You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							286 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							286 lines
						
					
					
						
							11 KiB
						
					
					
				| /* -*- c++ -*- (enables emacs c++ mode) */ | |
| /*=========================================================================== | |
|   | |
|  Copyright (C) 2003-2012 Yves Renard | |
|   | |
|  This file is a part of GETFEM++ | |
|   | |
|  Getfem++  is  free software;  you  can  redistribute  it  and/or modify it | |
|  under  the  terms  of the  GNU  Lesser General Public License as published | |
|  by  the  Free Software Foundation;  either version 3 of the License,  or | |
|  (at your option) any later version along with the GCC Runtime Library | |
|  Exception either version 3.1 or (at your option) any later version. | |
|  This program  is  distributed  in  the  hope  that it will be useful,  but | |
|  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
|  or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public | |
|  License and GCC Runtime Library Exception for more details. | |
|  You  should  have received a copy of the GNU Lesser General Public License | |
|  along  with  this program;  if not, write to the Free Software Foundation, | |
|  Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA. | |
|   | |
|  As a special exception, you  may use  this file  as it is a part of a free | |
|  software  library  without  restriction.  Specifically,  if   other  files | |
|  instantiate  templates  or  use macros or inline functions from this file, | |
|  or  you compile this  file  and  link  it  with other files  to produce an | |
|  executable, this file  does  not  by itself cause the resulting executable | |
|  to be covered  by the GNU Lesser General Public License.  This   exception | |
|  does not  however  invalidate  any  other  reasons why the executable file | |
|  might be covered by the GNU Lesser General Public License. | |
|   | |
| ===========================================================================*/ | |
| 
 | |
| // This file is a modified version of cholesky.h from ITL. | |
| // See http://osl.iu.edu/research/itl/ | |
| // Following the corresponding Copyright notice. | |
| //=========================================================================== | |
| // | |
| // Copyright (c) 1998-2001, University of Notre Dame. All rights reserved. | |
| // Redistribution and use in source and binary forms, with or without | |
| // modification, are permitted provided that the following conditions are met: | |
| // | |
| //    * Redistributions of source code must retain the above copyright | |
| //      notice, this list of conditions and the following disclaimer. | |
| //    * Redistributions in binary form must reproduce the above copyright | |
| //      notice, this list of conditions and the following disclaimer in the | |
| //      documentation and/or other materials provided with the distribution. | |
| //    * Neither the name of the University of Notre Dame nor the | |
| //      names of its contributors may be used to endorse or promote products | |
| //      derived from this software without specific prior written permission. | |
| // | |
| // THIS SOFTWARE  IS  PROVIDED  BY  THE TRUSTEES  OF  INDIANA UNIVERSITY  AND | |
| // CONTRIBUTORS  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING, | |
| // BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  FITNESS | |
| // FOR  A PARTICULAR PURPOSE ARE DISCLAIMED. IN  NO  EVENT SHALL THE TRUSTEES | |
| // OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
| // INCIDENTAL, SPECIAL, EXEMPLARY,  OR CONSEQUENTIAL DAMAGES (INCLUDING,  BUT | |
| // NOT  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| // DATA,  OR PROFITS;  OR BUSINESS  INTERRUPTION)  HOWEVER  CAUSED AND ON ANY | |
| // THEORY  OF  LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY, OR TORT | |
| // (INCLUDING  NEGLIGENCE  OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
| // THIS  SOFTWARE,  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| // | |
| //=========================================================================== | |
|  | |
| #ifndef GMM_PRECOND_ILDLT_H | |
| #define GMM_PRECOND_ILDLT_H | |
|  | |
| /**@file gmm_precond_ildlt.h | |
|    @author Andrew Lumsdaine <lums@osl.iu.edu> | |
|    @author Lie-Quan Lee <llee@osl.iu.edu> | |
|    @author Yves Renard <yves.renard@insa-lyon.fr> | |
|    @date June 5, 2003. | |
|    @brief Incomplete Level 0 ILDLT Preconditioner. | |
| */ | |
| 
 | |
| #include "gmm_precond.h" | |
|  | |
| namespace gmm { | |
| 
 | |
|   /** Incomplete Level 0 LDLT Preconditioner. | |
|        | |
|   For use with symmetric real or hermitian complex sparse matrices. | |
|  | |
|   Notes: The idea under a concrete Preconditioner such as Incomplete | |
|   Cholesky is to create a Preconditioner object to use in iterative | |
|   methods. | |
|  | |
|  | |
|   Y. Renard : Transformed in LDLT for stability reason. | |
|    | |
|   U=LT is stored in csr format. D is stored on the diagonal of U. | |
|   */ | |
|   template <typename Matrix> | |
|   class ildlt_precond { | |
| 
 | |
|   public : | |
|     typedef typename linalg_traits<Matrix>::value_type value_type; | |
|     typedef typename number_traits<value_type>::magnitude_type magnitude_type; | |
|     typedef csr_matrix_ref<value_type *, size_type *, size_type *, 0> tm_type; | |
| 
 | |
|     tm_type U; | |
| 
 | |
|   protected : | |
|     std::vector<value_type> Tri_val; | |
|     std::vector<size_type> Tri_ind, Tri_ptr; | |
|   | |
|     template<typename M> void do_ildlt(const M& A, row_major); | |
|     void do_ildlt(const Matrix& A, col_major); | |
| 
 | |
|   public: | |
| 
 | |
|     size_type nrows(void) const { return mat_nrows(U); } | |
|     size_type ncols(void) const { return mat_ncols(U); } | |
|     value_type &D(size_type i) { return Tri_val[Tri_ptr[i]]; } | |
|     const value_type &D(size_type i) const { return Tri_val[Tri_ptr[i]]; } | |
|     ildlt_precond(void) {} | |
|     void build_with(const Matrix& A) { | |
|       Tri_ptr.resize(mat_nrows(A)+1); | |
|       do_ildlt(A, typename principal_orientation_type<typename | |
| 		  linalg_traits<Matrix>::sub_orientation>::potype()); | |
|     } | |
|     ildlt_precond(const Matrix& A)  { build_with(A); } | |
|     size_type memsize() const {  | |
|       return sizeof(*this) +  | |
| 	Tri_val.size() * sizeof(value_type) +  | |
| 	(Tri_ind.size()+Tri_ptr.size()) * sizeof(size_type);  | |
|     } | |
|   }; | |
| 
 | |
|   template <typename Matrix> template<typename M> | |
|   void ildlt_precond<Matrix>::do_ildlt(const M& A, row_major) { | |
|     typedef typename linalg_traits<Matrix>::storage_type store_type; | |
|     typedef value_type T; | |
|     typedef typename number_traits<T>::magnitude_type R; | |
|      | |
|     size_type Tri_loc = 0, n = mat_nrows(A), d, g, h, i, j, k; | |
|     if (n == 0) return; | |
|     T z, zz; | |
|     Tri_ptr[0] = 0; | |
|     R prec = default_tol(R()); | |
|     R max_pivot = gmm::abs(A(0,0)) * prec; | |
|      | |
|     for (int count = 0; count < 2; ++count) { | |
|       if (count) { Tri_val.resize(Tri_loc); Tri_ind.resize(Tri_loc); } | |
|       for (Tri_loc = 0, i = 0; i < n; ++i) { | |
| 	typedef typename linalg_traits<M>::const_sub_row_type row_type; | |
| 	row_type row = mat_const_row(A, i); | |
|         typename linalg_traits<row_type>::const_iterator | |
| 	  it = vect_const_begin(row), ite = vect_const_end(row); | |
| 
 | |
| 	if (count) { Tri_val[Tri_loc] = T(0); Tri_ind[Tri_loc] = i; } | |
| 	++Tri_loc; // diagonal element | |
|  | |
| 	for (k = 0; it != ite; ++it, ++k) { | |
| 	  j = index_of_it(it, k, store_type()); | |
| 	  if (i == j) { | |
| 	    if (count) Tri_val[Tri_loc-1] = *it;  | |
| 	  } | |
| 	  else if (j > i) { | |
| 	    if (count) { Tri_val[Tri_loc] = *it; Tri_ind[Tri_loc]=j; } | |
| 	    ++Tri_loc; | |
| 	  } | |
| 	} | |
| 	Tri_ptr[i+1] = Tri_loc; | |
|       } | |
|     } | |
|      | |
|     if (A(0,0) == T(0)) { | |
|       Tri_val[Tri_ptr[0]] = T(1); | |
|       GMM_WARNING2("pivot 0 is too small"); | |
|     } | |
|      | |
|     for (k = 0; k < n; k++) { | |
|       d = Tri_ptr[k]; | |
|       z = T(gmm::real(Tri_val[d])); Tri_val[d] = z; | |
|       if (gmm::abs(z) <= max_pivot) { | |
| 	Tri_val[d] = z = T(1); | |
| 	GMM_WARNING2("pivot " << k << " is too small [" << gmm::abs(z) << "]"); | |
|       } | |
|       max_pivot = std::max(max_pivot, std::min(gmm::abs(z) * prec, R(1))); | |
|        | |
|       for (i = d + 1; i < Tri_ptr[k+1]; ++i) Tri_val[i] /= z; | |
|       for (i = d + 1; i < Tri_ptr[k+1]; ++i) { | |
| 	zz = gmm::conj(Tri_val[i] * z); | |
| 	h = Tri_ind[i]; | |
| 	g = i; | |
| 	 | |
| 	for (j = Tri_ptr[h] ; j < Tri_ptr[h+1]; ++j) | |
| 	  for ( ; g < Tri_ptr[k+1] && Tri_ind[g] <= Tri_ind[j]; ++g) | |
| 	    if (Tri_ind[g] == Tri_ind[j]) | |
| 	      Tri_val[j] -= zz * Tri_val[g]; | |
|       } | |
|     } | |
|     U = tm_type(&(Tri_val[0]), &(Tri_ind[0]), &(Tri_ptr[0]), | |
| 			n, mat_ncols(A)); | |
|   } | |
|    | |
|   template <typename Matrix> | |
|   void ildlt_precond<Matrix>::do_ildlt(const Matrix& A, col_major) | |
|   { do_ildlt(gmm::conjugated(A), row_major()); } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     gmm::copy(v1, v2); | |
|     gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|     gmm::upper_tri_solve(P.U, v2, true); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_mult(const ildlt_precond<Matrix>& P,const V1 &v1,V2 &v2) | |
|   { mult(P, v1, v2); } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void left_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     copy(v1, v2); | |
|     gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void right_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) | |
|   { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_left_mult(const ildlt_precond<Matrix>& P, const V1 &v1, | |
| 			    V2 &v2) { | |
|     copy(v1, v2); | |
|     gmm::upper_tri_solve(P.U, v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_right_mult(const ildlt_precond<Matrix>& P, const V1 &v1, | |
| 			     V2 &v2) | |
|   { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); } | |
| 
 | |
| 
 | |
| 
 | |
|   // for compatibility with old versions | |
|  | |
|   template <typename Matrix> | |
|   struct cholesky_precond : public ildlt_precond<Matrix> { | |
|     cholesky_precond(const Matrix& A) : ildlt_precond<Matrix>(A) {} | |
|     cholesky_precond(void) {} | |
|   } IS_DEPRECATED; | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     gmm::copy(v1, v2); | |
|     gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|     gmm::upper_tri_solve(P.U, v2, true); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_mult(const cholesky_precond<Matrix>& P,const V1 &v1,V2 &v2) | |
|   { mult(P, v1, v2); } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void left_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) { | |
|     copy(v1, v2); | |
|     gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void right_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) | |
|   { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_left_mult(const cholesky_precond<Matrix>& P, const V1 &v1, | |
| 			    V2 &v2) { | |
|     copy(v1, v2); | |
|     gmm::upper_tri_solve(P.U, v2, true); | |
|     for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i); | |
|   } | |
| 
 | |
|   template <typename Matrix, typename V1, typename V2> inline | |
|   void transposed_right_mult(const cholesky_precond<Matrix>& P, const V1 &v1, | |
| 			     V2 &v2) | |
|   { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); } | |
|    | |
| } | |
| 
 | |
| #endif  | |
| 
 |