JaniNextStateGenerator<storm::RationalNumber>;
template class JaniNextStateGenerator<storm::RationalFunction>;
#endif
}
}