229 lines
9.2 KiB

/*
* EigenDtmcPrctlModelChecker.h
*
* Created on: 07.12.2012
* Author:
*/
#ifndef MRMC_MODELCHECKER_EIGENDTMCPRCTLMODELCHECKER_H_
#define MRMC_MODELCHECKER_EIGENDTMCPRCTLMODELCHECKER_H_
#include "src/utility/Vector.h"
#include "src/models/Dtmc.h"
#include "src/modelChecker/DtmcPrctlModelChecker.h"
#include "src/solver/GraphAnalyzer.h"
#include "src/utility/ConstTemplates.h"
#include "src/exceptions/NoConvergenceException.h"
#include "Eigen/Sparse"
#include "Eigen/src/IterativeLinearSolvers/BiCGSTAB.h"
#include "gmm/gmm_matrix.h"
#include "gmm/gmm_iter_solvers.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
namespace mrmc {
namespace modelChecker {
/*
* A model checking engine that makes use of the eigen backend.
*/
template <class Type>
class EigenDtmcPrctlModelChecker : public DtmcPrctlModelChecker<Type> {
public:
explicit EigenDtmcPrctlModelChecker(mrmc::models::Dtmc<Type>& dtmc) : DtmcPrctlModelChecker<Type>(dtmc) { }
virtual ~EigenDtmcPrctlModelChecker() { }
virtual std::vector<Type>* checkBoundedUntil(const mrmc::formula::BoundedUntil<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
// Copy the matrix before we make any changes.
mrmc::storage::SquareSparseMatrix<Type> tmpMatrix(*this->getModel().getTransitionProbabilityMatrix());
// Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula.
tmpMatrix.makeRowsAbsorbing((~*leftStates & *rightStates) | *rightStates);
// Transform the transition probability matrix to the eigen format to use its arithmetic.
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = tmpMatrix.toEigenSparseMatrix();
// Create the vector with which to multiply.
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
std::vector<Type>* result = new std::vector<Type>(stateCount);
// Dummy Type variable for const templates
Type dummy;
mrmc::utility::setVectorValues(result, *rightStates, mrmc::utility::constGetOne(dummy));
Type *p = &((*result)[0]); // get the address storing the data for result
MapType vectorMap(p, result->size()); // vectorMap shares data
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
for (uint_fast64_t i = 0, bound = formula.getBound(); i < bound; ++i) {
vectorMap = (*eigenMatrix) * vectorMap;
}
// Delete intermediate results.
delete leftStates;
delete rightStates;
delete eigenMatrix;
return result;
}
virtual std::vector<Type>* checkNext(const mrmc::formula::Next<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formula of the next-formula.
mrmc::storage::BitVector* nextStates = this->checkStateFormula(formula.getChild());
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = this->getModel().getTransitionProbabilityMatrix()->toEigenSparseMatrix();
// Create the vector with which to multiply and initialize it correctly.
std::vector<Type> x(this->getModel().getNumberOfStates());
Type dummy;
mrmc::utility::setVectorValues(&x, *nextStates, mrmc::utility::constGetOne(dummy));
// Delete not needed next states bit vector.
delete nextStates;
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
Type *px = &(x[0]); // get the address storing the data for x
MapType vectorX(px, x.size()); // vectorX shares data
// Create resulting vector.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
// Type *pr = &((*result)[0]); // get the address storing the data for result
MapType vectorResult(px, result->size()); // vectorResult shares data
// Perform the actual computation.
vectorResult = (*eigenMatrix) * vectorX;
// Delete temporary matrix and return result.
delete eigenMatrix;
return result;
}
virtual std::vector<Type>* checkUntil(const mrmc::formula::Until<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
// Then, we need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
mrmc::storage::BitVector notExistsPhiUntilPsiStates(this->getModel().getNumberOfStates());
mrmc::storage::BitVector alwaysPhiUntilPsiStates(this->getModel().getNumberOfStates());
mrmc::solver::GraphAnalyzer::getPhiUntilPsiStates<double>(this->getModel(), *leftStates, *rightStates, &notExistsPhiUntilPsiStates, &alwaysPhiUntilPsiStates);
notExistsPhiUntilPsiStates.complement();
delete leftStates;
delete rightStates;
LOG4CPLUS_INFO(logger, "Found " << notExistsPhiUntilPsiStates.getNumberOfSetBits() << " 'no' states.");
LOG4CPLUS_INFO(logger, "Found " << alwaysPhiUntilPsiStates.getNumberOfSetBits() << " 'yes' states.");
mrmc::storage::BitVector maybeStates = ~(notExistsPhiUntilPsiStates | alwaysPhiUntilPsiStates);
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector and set values accordingly.
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
std::vector<Type>* result = new std::vector<Type>(stateCount);
// Only try to solve system if there are states for which the probability is unknown.
if (maybeStates.getNumberOfSetBits() > 0) {
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
// Now we can eliminate the rows and columns from the original transition probability matrix.
mrmc::storage::SquareSparseMatrix<double>* submatrix = this->getModel().getTransitionProbabilityMatrix()->getSubmatrix(maybeStates);
// Converting the matrix to the form needed for the equation system. That is, we go from
// x = A*x + b to (I-A)x = b.
submatrix->convertToEquationSystem();
// Transform the submatric matrix to the eigen format to use its solvers
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenSubMatrix = submatrix->toEigenSparseMatrix();
delete submatrix;
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<Type> x(maybeStates.getNumberOfSetBits(), Type(0.5));
// Map for x
Type *px = &(x[0]); // get the address storing the data for x
MapType vectorX(px, x.size()); // vectorX shares data
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<double> b(maybeStates.getNumberOfSetBits());
Type *pb = &(b[0]); // get the address storing the data for b
MapType vectorB(pb, b.size()); // vectorB shares data
this->getModel().getTransitionProbabilityMatrix()->getConstrainedRowCountVector(maybeStates, alwaysPhiUntilPsiStates, &x);
Eigen::BiCGSTAB<Eigen::SparseMatrix<Type, 1, int_fast32_t>> solver;
solver.compute(*eigenSubMatrix);
if(solver.info()!= Eigen::ComputationInfo::Success) {
// decomposition failed
LOG4CPLUS_ERROR(logger, "Decomposition of Submatrix failed!");
}
// Now do the actual solving.
LOG4CPLUS_INFO(logger, "Starting iterative solver.");
solver.setTolerance(0.000001);
vectorX = solver.solveWithGuess(vectorB, vectorX);
if(solver.info() == Eigen::ComputationInfo::InvalidInput) {
// solving failed
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: InvalidInput");
} else if(solver.info() == Eigen::ComputationInfo::NoConvergence) {
// NoConvergence
throw mrmc::exceptions::NoConvergenceException("Solving of Submatrix with Eigen failed", solver.iterations(), solver.maxIterations());
} else if(solver.info() == Eigen::ComputationInfo::NumericalIssue) {
// NumericalIssue
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: NumericalIssue");
} else if(solver.info() == Eigen::ComputationInfo::Success) {
// solving Success
LOG4CPLUS_INFO(logger, "Solving of Submatrix succeeded: Success");
}
// Set values of resulting vector according to result.
mrmc::utility::setVectorValues<Type>(result, maybeStates, x);
// Delete temporary matrix.
delete eigenSubMatrix;
}
// Dummy Type variable for const templates
Type dummy;
mrmc::utility::setVectorValues<Type>(result, notExistsPhiUntilPsiStates, mrmc::utility::constGetZero(dummy));
mrmc::utility::setVectorValues<Type>(result, alwaysPhiUntilPsiStates, mrmc::utility::constGetOne(dummy));
return result;
}
};
} //namespace modelChecker
} //namespace mrmc
#endif /* MRMC_MODELCHECKER_EIGENDTMCPRCTLMODELCHECKER_H_ */