You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

372 lines
27 KiB

#include "gtest/gtest.h"
#include "storm-config.h"
#include "src/logic/Formulas.h"
#include "src/utility/solver.h"
#include "src/modelchecker/prctl/SymbolicMdpPrctlModelChecker.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/parser/FormulaParser.h"
#include "src/parser/PrismParser.h"
#include "src/builder/DdPrismModelBuilder.h"
#include "src/models/symbolic/Dtmc.h"
#include "src/models/symbolic/StandardRewardModel.h"
#include "src/settings/SettingsManager.h"
#include "src/settings/modules/NativeEquationSolverSettings.h"
#include "src/settings/modules/GeneralSettings.h"
TEST(SymbolicMdpPrctlModelCheckerTest, Dice_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coinflips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>().translateProgram(program, options);
EXPECT_EQ(169ul, model->getNumberOfStates());
EXPECT_EQ(436ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>();
storm::modelchecker::SymbolicMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::CUDD, double>>(new storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::CUDD, double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"two\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult7 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(7.3333272933959961, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333272933959961, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult8 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(7.3333272933959961, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333272933959961, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(SymbolicMdpPrctlModelCheckerTest, Dice_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/two_dice.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("coinflips");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>().translateProgram(program, options);
EXPECT_EQ(169ul, model->getNumberOfStates());
EXPECT_EQ(436ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::SymbolicMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::Sylvan, double>>(new storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::Sylvan, double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"two\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"two\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0277777612209320068, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"three\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0555555224418640136, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"four\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.083333283662796020508, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult7 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333272933959961, quantitativeResult7.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333272933959961, quantitativeResult7.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"done\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult8 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(7.3333272933959961, quantitativeResult8.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(7.3333272933959961, quantitativeResult8.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(SymbolicMdpPrctlModelCheckerTest, AsynchronousLeader_Cudd) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::CUDD>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::CUDD>().translateProgram(program, options);
EXPECT_EQ(3172ul, model->getNumberOfStates());
EXPECT_EQ(7144ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::CUDD>>();
storm::modelchecker::SymbolicMdpPrctlModelChecker<storm::dd::DdType::CUDD, double> checker(*mdp, std::unique_ptr<storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::CUDD, double>>(new storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::CUDD, double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult3 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult4 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult5 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(4.2856890848060498, quantitativeResult5.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856890848060498, quantitativeResult5.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::CUDD>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD>& quantitativeResult6 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::CUDD, double>();
EXPECT_NEAR(4.2856890848060498, quantitativeResult6.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2856890848060498, quantitativeResult6.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
}
TEST(SymbolicMdpPrctlModelCheckerTest, AsynchronousLeader_Sylvan) {
storm::prism::Program program = storm::parser::PrismParser::parse(STORM_CPP_TESTS_BASE_PATH "/functional/builder/leader4.nm");
// A parser that we use for conveniently constructing the formulas.
storm::parser::FormulaParser formulaParser;
// Build the die model with its reward model.
#ifdef WINDOWS
storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#else
typename storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>::Options options;
#endif
options.buildAllRewardModels = false;
options.rewardModelsToBuild.insert("rounds");
std::shared_ptr<storm::models::symbolic::Model<storm::dd::DdType::Sylvan>> model = storm::builder::DdPrismModelBuilder<storm::dd::DdType::Sylvan>().translateProgram(program, options);
EXPECT_EQ(3172ul, model->getNumberOfStates());
EXPECT_EQ(7144ul, model->getNumberOfTransitions());
ASSERT_EQ(model->getType(), storm::models::ModelType::Mdp);
std::shared_ptr<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>> mdp = model->as<storm::models::symbolic::Mdp<storm::dd::DdType::Sylvan>>();
storm::modelchecker::SymbolicMdpPrctlModelChecker<storm::dd::DdType::Sylvan, double> checker(*mdp, std::unique_ptr<storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::Sylvan, double>>(new storm::utility::solver::SymbolicMinMaxLinearEquationSolverFactory<storm::dd::DdType::Sylvan, double>()));
std::shared_ptr<storm::logic::Formula> formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F \"elected\"]");
std::unique_ptr<storm::modelchecker::CheckResult> result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult1 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult1.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult1.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult2 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(1, quantitativeResult2.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(1, quantitativeResult2.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmin=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult3 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult3.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult3.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Pmax=? [F<=25 \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult4 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
EXPECT_NEAR(0.0625, quantitativeResult4.getMin(), storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(0.0625, quantitativeResult4.getMax(), storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmin=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult5 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
// FIXME: this precision bound is not really good.
EXPECT_NEAR(4.2857, quantitativeResult5.getMin(), 100 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2857, quantitativeResult5.getMax(), 100 * storm::settings::nativeEquationSolverSettings().getPrecision());
formula = formulaParser.parseSingleFormulaFromString("Rmax=? [F \"elected\"]");
result = checker.check(*formula);
result->filter(storm::modelchecker::SymbolicQualitativeCheckResult<storm::dd::DdType::Sylvan>(model->getReachableStates(), model->getInitialStates()));
storm::modelchecker::SymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan>& quantitativeResult6 = result->asSymbolicQuantitativeCheckResult<storm::dd::DdType::Sylvan, double>();
// FIXME: this precision bound is not really good.
EXPECT_NEAR(4.2857, quantitativeResult6.getMin(), 100 * storm::settings::nativeEquationSolverSettings().getPrecision());
EXPECT_NEAR(4.2857, quantitativeResult6.getMax(), 100 * storm::settings::nativeEquationSolverSettings().getPrecision());
}