You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							332 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							332 lines
						
					
					
						
							11 KiB
						
					
					
				|       SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) | |
| *     .. Scalar Arguments .. | |
|       INTEGER INCX,N | |
|       CHARACTER DIAG,TRANS,UPLO | |
| *     .. | |
| *     .. Array Arguments .. | |
|       COMPLEX AP(*),X(*) | |
| *     .. | |
| * | |
| *  Purpose | |
| *  ======= | |
| * | |
| *  CTPSV  solves one of the systems of equations | |
| * | |
| *     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b, | |
| * | |
| *  where b and x are n element vectors and A is an n by n unit, or | |
| *  non-unit, upper or lower triangular matrix, supplied in packed form. | |
| * | |
| *  No test for singularity or near-singularity is included in this | |
| *  routine. Such tests must be performed before calling this routine. | |
| * | |
| *  Arguments | |
| *  ========== | |
| * | |
| *  UPLO   - CHARACTER*1. | |
| *           On entry, UPLO specifies whether the matrix is an upper or | |
| *           lower triangular matrix as follows: | |
| * | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix. | |
| * | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  TRANS  - CHARACTER*1. | |
| *           On entry, TRANS specifies the equations to be solved as | |
| *           follows: | |
| * | |
| *              TRANS = 'N' or 'n'   A*x = b. | |
| * | |
| *              TRANS = 'T' or 't'   A'*x = b. | |
| * | |
| *              TRANS = 'C' or 'c'   conjg( A' )*x = b. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  DIAG   - CHARACTER*1. | |
| *           On entry, DIAG specifies whether or not A is unit | |
| *           triangular as follows: | |
| * | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular. | |
| * | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit | |
| *                                  triangular. | |
| * | |
| *           Unchanged on exit. | |
| * | |
| *  N      - INTEGER. | |
| *           On entry, N specifies the order of the matrix A. | |
| *           N must be at least zero. | |
| *           Unchanged on exit. | |
| * | |
| *  AP     - COMPLEX          array of DIMENSION at least | |
| *           ( ( n*( n + 1 ) )/2 ). | |
| *           Before entry with  UPLO = 'U' or 'u', the array AP must | |
| *           contain the upper triangular matrix packed sequentially, | |
| *           column by column, so that AP( 1 ) contains a( 1, 1 ), | |
| *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) | |
| *           respectively, and so on. | |
| *           Before entry with UPLO = 'L' or 'l', the array AP must | |
| *           contain the lower triangular matrix packed sequentially, | |
| *           column by column, so that AP( 1 ) contains a( 1, 1 ), | |
| *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) | |
| *           respectively, and so on. | |
| *           Note that when  DIAG = 'U' or 'u', the diagonal elements of | |
| *           A are not referenced, but are assumed to be unity. | |
| *           Unchanged on exit. | |
| * | |
| *  X      - COMPLEX          array of dimension at least | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ). | |
| *           Before entry, the incremented array X must contain the n | |
| *           element right-hand side vector b. On exit, X is overwritten | |
| *           with the solution vector x. | |
| * | |
| *  INCX   - INTEGER. | |
| *           On entry, INCX specifies the increment for the elements of | |
| *           X. INCX must not be zero. | |
| *           Unchanged on exit. | |
| * | |
| *  Further Details | |
| *  =============== | |
| * | |
| *  Level 2 Blas routine. | |
| * | |
| *  -- Written on 22-October-1986. | |
| *     Jack Dongarra, Argonne National Lab. | |
| *     Jeremy Du Croz, Nag Central Office. | |
| *     Sven Hammarling, Nag Central Office. | |
| *     Richard Hanson, Sandia National Labs. | |
| * | |
| *  ===================================================================== | |
| * | |
| *     .. Parameters .. | |
|       COMPLEX ZERO | |
|       PARAMETER (ZERO= (0.0E+0,0.0E+0)) | |
| *     .. | |
| *     .. Local Scalars .. | |
|       COMPLEX TEMP | |
|       INTEGER I,INFO,IX,J,JX,K,KK,KX | |
|       LOGICAL NOCONJ,NOUNIT | |
| *     .. | |
| *     .. External Functions .. | |
|       LOGICAL LSAME | |
|       EXTERNAL LSAME | |
| *     .. | |
| *     .. External Subroutines .. | |
|       EXTERNAL XERBLA | |
| *     .. | |
| *     .. Intrinsic Functions .. | |
|       INTRINSIC CONJG | |
| *     .. | |
| * | |
| *     Test the input parameters. | |
| * | |
|       INFO = 0 | |
|       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN | |
|           INFO = 1 | |
|       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. | |
|      +         .NOT.LSAME(TRANS,'C')) THEN | |
|           INFO = 2 | |
|       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN | |
|           INFO = 3 | |
|       ELSE IF (N.LT.0) THEN | |
|           INFO = 4 | |
|       ELSE IF (INCX.EQ.0) THEN | |
|           INFO = 7 | |
|       END IF | |
|       IF (INFO.NE.0) THEN | |
|           CALL XERBLA('CTPSV ',INFO) | |
|           RETURN | |
|       END IF | |
| * | |
| *     Quick return if possible. | |
| * | |
|       IF (N.EQ.0) RETURN | |
| * | |
|       NOCONJ = LSAME(TRANS,'T') | |
|       NOUNIT = LSAME(DIAG,'N') | |
| * | |
| *     Set up the start point in X if the increment is not unity. This | |
| *     will be  ( N - 1 )*INCX  too small for descending loops. | |
| * | |
|       IF (INCX.LE.0) THEN | |
|           KX = 1 - (N-1)*INCX | |
|       ELSE IF (INCX.NE.1) THEN | |
|           KX = 1 | |
|       END IF | |
| * | |
| *     Start the operations. In this version the elements of AP are | |
| *     accessed sequentially with one pass through AP. | |
| * | |
|       IF (LSAME(TRANS,'N')) THEN | |
| * | |
| *        Form  x := inv( A )*x. | |
| * | |
|           IF (LSAME(UPLO,'U')) THEN | |
|               KK = (N* (N+1))/2 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 20 J = N,1,-1 | |
|                       IF (X(J).NE.ZERO) THEN | |
|                           IF (NOUNIT) X(J) = X(J)/AP(KK) | |
|                           TEMP = X(J) | |
|                           K = KK - 1 | |
|                           DO 10 I = J - 1,1,-1 | |
|                               X(I) = X(I) - TEMP*AP(K) | |
|                               K = K - 1 | |
|    10                     CONTINUE | |
|                       END IF | |
|                       KK = KK - J | |
|    20             CONTINUE | |
|               ELSE | |
|                   JX = KX + (N-1)*INCX | |
|                   DO 40 J = N,1,-1 | |
|                       IF (X(JX).NE.ZERO) THEN | |
|                           IF (NOUNIT) X(JX) = X(JX)/AP(KK) | |
|                           TEMP = X(JX) | |
|                           IX = JX | |
|                           DO 30 K = KK - 1,KK - J + 1,-1 | |
|                               IX = IX - INCX | |
|                               X(IX) = X(IX) - TEMP*AP(K) | |
|    30                     CONTINUE | |
|                       END IF | |
|                       JX = JX - INCX | |
|                       KK = KK - J | |
|    40             CONTINUE | |
|               END IF | |
|           ELSE | |
|               KK = 1 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 60 J = 1,N | |
|                       IF (X(J).NE.ZERO) THEN | |
|                           IF (NOUNIT) X(J) = X(J)/AP(KK) | |
|                           TEMP = X(J) | |
|                           K = KK + 1 | |
|                           DO 50 I = J + 1,N | |
|                               X(I) = X(I) - TEMP*AP(K) | |
|                               K = K + 1 | |
|    50                     CONTINUE | |
|                       END IF | |
|                       KK = KK + (N-J+1) | |
|    60             CONTINUE | |
|               ELSE | |
|                   JX = KX | |
|                   DO 80 J = 1,N | |
|                       IF (X(JX).NE.ZERO) THEN | |
|                           IF (NOUNIT) X(JX) = X(JX)/AP(KK) | |
|                           TEMP = X(JX) | |
|                           IX = JX | |
|                           DO 70 K = KK + 1,KK + N - J | |
|                               IX = IX + INCX | |
|                               X(IX) = X(IX) - TEMP*AP(K) | |
|    70                     CONTINUE | |
|                       END IF | |
|                       JX = JX + INCX | |
|                       KK = KK + (N-J+1) | |
|    80             CONTINUE | |
|               END IF | |
|           END IF | |
|       ELSE | |
| * | |
| *        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x. | |
| * | |
|           IF (LSAME(UPLO,'U')) THEN | |
|               KK = 1 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 110 J = 1,N | |
|                       TEMP = X(J) | |
|                       K = KK | |
|                       IF (NOCONJ) THEN | |
|                           DO 90 I = 1,J - 1 | |
|                               TEMP = TEMP - AP(K)*X(I) | |
|                               K = K + 1 | |
|    90                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) | |
|                       ELSE | |
|                           DO 100 I = 1,J - 1 | |
|                               TEMP = TEMP - CONJG(AP(K))*X(I) | |
|                               K = K + 1 | |
|   100                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1)) | |
|                       END IF | |
|                       X(J) = TEMP | |
|                       KK = KK + J | |
|   110             CONTINUE | |
|               ELSE | |
|                   JX = KX | |
|                   DO 140 J = 1,N | |
|                       TEMP = X(JX) | |
|                       IX = KX | |
|                       IF (NOCONJ) THEN | |
|                           DO 120 K = KK,KK + J - 2 | |
|                               TEMP = TEMP - AP(K)*X(IX) | |
|                               IX = IX + INCX | |
|   120                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) | |
|                       ELSE | |
|                           DO 130 K = KK,KK + J - 2 | |
|                               TEMP = TEMP - CONJG(AP(K))*X(IX) | |
|                               IX = IX + INCX | |
|   130                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1)) | |
|                       END IF | |
|                       X(JX) = TEMP | |
|                       JX = JX + INCX | |
|                       KK = KK + J | |
|   140             CONTINUE | |
|               END IF | |
|           ELSE | |
|               KK = (N* (N+1))/2 | |
|               IF (INCX.EQ.1) THEN | |
|                   DO 170 J = N,1,-1 | |
|                       TEMP = X(J) | |
|                       K = KK | |
|                       IF (NOCONJ) THEN | |
|                           DO 150 I = N,J + 1,-1 | |
|                               TEMP = TEMP - AP(K)*X(I) | |
|                               K = K - 1 | |
|   150                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) | |
|                       ELSE | |
|                           DO 160 I = N,J + 1,-1 | |
|                               TEMP = TEMP - CONJG(AP(K))*X(I) | |
|                               K = K - 1 | |
|   160                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J)) | |
|                       END IF | |
|                       X(J) = TEMP | |
|                       KK = KK - (N-J+1) | |
|   170             CONTINUE | |
|               ELSE | |
|                   KX = KX + (N-1)*INCX | |
|                   JX = KX | |
|                   DO 200 J = N,1,-1 | |
|                       TEMP = X(JX) | |
|                       IX = KX | |
|                       IF (NOCONJ) THEN | |
|                           DO 180 K = KK,KK - (N- (J+1)),-1 | |
|                               TEMP = TEMP - AP(K)*X(IX) | |
|                               IX = IX - INCX | |
|   180                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) | |
|                       ELSE | |
|                           DO 190 K = KK,KK - (N- (J+1)),-1 | |
|                               TEMP = TEMP - CONJG(AP(K))*X(IX) | |
|                               IX = IX - INCX | |
|   190                     CONTINUE | |
|                           IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J)) | |
|                       END IF | |
|                       X(JX) = TEMP | |
|                       JX = JX - INCX | |
|                       KK = KK - (N-J+1) | |
|   200             CONTINUE | |
|               END IF | |
|           END IF | |
|       END IF | |
| * | |
|       RETURN | |
| * | |
| *     End of CTPSV . | |
| * | |
|       END
 |