You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							6.2 KiB
						
					
					
				
								// #define STORMEIGEN_TAUCS_SUPPORT
							 | 
						|
								// #define STORMEIGEN_CHOLMOD_SUPPORT
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <StormEigen/Sparse>
							 | 
						|
								
							 | 
						|
								// g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG   -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/  -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a   /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a  /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
							 | 
						|
								
							 | 
						|
								#define NOGMM
							 | 
						|
								#define NOMTL
							 | 
						|
								
							 | 
						|
								#ifndef SIZE
							 | 
						|
								#define SIZE 10
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifndef DENSITY
							 | 
						|
								#define DENSITY 0.01
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifndef REPEAT
							 | 
						|
								#define REPEAT 1
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#include "BenchSparseUtil.h"
							 | 
						|
								
							 | 
						|
								#ifndef MINDENSITY
							 | 
						|
								#define MINDENSITY 0.0004
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifndef NBTRIES
							 | 
						|
								#define NBTRIES 10
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#define BENCH(X) \
							 | 
						|
								  timer.reset(); \
							 | 
						|
								  for (int _j=0; _j<NBTRIES; ++_j) { \
							 | 
						|
								    timer.start(); \
							 | 
						|
								    for (int _k=0; _k<REPEAT; ++_k) { \
							 | 
						|
								        X  \
							 | 
						|
								  } timer.stop(); }
							 | 
						|
								
							 | 
						|
								// typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
							 | 
						|
								typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
							 | 
						|
								
							 | 
						|
								void fillSpdMatrix(float density, int rows, int cols,  EigenSparseSelfAdjointMatrix& dst)
							 | 
						|
								{
							 | 
						|
								  dst.startFill(rows*cols*density);
							 | 
						|
								  for(int j = 0; j < cols; j++)
							 | 
						|
								  {
							 | 
						|
								    dst.fill(j,j) = internal::random<Scalar>(10,20);
							 | 
						|
								    for(int i = j+1; i < rows; i++)
							 | 
						|
								    {
							 | 
						|
								      Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
							 | 
						|
								      if (v!=0)
							 | 
						|
								        dst.fill(i,j) = v;
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								  }
							 | 
						|
								  dst.endFill();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#include <StormEigen/Cholesky>
							 | 
						|
								
							 | 
						|
								template<int Backend>
							 | 
						|
								void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
							 | 
						|
								{
							 | 
						|
								  std::cout << name << "..." << std::flush;
							 | 
						|
								  BenchTimer timer;
							 | 
						|
								  timer.start();
							 | 
						|
								  SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
							 | 
						|
								  timer.stop();
							 | 
						|
								  std::cout << ":\t" << timer.value() << endl;
							 | 
						|
								
							 | 
						|
								  std::cout << "  nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
							 | 
						|
								//   std::cout << "sparse\n" << chol.matrixL() << "%\n";
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								int main(int argc, char *argv[])
							 | 
						|
								{
							 | 
						|
								  int rows = SIZE;
							 | 
						|
								  int cols = SIZE;
							 | 
						|
								  float density = DENSITY;
							 | 
						|
								  BenchTimer timer;
							 | 
						|
								
							 | 
						|
								  VectorXf b = VectorXf::Random(cols);
							 | 
						|
								  VectorXf x = VectorXf::Random(cols);
							 | 
						|
								
							 | 
						|
								  bool densedone = false;
							 | 
						|
								
							 | 
						|
								  //for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
							 | 
						|
								//   float density = 0.5;
							 | 
						|
								  {
							 | 
						|
								    EigenSparseSelfAdjointMatrix sm1(rows, cols);
							 | 
						|
								    std::cout << "Generate sparse matrix (might take a while)...\n";
							 | 
						|
								    fillSpdMatrix(density, rows, cols, sm1);
							 | 
						|
								    std::cout << "DONE\n\n";
							 | 
						|
								
							 | 
						|
								    // dense matrices
							 | 
						|
								    #ifdef DENSEMATRIX
							 | 
						|
								    if (!densedone)
							 | 
						|
								    {
							 | 
						|
								      densedone = true;
							 | 
						|
								      std::cout << "Eigen Dense\t" << density*100 << "%\n";
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      eiToDense(sm1, m1);
							 | 
						|
								      m1 = (m1 + m1.transpose()).eval();
							 | 
						|
								      m1.diagonal() *= 0.5;
							 | 
						|
								
							 | 
						|
								//       BENCH(LLT<DenseMatrix> chol(m1);)
							 | 
						|
								//       std::cout << "dense:\t" << timer.value() << endl;
							 | 
						|
								
							 | 
						|
								      BenchTimer timer;
							 | 
						|
								      timer.start();
							 | 
						|
								      LLT<DenseMatrix> chol(m1);
							 | 
						|
								      timer.stop();
							 | 
						|
								      std::cout << "dense:\t" << timer.value() << endl;
							 | 
						|
								      int count = 0;
							 | 
						|
								      for (int j=0; j<cols; ++j)
							 | 
						|
								        for (int i=j; i<rows; ++i)
							 | 
						|
								          if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1))
							 | 
						|
								            count++;
							 | 
						|
								      std::cout << "dense: " << "nnz = " << count << "\n";
							 | 
						|
								//       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
							 | 
						|
								    }
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								    // eigen sparse matrices
							 | 
						|
								    doEigen<StormEigen::DefaultBackend>("StormEigen/Sparse", sm1, StormEigen::IncompleteFactorization);
							 | 
						|
								
							 | 
						|
								    #ifdef STORMEIGEN_CHOLMOD_SUPPORT
							 | 
						|
								    doEigen<StormEigen::Cholmod>("StormEigen/Cholmod", sm1, StormEigen::IncompleteFactorization);
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								    #ifdef STORMEIGEN_TAUCS_SUPPORT
							 | 
						|
								    doEigen<StormEigen::Taucs>("StormEigen/Taucs", sm1, StormEigen::IncompleteFactorization);
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								    #if 0
							 | 
						|
								    // TAUCS
							 | 
						|
								    {
							 | 
						|
								      taucs_ccs_matrix A = sm1.asTaucsMatrix();
							 | 
						|
								
							 | 
						|
								      //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
							 | 
						|
								//       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
							 | 
						|
								//       std::cout << "taucs:\t" << timer.value() << endl;
							 | 
						|
								
							 | 
						|
								      taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
							 | 
						|
								
							 | 
						|
								      for (int j=0; j<cols; ++j)
							 | 
						|
								      {
							 | 
						|
								        for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
							 | 
						|
								          std::cout << chol->values.d[i] << " ";
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    // CHOLMOD
							 | 
						|
								    #ifdef STORMEIGEN_CHOLMOD_SUPPORT
							 | 
						|
								    {
							 | 
						|
								      cholmod_common c;
							 | 
						|
								      cholmod_start (&c);
							 | 
						|
								      cholmod_sparse A;
							 | 
						|
								      cholmod_factor *L;
							 | 
						|
								
							 | 
						|
								      A = sm1.asCholmodMatrix();
							 | 
						|
								      BenchTimer timer;
							 | 
						|
								//       timer.reset();
							 | 
						|
								      timer.start();
							 | 
						|
								      std::vector<int> perm(cols);
							 | 
						|
								//       std::vector<int> set(ncols);
							 | 
						|
								      for (int i=0; i<cols; ++i)
							 | 
						|
								        perm[i] = i;
							 | 
						|
								//       c.nmethods = 1;
							 | 
						|
								//       c.method[0] = 1;
							 | 
						|
								
							 | 
						|
								      c.nmethods = 1;
							 | 
						|
								      c.method [0].ordering = CHOLMOD_NATURAL;
							 | 
						|
								      c.postorder = 0;
							 | 
						|
								      c.final_ll = 1;
							 | 
						|
								
							 | 
						|
								      L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
							 | 
						|
								      timer.stop();
							 | 
						|
								      std::cout << "cholmod/analyze:\t" << timer.value() << endl;
							 | 
						|
								      timer.reset();
							 | 
						|
								      timer.start();
							 | 
						|
								      cholmod_factorize(&A, L, &c);
							 | 
						|
								      timer.stop();
							 | 
						|
								      std::cout << "cholmod/factorize:\t" << timer.value() << endl;
							 | 
						|
								
							 | 
						|
								      cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
							 | 
						|
								
							 | 
						|
								      cholmod_print_factor(L, "Factors", &c);
							 | 
						|
								
							 | 
						|
								      cholmod_print_sparse(cholmat, "Chol", &c);
							 | 
						|
								      cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
							 | 
						|
								//
							 | 
						|
								//       cholmod_print_sparse(&A, "A", &c);
							 | 
						|
								//       cholmod_write_sparse(stdout, &A, 0, 0, &c);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								//       for (int j=0; j<cols; ++j)
							 | 
						|
								//       {
							 | 
						|
								//           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
							 | 
						|
								//             std::cout << chol->values.s[i] << " ";
							 | 
						|
								//       }
							 | 
						|
								    }
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  return 0;
							 | 
						|
								}
							 | 
						|
								
							 |