You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							112 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							112 lines
						
					
					
						
							3.9 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <limits> | |
| #include <Eigen/Eigenvalues> | |
|  | |
| template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
| 
 | |
|   const Index size = T.cols(); | |
|   typedef typename MatrixType::Scalar Scalar; | |
| 
 | |
|   // Check T is lower Hessenberg | |
|   for(int row = 2; row < size; ++row) { | |
|     for(int col = 0; col < row - 1; ++col) { | |
|       VERIFY(T(row,col) == Scalar(0)); | |
|     } | |
|   } | |
| 
 | |
|   // Check that any non-zero on the subdiagonal is followed by a zero and is | |
|   // part of a 2x2 diagonal block with imaginary eigenvalues. | |
|   for(int row = 1; row < size; ++row) { | |
|     if (T(row,row-1) != Scalar(0)) { | |
|       VERIFY(row == size-1 || T(row+1,row) == 0); | |
|       Scalar tr = T(row-1,row-1) + T(row,row); | |
|       Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1); | |
|       VERIFY(4 * det > tr * tr); | |
|     } | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) | |
| { | |
|   // Test basic functionality: T is quasi-triangular and A = U T U* | |
|   for(int counter = 0; counter < g_repeat; ++counter) { | |
|     MatrixType A = MatrixType::Random(size, size); | |
|     RealSchur<MatrixType> schurOfA(A); | |
|     VERIFY_IS_EQUAL(schurOfA.info(), Success); | |
|     MatrixType U = schurOfA.matrixU(); | |
|     MatrixType T = schurOfA.matrixT(); | |
|     verifyIsQuasiTriangular(T); | |
|     VERIFY_IS_APPROX(A, U * T * U.transpose()); | |
|   } | |
| 
 | |
|   // Test asserts when not initialized | |
|   RealSchur<MatrixType> rsUninitialized; | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); | |
|   VERIFY_RAISES_ASSERT(rsUninitialized.info()); | |
|    | |
|   // Test whether compute() and constructor returns same result | |
|   MatrixType A = MatrixType::Random(size, size); | |
|   RealSchur<MatrixType> rs1; | |
|   rs1.compute(A); | |
|   RealSchur<MatrixType> rs2(A); | |
|   VERIFY_IS_EQUAL(rs1.info(), Success); | |
|   VERIFY_IS_EQUAL(rs2.info(), Success); | |
|   VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); | |
|   VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); | |
| 
 | |
|   // Test maximum number of iterations | |
|   RealSchur<MatrixType> rs3; | |
|   rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); | |
|   VERIFY_IS_EQUAL(rs3.info(), Success); | |
|   VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); | |
|   VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); | |
|   if (size > 2) { | |
|     rs3.setMaxIterations(1).compute(A); | |
|     VERIFY_IS_EQUAL(rs3.info(), NoConvergence); | |
|     VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); | |
|   } | |
| 
 | |
|   MatrixType Atriangular = A; | |
|   Atriangular.template triangularView<StrictlyLower>().setZero();  | |
|   rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations | |
|   VERIFY_IS_EQUAL(rs3.info(), Success); | |
|   VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular); | |
|   VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); | |
| 
 | |
|   // Test computation of only T, not U | |
|   RealSchur<MatrixType> rsOnlyT(A, false); | |
|   VERIFY_IS_EQUAL(rsOnlyT.info(), Success); | |
|   VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); | |
|   VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); | |
| 
 | |
|   if (size > 2) | |
|   { | |
|     // Test matrix with NaN | |
|     A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); | |
|     RealSchur<MatrixType> rsNaN(A); | |
|     VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); | |
|   } | |
| } | |
| 
 | |
| void test_schur_real() | |
| { | |
|   CALL_SUBTEST_1(( schur<Matrix4f>() )); | |
|   CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); | |
|   CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() )); | |
|   CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() )); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); | |
| }
 |