You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							79 lines
						
					
					
						
							2.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							79 lines
						
					
					
						
							2.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "common.h"
							 | 
						|
								#include <Eigen/Eigenvalues>
							 | 
						|
								
							 | 
						|
								// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
							 | 
						|
								EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Scalar* w, Scalar* /*work*/, int* lwork, int *info))
							 | 
						|
								{
							 | 
						|
								  // TODO exploit the work buffer
							 | 
						|
								  bool query_size = *lwork==-1;
							 | 
						|
								  
							 | 
						|
								  *info = 0;
							 | 
						|
								        if(*jobz!='N' && *jobz!='V')                    *info = -1;
							 | 
						|
								  else  if(UPLO(*uplo)==INVALID)                        *info = -2;
							 | 
						|
								  else  if(*n<0)                                        *info = -3;
							 | 
						|
								  else  if(*lda<std::max(1,*n))                         *info = -5;
							 | 
						|
								  else  if((!query_size) && *lwork<std::max(1,3**n-1))  *info = -8;
							 | 
						|
								  
							 | 
						|
								//   if(*info==0)
							 | 
						|
								//   {
							 | 
						|
								//     int nb = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
							 | 
						|
								//          LWKOPT = MAX( 1, ( NB+2 )*N )
							 | 
						|
								//          WORK( 1 ) = LWKOPT
							 | 
						|
								// *
							 | 
						|
								//          IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
							 | 
						|
								//      $      INFO = -8
							 | 
						|
								//       END IF
							 | 
						|
								// *
							 | 
						|
								//       IF( INFO.NE.0 ) THEN
							 | 
						|
								//          CALL XERBLA( 'SSYEV ', -INFO )
							 | 
						|
								//          RETURN
							 | 
						|
								//       ELSE IF( LQUERY ) THEN
							 | 
						|
								//          RETURN
							 | 
						|
								//       END IF
							 | 
						|
								  
							 | 
						|
								  if(*info!=0)
							 | 
						|
								  {
							 | 
						|
								    int e = -*info;
							 | 
						|
								    return xerbla_(SCALAR_SUFFIX_UP"SYEV ", &e, 6);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  if(query_size)
							 | 
						|
								  {
							 | 
						|
								    *lwork = 0;
							 | 
						|
								    return 0;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  if(*n==0)
							 | 
						|
								    return 0;
							 | 
						|
								  
							 | 
						|
								  PlainMatrixType mat(*n,*n);
							 | 
						|
								  if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint();
							 | 
						|
								  else                mat = matrix(a,*n,*n,*lda);
							 | 
						|
								  
							 | 
						|
								  bool computeVectors = *jobz=='V' || *jobz=='v';
							 | 
						|
								  SelfAdjointEigenSolver<PlainMatrixType> eig(mat,computeVectors?ComputeEigenvectors:EigenvaluesOnly);
							 | 
						|
								  
							 | 
						|
								  if(eig.info()==NoConvergence)
							 | 
						|
								  {
							 | 
						|
								    vector(w,*n).setZero();
							 | 
						|
								    if(computeVectors)
							 | 
						|
								      matrix(a,*n,*n,*lda).setIdentity();
							 | 
						|
								    //*info = 1;
							 | 
						|
								    return 0;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  vector(w,*n) = eig.eigenvalues();
							 | 
						|
								  if(computeVectors)
							 | 
						|
								    matrix(a,*n,*n,*lda) = eig.eigenvectors();
							 | 
						|
								  
							 | 
						|
								  return 0;
							 | 
						|
								}
							 |