597 lines
44 KiB

#include "storm-pars/modelchecker/region/SparseParameterLiftingModelChecker.h"
#include <queue>
#include <boost/container/flat_set.hpp>
#include <storm-pars/analysis/MonotonicityChecker.h>
#include "storm/adapters/RationalFunctionAdapter.h"
#include "storm/logic/FragmentSpecification.h"
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/utility/vector.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/exceptions/InvalidArgumentException.h"
#include "storm/exceptions/NotSupportedException.h"
namespace storm {
namespace modelchecker {
template <typename SparseModelType, typename ConstantType>
SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::SparseParameterLiftingModelChecker() {
//Intentionally left empty
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyFormula(Environment const& env, storm::modelchecker::CheckTask<storm::logic::Formula, typename SparseModelType::ValueType> const& checkTask) {
currentFormula = checkTask.getFormula().asSharedPointer();
currentCheckTask = std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, ConstantType>>(checkTask.substituteFormula(*currentFormula).template convertValueType<ConstantType>());
if (currentCheckTask->getFormula().isProbabilityOperatorFormula()) {
auto const& probOpFormula = currentCheckTask->getFormula().asProbabilityOperatorFormula();
if(probOpFormula.getSubformula().isBoundedUntilFormula()) {
specifyBoundedUntilFormula(env, currentCheckTask->substituteFormula(probOpFormula.getSubformula().asBoundedUntilFormula()));
} else if(probOpFormula.getSubformula().isUntilFormula()) {
specifyUntilFormula(env, currentCheckTask->substituteFormula(probOpFormula.getSubformula().asUntilFormula()));
} else if (probOpFormula.getSubformula().isEventuallyFormula()) {
specifyReachabilityProbabilityFormula(env, currentCheckTask->substituteFormula(probOpFormula.getSubformula().asEventuallyFormula()));
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Parameter lifting is not supported for the given property.");
}
} else if (currentCheckTask->getFormula().isRewardOperatorFormula()) {
auto const& rewOpFormula = currentCheckTask->getFormula().asRewardOperatorFormula();
if(rewOpFormula.getSubformula().isEventuallyFormula()) {
specifyReachabilityRewardFormula(env, currentCheckTask->substituteFormula(rewOpFormula.getSubformula().asEventuallyFormula()));
} else if (rewOpFormula.getSubformula().isCumulativeRewardFormula()) {
specifyCumulativeRewardFormula(env, currentCheckTask->substituteFormula(rewOpFormula.getSubformula().asCumulativeRewardFormula()));
}
}
}
template <typename SparseModelType, typename ConstantType>
RegionResult SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::analyzeRegion(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, RegionResultHypothesis const& hypothesis, RegionResult const& initialResult, bool sampleVerticesOfRegion, std::shared_ptr<storm::analysis::Order> reachabilityOrder, std::shared_ptr<storm::analysis::LocalMonotonicityResult<typename RegionModelChecker<typename SparseModelType::ValueType>::VariableType>> localMonotonicityResult) {
typedef typename RegionModelChecker<typename SparseModelType::ValueType>::VariableType VariableType;
typedef typename storm::analysis::MonotonicityResult<VariableType>::Monotonicity Monotonicity;
typedef typename storm::utility::parametric::Valuation<typename SparseModelType::ValueType> Valuation;
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::CoefficientType CoefficientType;
STORM_LOG_THROW(this->currentCheckTask->isOnlyInitialStatesRelevantSet(), storm::exceptions::NotSupportedException, "Analyzing regions with parameter lifting requires a property where only the value in the initial states is relevant.");
STORM_LOG_THROW(this->currentCheckTask->isBoundSet(), storm::exceptions::NotSupportedException, "Analyzing regions with parameter lifting requires a bounded property.");
STORM_LOG_THROW(this->parametricModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "Analyzing regions with parameter lifting requires a model with a single initial state.");
RegionResult result = initialResult;
// Check if we need to check the formula on one point to decide whether to show AllSat or AllViolated
if (hypothesis == RegionResultHypothesis::Unknown && result == RegionResult::Unknown) {
result = getInstantiationChecker().check(env, region.getCenterPoint())->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()] ? RegionResult::CenterSat : RegionResult::CenterViolated;
}
bool existsSat = (hypothesis == RegionResultHypothesis::AllSat || result == RegionResult::ExistsSat || result == RegionResult::CenterSat);
bool existsViolated = (hypothesis == RegionResultHypothesis::AllViolated || result == RegionResult::ExistsViolated || result == RegionResult::CenterViolated);
// Here we check on global monotonicity
if (localMonotonicityResult != nullptr && localMonotonicityResult->isDone()) {
// Try to check it with a global monotonicity result
auto monRes = localMonotonicityResult->getGlobalMonotonicityResult();
bool lowerBound = isLowerBound(this->currentCheckTask->getBound().comparisonType);
if (monRes->isDone() && monRes->isAllMonotonicity()) {
// Build valuations
auto monMap = monRes->getMonotonicityResult();
Valuation valuationToCheckSat;
Valuation valuationToCheckViolated;
for (auto var : region.getVariables()) {
auto monVar = monMap[var];
if (monVar == Monotonicity::Constant) {
valuationToCheckSat.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
valuationToCheckViolated.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
} else if (monVar == Monotonicity::Decr) {
if (lowerBound) {
valuationToCheckSat.insert(std::pair<VariableType, CoefficientType>(var, region.getUpperBoundary(var)));
valuationToCheckViolated.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
} else {
valuationToCheckSat.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
valuationToCheckViolated.insert(std::pair<VariableType, CoefficientType>(var, region.getUpperBoundary(var)));
}
} else if (monVar == Monotonicity::Incr) {
if (lowerBound) {
valuationToCheckSat.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
valuationToCheckViolated.insert(std::pair<VariableType, CoefficientType>(var, region.getUpperBoundary(var)));
} else {
valuationToCheckSat.insert(std::pair<VariableType, CoefficientType>(var, region.getUpperBoundary(var)));
valuationToCheckViolated.insert(std::pair<VariableType, CoefficientType>(var, region.getLowerBoundary(var)));
}
}
}
// Check for result
if (existsSat && getInstantiationCheckerSAT().check(env, valuationToCheckSat)->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()]) {
STORM_LOG_INFO("Region " << region << " is AllSat, discovered with instantiation checker on " << valuationToCheckSat << " and help of monotonicity" << std::endl);
RegionModelChecker<typename SparseModelType::ValueType>::numberOfRegionsKnownThroughMonotonicity++;
return RegionResult::AllSat;
}
if (existsViolated && !getInstantiationCheckerVIO().check(env, valuationToCheckViolated)->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()]) {
STORM_LOG_INFO("Region " << region << " is AllViolated, discovered with instantiation checker on " << valuationToCheckViolated << " and help of monotonicity" << std::endl);
RegionModelChecker<typename SparseModelType::ValueType>::numberOfRegionsKnownThroughMonotonicity++;
return RegionResult::AllViolated;
}
return RegionResult::ExistsBoth;
}
}
// Try to prove AllSat or AllViolated, depending on the hypothesis or the current result
if (existsSat) {
// show AllSat:
storm::solver::OptimizationDirection parameterOptimizationDirection = isLowerBound(this->currentCheckTask->getBound().comparisonType) ? storm::solver::OptimizationDirection::Minimize : storm::solver::OptimizationDirection::Maximize;
auto checkResult = this->check(env, region, parameterOptimizationDirection, reachabilityOrder, localMonotonicityResult);
if (checkResult->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()]) {
result = RegionResult::AllSat;
} else if (sampleVerticesOfRegion) {
result = sampleVertices(env, region, result);
}
} else if (existsViolated) {
// show AllViolated:
storm::solver::OptimizationDirection parameterOptimizationDirection = isLowerBound(this->currentCheckTask->getBound().comparisonType) ? storm::solver::OptimizationDirection::Maximize : storm::solver::OptimizationDirection::Minimize;
auto checkResult = this->check(env, region, parameterOptimizationDirection, reachabilityOrder, localMonotonicityResult);
if (!checkResult->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()]) {
result = RegionResult::AllViolated;
} else if (sampleVerticesOfRegion) {
result = sampleVertices(env, region, result);
}
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "When analyzing a region, an invalid initial result was given: " << initialResult);
}
return result;
}
template <typename SparseModelType, typename ConstantType>
RegionResult SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::sampleVertices(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, RegionResult const& initialResult) {
RegionResult result = initialResult;
if (result == RegionResult::AllSat || result == RegionResult::AllViolated) {
return result;
}
bool hasSatPoint = result == RegionResult::ExistsSat || result == RegionResult::CenterSat;
bool hasViolatedPoint = result == RegionResult::ExistsViolated || result == RegionResult::CenterViolated;
// Check if there is a point in the region for which the property is satisfied
auto vertices = region.getVerticesOfRegion(region.getVariables());
auto vertexIt = vertices.begin();
while (vertexIt != vertices.end() && !(hasSatPoint && hasViolatedPoint)) {
if (getInstantiationChecker().check(env, *vertexIt)->asExplicitQualitativeCheckResult()[*this->parametricModel->getInitialStates().begin()]) {
hasSatPoint = true;
} else {
hasViolatedPoint = true;
}
++vertexIt;
}
if (hasSatPoint) {
if (hasViolatedPoint) {
result = RegionResult::ExistsBoth;
} else if (result != RegionResult::CenterSat) {
result = RegionResult::ExistsSat;
}
} else if (hasViolatedPoint && result != RegionResult::CenterViolated) {
result = RegionResult::ExistsViolated;
}
return result;
}
template <typename SparseModelType, typename ConstantType>
std::unique_ptr<CheckResult> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::check(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dirForParameters, std::shared_ptr<storm::analysis::Order> reachabilityOrder, std::shared_ptr<storm::analysis::LocalMonotonicityResult<typename RegionModelChecker<typename SparseModelType::ValueType>::VariableType>> localMonotonicityResult) {
auto quantitativeResult = computeQuantitativeValues(env, region, dirForParameters, localMonotonicityResult);
lastValue = quantitativeResult->template asExplicitQuantitativeCheckResult<ConstantType>()[*this->parametricModel->getInitialStates().begin()];
if(currentCheckTask->getFormula().hasQuantitativeResult()) {
return quantitativeResult;
} else {
return quantitativeResult->template asExplicitQuantitativeCheckResult<ConstantType>().compareAgainstBound(this->currentCheckTask->getFormula().asOperatorFormula().getComparisonType(), this->currentCheckTask->getFormula().asOperatorFormula().template getThresholdAs<ConstantType>());
}
}
template <typename SparseModelType, typename ConstantType>
std::unique_ptr<QuantitativeCheckResult<ConstantType>> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getBound(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dirForParameters, std::shared_ptr<storm::analysis::LocalMonotonicityResult<typename RegionModelChecker<typename SparseModelType::ValueType>::VariableType>> localMonotonicityResult) {
STORM_LOG_WARN_COND(this->currentCheckTask->getFormula().hasQuantitativeResult(), "Computing quantitative bounds for a qualitative formula...");
return std::make_unique<ExplicitQuantitativeCheckResult<ConstantType>>(std::move(computeQuantitativeValues(env, region, dirForParameters, localMonotonicityResult)->template asExplicitQuantitativeCheckResult<ConstantType>()));
}
template <typename SparseModelType, typename ConstantType>
typename SparseModelType::ValueType SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getBoundAtInitState(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dirForParameters) {
STORM_LOG_THROW(this->parametricModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "Getting a bound at the initial state requires a model with a single initial state.");
return storm::utility::convertNumber<typename SparseModelType::ValueType>(getBound(env, region, dirForParameters)->template asExplicitQuantitativeCheckResult<ConstantType>()[*this->parametricModel->getInitialStates().begin()]);
}
template <typename SparseModelType, typename ConstantType>
storm::modelchecker::SparseInstantiationModelChecker<SparseModelType, ConstantType>& SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getInstantiationCheckerSAT() {
return getInstantiationChecker();
}
template <typename SparseModelType, typename ConstantType>
storm::modelchecker::SparseInstantiationModelChecker<SparseModelType, ConstantType>& SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getInstantiationCheckerVIO() {
return getInstantiationChecker();
}
template <typename SparseModelType, typename ConstantType>
struct RegionBound {
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::VariableType VariableType;
RegionBound(RegionBound<SparseModelType, ConstantType> const& other) = default;
RegionBound(storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& r, std::shared_ptr<storm::analysis::Order> o, std::shared_ptr<storm::analysis::LocalMonotonicityResult<VariableType>> l, ConstantType const& b) : region(r), order(o), localMonRes(l), bound(b) {}
storm::storage::ParameterRegion<typename SparseModelType::ValueType> region;
std::shared_ptr<storm::analysis::Order> order;
std::shared_ptr<storm::analysis::LocalMonotonicityResult<VariableType>> localMonRes;
ConstantType bound;
};
template<typename SparseModelType, typename ConstantType>
std::pair<typename SparseModelType::ValueType, typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::computeExtremalValue(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dir, typename SparseModelType::ValueType const& precision, boost::optional<ConstantType> const& initialValue) {
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::CoefficientType CoefficientType;
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation Valuation;
STORM_LOG_THROW(this->parametricModel->getInitialStates().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "Getting extremal values at the initial state requires a model with a single initial state.");
bool const useMonotonicity = this->isUseMonotonicitySet();
bool const minimize = storm::solver::minimize(dir);
// Comparator for the region queue
auto cmp = storm::solver::minimize(dir) ?
[](RegionBound<SparseModelType, ConstantType> const& lhs, RegionBound<SparseModelType, ConstantType> const& rhs) { return lhs.bound > rhs.bound; } :
[](RegionBound<SparseModelType, ConstantType> const& lhs, RegionBound<SparseModelType, ConstantType> const& rhs) { return lhs.bound < rhs.bound; };
std::priority_queue<RegionBound<SparseModelType, ConstantType>, std::vector<RegionBound<SparseModelType, ConstantType>>, decltype(cmp)> regionQueue(cmp);
storm::utility::Stopwatch initialWatch(true);
storm::utility::Stopwatch boundsWatch(false);
auto numberOfPLACallsBounds = 0;
ConstantType initBound;
initBound = storm::utility::zero<ConstantType>();
bool first = true;
if (useMonotonicity) {
if (this->isUseBoundsSet()) {
numberOfPLACallsBounds++;
numberOfPLACallsBounds++;
auto minBound = getBound(env, region, storm::solver::OptimizationDirection::Minimize, nullptr)->template asExplicitQuantitativeCheckResult<ConstantType>().getValueVector();
auto maxBound = getBound(env, region, storm::solver::OptimizationDirection::Maximize, nullptr)->template asExplicitQuantitativeCheckResult<ConstantType>().getValueVector();
if (minimize) {
initBound = minBound[*this->parametricModel->getInitialStates().begin()];
} else {
initBound = maxBound[*this->parametricModel->getInitialStates().begin()];
}
orderExtender->setMinValuesInit(minBound);
orderExtender->setMaxValuesInit(maxBound);
}
auto order = this->extendOrder(env, nullptr, region);
auto monRes = std::shared_ptr<storm::analysis::LocalMonotonicityResult<VariableType>>(new storm::analysis::LocalMonotonicityResult<VariableType>(order->getNumberOfStates()));
storm::utility::Stopwatch monotonicityWatch(true);
this->extendLocalMonotonicityResult(region, order, monRes);
monotonicityWatch.stop();
STORM_LOG_INFO(std::endl << "Total time for monotonicity checking: " << monotonicityWatch << "." << std::endl << std::endl);
regionQueue.emplace(region, order, monRes, initBound);
first = false;
} else {
regionQueue.emplace(region, nullptr, nullptr, initBound);
}
// The results
boost::optional<ConstantType> value;
Valuation valuation;
if (!initialValue) {
auto init = getGoodInitialPoint(env, region, dir, regionQueue.top().localMonRes);
value = storm::utility::convertNumber<ConstantType>(init.first);
valuation = std::move(init.second);
} else {
value = initialValue;
}
initialWatch.stop();
STORM_LOG_INFO(std::endl << "Total time for initial points: " << initialWatch << "." << std::endl << std::endl);
if (!initialValue) {
STORM_LOG_INFO("Initial value: " << value.get() << " at " << valuation);
} else {
STORM_LOG_INFO("Initial value: " << value.get() << " as provided by the user");
}
auto numberOfSplits = 0;
auto numberOfPLACalls = 0;
auto numberOfOrderCopies = 0;
auto numberOfMonResCopies = 0;
storm::utility::Stopwatch loopWatch(true);
if (!(useMonotonicity && regionQueue.top().localMonRes->getGlobalMonotonicityResult()->isDone() && regionQueue.top().localMonRes->getGlobalMonotonicityResult()->isAllMonotonicity())) {
// Doing the extremal computation, only when we don't use monotonicity or there are possibly not monotone variables.
auto totalArea = storm::utility::convertNumber<ConstantType>(region.area());
auto coveredArea = storm::utility::zero<ConstantType>();
while (!regionQueue.empty()) {
assert (value);
auto currRegion = regionQueue.top().region;
auto order = regionQueue.top().order;
auto localMonotonicityResult = regionQueue.top().localMonRes;
auto currBound = regionQueue.top().bound;
STORM_LOG_INFO("Currently looking at region: " << currRegion);
std::vector<storm::storage::ParameterRegion<typename SparseModelType::ValueType>> newRegions;
// Check whether this region needs further investigation based on the bound of the parent region
bool investigateBounds = first || (minimize && currBound < value.get() - storm::utility::convertNumber<ConstantType>(precision))
|| (!minimize && currBound > value.get() + storm::utility::convertNumber<ConstantType>(precision));
first = false;
if (investigateBounds) {
numberOfPLACalls++;
auto bounds = getBound(env, currRegion, dir, localMonotonicityResult)->template asExplicitQuantitativeCheckResult<ConstantType>().getValueVector();
currBound = bounds[*this->parametricModel->getInitialStates().begin()];
// Check whether this region needs further investigation based on the bound of this region
bool lookAtRegion = (minimize && currBound < value.get() - storm::utility::convertNumber<ConstantType>(precision))
|| (!minimize && currBound > value.get() + storm::utility::convertNumber<ConstantType>(precision));
if (lookAtRegion) {
if (useMonotonicity) {
// Continue extending order/monotonicity result
bool changedOrder = false;
if (!order->getDoneBuilding() && orderExtender->isHope(order, currRegion)) {
if (numberOfCopiesOrder[order] != 1) {
numberOfCopiesOrder[order]--;
order = copyOrder(order);
numberOfOrderCopies++;
} else {
assert (numberOfCopiesOrder[order] == 1);
}
this->extendOrder(env, order, currRegion);
changedOrder = true;
}
if (changedOrder) {
assert(!localMonotonicityResult->isDone());
if (numberOfCopiesMonRes[localMonotonicityResult] != 1) {
numberOfCopiesMonRes[localMonotonicityResult]--;
localMonotonicityResult = localMonotonicityResult->copy();
numberOfMonResCopies++;
} else {
assert (numberOfCopiesMonRes[localMonotonicityResult] == 1);
}
this->extendLocalMonotonicityResult(currRegion, order, localMonotonicityResult);
STORM_LOG_INFO("Order and monotonicity result got extended");
}
}
// Check whether this region contains a new 'good' value and set this value
auto point = useMonotonicity ? currRegion.getPoint(dir, *(localMonotonicityResult->getGlobalMonotonicityResult())) : currRegion.getCenterPoint();
auto currValue = getInstantiationChecker().check(env, point)->template asExplicitQuantitativeCheckResult<ConstantType>()[*this->parametricModel->getInitialStates().begin()];
if (!value || (minimize ? currValue <= value.get() : currValue >= value.get())) {
value = currValue;
valuation = point;
}
if ((minimize && currBound < value.get() - storm::utility::convertNumber<ConstantType>(precision))
|| (!minimize && currBound > value.get() + storm::utility::convertNumber<ConstantType>(precision))) {
// We will split the region in this case, but first we set the bounds to extend the order for the new regions.
if (useMonotonicity && this->isUseBoundsSet() && !order->getDoneBuilding()) {
boundsWatch.start();
numberOfPLACallsBounds++;
if (minimize) {
orderExtender->setMinMaxValues(order, bounds, getBound(env, currRegion, storm::solver::OptimizationDirection::Maximize, localMonotonicityResult)->template asExplicitQuantitativeCheckResult<ConstantType>().getValueVector());
} else {
orderExtender->setMinMaxValues(order, getBound(env, currRegion, storm::solver::OptimizationDirection::Maximize, localMonotonicityResult)->template asExplicitQuantitativeCheckResult<ConstantType>().getValueVector(), bounds);
}
boundsWatch.stop();
}
// Now split the region
if (useMonotonicity) {
this->splitSmart(currRegion, newRegions, order, *(localMonotonicityResult->getGlobalMonotonicityResult()), true);
} else if (this->isRegionSplitEstimateSupported()) {
auto empty = storm::analysis::MonotonicityResult<VariableType>();
this->splitSmart(currRegion, newRegions, order, empty, true);
} else {
currRegion.split(currRegion.getCenterPoint(), newRegions);
}
}
}
}
if (newRegions.empty()) {
// When the newRegions is empty we are done with the current region
coveredArea += storm::utility::convertNumber<ConstantType>(currRegion.area());
if (order != nullptr) {
numberOfCopiesOrder[order]--;
numberOfCopiesMonRes[localMonotonicityResult]--;
}
regionQueue.pop();
} else {
regionQueue.pop();
STORM_LOG_INFO("Splitting region " << currRegion << " into " << newRegions.size());
numberOfSplits++;
// Add the new regions to the queue
if (useMonotonicity) {
for (auto &r : newRegions) {
r.setBoundParent(storm::utility::convertNumber<CoefficientType>(currBound));
regionQueue.emplace(r, order, localMonotonicityResult, currBound);
}
if (numberOfCopiesOrder.find(order) != numberOfCopiesOrder.end()) {
numberOfCopiesOrder[order] += newRegions.size();
numberOfCopiesMonRes[localMonotonicityResult] += newRegions.size();
} else {
numberOfCopiesOrder[order] = newRegions.size();
numberOfCopiesMonRes[localMonotonicityResult] = newRegions.size();
}
} else {
for (auto &r : newRegions) {
r.setBoundParent(storm::utility::convertNumber<CoefficientType>(currBound));
regionQueue.emplace(r, nullptr, nullptr, currBound);
}
}
}
STORM_LOG_INFO("Current value : " << value.get() << ", current bound: " << currBound << ".");
STORM_LOG_INFO("Covered " << (coveredArea * storm::utility::convertNumber<ConstantType>(100.0) / totalArea) << "% of the region." << std::endl);
}
loopWatch.stop();
}
STORM_LOG_INFO("Total number of splits: " << numberOfSplits << std::endl);
STORM_PRINT("Total number of plaCalls: " << numberOfPLACalls << std::endl);
if (useMonotonicity) {
STORM_PRINT("Total number of plaCalls for bounds for monotonicity checking: " << numberOfPLACallsBounds << std::endl);
STORM_PRINT("Total number of copies of the order: " << numberOfOrderCopies << std::endl);
STORM_PRINT("Total number of copies of the local monotonicity result: " << numberOfMonResCopies
<< std::endl);
}
STORM_LOG_INFO(std::endl << "Total time for region refinement: " << loopWatch << "." << std::endl << std::endl);
STORM_LOG_INFO(std::endl << "Total time for additional bounds: " << boundsWatch << "." << std::endl << std::endl);
return std::make_pair(storm::utility::convertNumber<typename SparseModelType::ValueType>(value.get()), valuation);
}
template <typename SparseModelType, typename ConstantType>
std::pair<typename SparseModelType::ValueType, typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::computeExtremalValue(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dir, typename SparseModelType::ValueType const& precision) {
return computeExtremalValue(env, region, dir, precision, boost::none);
}
template <typename SparseModelType, typename ConstantType>
bool SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::checkExtremalValue(Environment const& env, storm::storage::ParameterRegion<typename SparseModelType::ValueType> const& region, storm::solver::OptimizationDirection const& dir, typename SparseModelType::ValueType const& precision, typename SparseModelType::ValueType const& valueToCheck) {
auto res = computeExtremalValue(env, region, dir, precision, storm::utility::convertNumber<ConstantType>(valueToCheck)).first;
return storm::solver::minimize(dir) ? storm::utility::convertNumber<ConstantType>(res) >= storm::utility::convertNumber<ConstantType>(valueToCheck) : storm::utility::convertNumber<ConstantType>(res) <= storm::utility::convertNumber<ConstantType>(valueToCheck);
}
template <typename SparseModelType, typename ConstantType>
SparseModelType const& SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getConsideredParametricModel() const {
return *parametricModel;
}
template <typename SparseModelType, typename ConstantType>
CheckTask<storm::logic::Formula, ConstantType> const& SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getCurrentCheckTask() const {
return *currentCheckTask;
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyBoundedUntilFormula(Environment const& env, CheckTask<logic::BoundedUntilFormula, ConstantType> const& checkTask) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Parameter lifting is not supported for the given property.");
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyUntilFormula(Environment const& env, CheckTask<logic::UntilFormula, ConstantType> const& checkTask) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Parameter lifting is not supported for the given property.");
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyReachabilityProbabilityFormula(Environment const& env, CheckTask<logic::EventuallyFormula, ConstantType> const& checkTask) {
// transform to until formula
auto untilFormula = std::make_shared<storm::logic::UntilFormula const>(storm::logic::Formula::getTrueFormula(), checkTask.getFormula().getSubformula().asSharedPointer());
specifyUntilFormula(env, currentCheckTask->substituteFormula(*untilFormula));
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyReachabilityRewardFormula(Environment const& env, CheckTask<logic::EventuallyFormula, ConstantType> const& checkTask) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Parameter lifting is not supported for the given property.");
}
template <typename SparseModelType, typename ConstantType>
void SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::specifyCumulativeRewardFormula(Environment const& env, CheckTask<logic::CumulativeRewardFormula, ConstantType> const& checkTask) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Parameter lifting is not supported for the given property.");
}
template<typename SparseModelType, typename ConstantType>
std::shared_ptr<storm::analysis::Order> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::copyOrder(std::shared_ptr<storm::analysis::Order> order) {
auto res = order->copy();
if (orderExtender) {
orderExtender->setUnknownStates(order, res);
orderExtender->copyMinMax(order, res);
}
return res;
}
template<typename SparseModelType, typename ConstantType>
std::pair<typename SparseModelType::ValueType, typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::checkForPossibleMonotonicity(Environment const& env,
const storage::ParameterRegion<typename SparseModelType::ValueType> &region,
std::set<VariableType>& possibleMonotoneIncrParameters,
std::set<VariableType>& possibleMonotoneDecrParameters,
std::set<VariableType>& possibleNotMonotoneParameters,
std::set<VariableType>const& consideredVariables,
storm::solver::OptimizationDirection const& dir) {
bool minimize = storm::solver::minimize(dir);
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation Valuation;
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::CoefficientType CoefficientType;
ConstantType value = storm::solver::minimize(dir) ? 1 : 0;
Valuation valuation;
for (auto& var : consideredVariables) {
ConstantType previousCenter = -1;
bool monDecr = true;
bool monIncr = true;
auto valuationCenter = region.getCenterPoint();
valuationCenter[var] = region.getLowerBoundary(var);
// TODO: make cmdline argument or 1/precision
int numberOfSamples = 50;
auto stepSize = (region.getUpperBoundary(var) - region.getLowerBoundary(var)) / (numberOfSamples - 1);
while (valuationCenter[var] <= region.getUpperBoundary(var)) {
// Create valuation
ConstantType valueCenter = getInstantiationChecker().check(env, valuationCenter)->template asExplicitQuantitativeCheckResult<ConstantType>()[*this->parametricModel->getInitialStates().begin()];
if (storm::solver::minimize(dir) ? valueCenter <= value : valueCenter >= value) {
value = valueCenter;
valuation = valuationCenter;
}
// Calculate difference with result for previous valuation
ConstantType diffCenter = previousCenter - valueCenter;
assert (previousCenter == -1 || (diffCenter >= -1 && diffCenter <= 1));
if (previousCenter != -1) {
assert (previousCenter != -1 && previousCenter != -1);
monDecr &= diffCenter > 0 && diffCenter > 0 && diffCenter > 0; // then previous value is larger than the current value from the initial states
monIncr &= diffCenter < 0 && diffCenter < 0 && diffCenter < 0;
}
previousCenter = valueCenter;
if (!monDecr && ! monIncr) {
break;
}
valuationCenter[var] += stepSize;
}
if (monIncr) {
possibleMonotoneParameters.insert(var);
possibleMonotoneIncrParameters.insert(var);
} else if (monDecr) {
possibleMonotoneParameters.insert(var);
possibleMonotoneDecrParameters.insert(var);
} else {
possibleNotMonotoneParameters.insert(var);
}
}
return std::make_pair(storm::utility::convertNumber<typename SparseModelType::ValueType>(value), std::move(valuation));
}
template<typename SparseModelType, typename ConstantType>
std::pair<typename SparseModelType::ValueType, typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation> SparseParameterLiftingModelChecker<SparseModelType, ConstantType>::getGoodInitialPoint(const Environment &env, const storage::ParameterRegion<typename SparseModelType::ValueType> &region, const OptimizationDirection &dir, std::shared_ptr<storm::analysis::LocalMonotonicityResult<VariableType>> localMonRes) {
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::Valuation Valuation;
typedef typename storm::storage::ParameterRegion<typename SparseModelType::ValueType>::CoefficientType CoefficientType;
ConstantType value = storm::solver::minimize(dir) ? 1 : 0;
Valuation valuation;
std::set<VariableType> monIncr, monDecr, notMon, notMonFirst;
STORM_LOG_INFO("Number of parameters: " << region.getVariables().size() << std::endl;);
if (localMonRes != nullptr) {
localMonRes->getGlobalMonotonicityResult()->splitBasedOnMonotonicity(region.getVariables(), monIncr, monDecr, notMonFirst);
auto numMon = monIncr.size() + monDecr.size();
STORM_LOG_INFO("Number of monotone parameters: " << numMon << std::endl;);
if (numMon < region.getVariables().size()) {
checkForPossibleMonotonicity(env, region, monIncr, monDecr, notMon, notMonFirst, dir);
STORM_LOG_INFO("Number of possible monotone parameters: " << (monIncr.size() + monDecr.size() - numMon) << std::endl;);
STORM_LOG_INFO("Number of definitely not monotone parameters: " << notMon.size() << std::endl;);
}
valuation = region.getPoint(dir, monIncr, monDecr);
} else {
valuation = region.getCenterPoint();
}
value = getInstantiationChecker().check(env, valuation)->template asExplicitQuantitativeCheckResult<ConstantType>()[*this->parametricModel->getInitialStates().begin()];
return std::make_pair(storm::utility::convertNumber<typename SparseModelType::ValueType>(value), std::move(valuation));
}
template class SparseParameterLiftingModelChecker<storm::models::sparse::Dtmc<storm::RationalFunction>, double>;
template class SparseParameterLiftingModelChecker<storm::models::sparse::Mdp<storm::RationalFunction>, double>;
template class SparseParameterLiftingModelChecker<storm::models::sparse::Dtmc<storm::RationalFunction>, storm::RationalNumber>;
template class SparseParameterLiftingModelChecker<storm::models::sparse::Mdp<storm::RationalFunction>, storm::RationalNumber>;
}
}