You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							172 lines
						
					
					
						
							4.5 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							172 lines
						
					
					
						
							4.5 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/AutoDiff> | |
|  | |
| template<typename Scalar> | |
| EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) | |
| { | |
|   using namespace std; | |
| //   return x+std::sin(y); | |
|   EIGEN_ASM_COMMENT("mybegin"); | |
|   return static_cast<Scalar>(x*2 - pow(x,2) + 2*sqrt(y*y) - 4 * sin(x) + 2 * cos(y) - exp(-0.5*x*x)); | |
|   //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; | |
|   EIGEN_ASM_COMMENT("myend"); | |
| } | |
| 
 | |
| template<typename Vector> | |
| EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) | |
| { | |
|   typedef typename Vector::Scalar Scalar; | |
|   return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); | |
| } | |
| 
 | |
| template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> | |
| struct TestFunc1 | |
| { | |
|   typedef _Scalar Scalar; | |
|   enum { | |
|     InputsAtCompileTime = NX, | |
|     ValuesAtCompileTime = NY | |
|   }; | |
|   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | |
|   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | |
|   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | |
| 
 | |
|   int m_inputs, m_values; | |
| 
 | |
|   TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | |
|   TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {} | |
| 
 | |
|   int inputs() const { return m_inputs; } | |
|   int values() const { return m_values; } | |
| 
 | |
|   template<typename T> | |
|   void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const | |
|   { | |
|     Matrix<T,ValuesAtCompileTime,1>& v = *_v; | |
| 
 | |
|     v[0] = 2 * x[0] * x[0] + x[0] * x[1]; | |
|     v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; | |
|     if(inputs()>2) | |
|     { | |
|       v[0] += 0.5 * x[2]; | |
|       v[1] += x[2]; | |
|     } | |
|     if(values()>2) | |
|     { | |
|       v[2] = 3 * x[1] * x[0] * x[0]; | |
|     } | |
|     if (inputs()>2 && values()>2) | |
|       v[2] *= x[2]; | |
|   } | |
| 
 | |
|   void operator() (const InputType& x, ValueType* v, JacobianType* _j) const | |
|   { | |
|     (*this)(x, v); | |
| 
 | |
|     if(_j) | |
|     { | |
|       JacobianType& j = *_j; | |
| 
 | |
|       j(0,0) = 4 * x[0] + x[1]; | |
|       j(1,0) = 3 * x[1]; | |
| 
 | |
|       j(0,1) = x[0]; | |
|       j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; | |
| 
 | |
|       if (inputs()>2) | |
|       { | |
|         j(0,2) = 0.5; | |
|         j(1,2) = 1; | |
|       } | |
|       if(values()>2) | |
|       { | |
|         j(2,0) = 3 * x[1] * 2 * x[0]; | |
|         j(2,1) = 3 * x[0] * x[0]; | |
|       } | |
|       if (inputs()>2 && values()>2) | |
|       { | |
|         j(2,0) *= x[2]; | |
|         j(2,1) *= x[2]; | |
| 
 | |
|         j(2,2) = 3 * x[1] * x[0] * x[0]; | |
|         j(2,2) = 3 * x[1] * x[0] * x[0]; | |
|       } | |
|     } | |
|   } | |
| }; | |
| 
 | |
| template<typename Func> void forward_jacobian(const Func& f) | |
| { | |
|     typename Func::InputType x = Func::InputType::Random(f.inputs()); | |
|     typename Func::ValueType y(f.values()), yref(f.values()); | |
|     typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); | |
| 
 | |
|     jref.setZero(); | |
|     yref.setZero(); | |
|     f(x,&yref,&jref); | |
| //     std::cerr << y.transpose() << "\n\n";; | |
| //     std::cerr << j << "\n\n";; | |
|  | |
|     j.setZero(); | |
|     y.setZero(); | |
|     AutoDiffJacobian<Func> autoj(f); | |
|     autoj(x, &y, &j); | |
| //     std::cerr << y.transpose() << "\n\n";; | |
| //     std::cerr << j << "\n\n";; | |
|  | |
|     VERIFY_IS_APPROX(y, yref); | |
|     VERIFY_IS_APPROX(j, jref); | |
| } | |
| 
 | |
| void test_autodiff_scalar() | |
| { | |
|   std::cerr << foo<float>(1,2) << "\n"; | |
|   typedef AutoDiffScalar<Vector2f> AD; | |
|   AD ax(1,Vector2f::UnitX()); | |
|   AD ay(2,Vector2f::UnitY()); | |
|   AD res = foo<AD>(ax,ay); | |
|   std::cerr << res.value() << " <> " | |
|             << res.derivatives().transpose() << "\n\n"; | |
| } | |
| 
 | |
| void test_autodiff_vector() | |
| { | |
|   std::cerr << foo<Vector2f>(Vector2f(1,2)) << "\n"; | |
|   typedef AutoDiffScalar<Vector2f> AD; | |
|   typedef Matrix<AD,2,1> VectorAD; | |
|   VectorAD p(AD(1),AD(-1)); | |
|   p.x().derivatives() = Vector2f::UnitX(); | |
|   p.y().derivatives() = Vector2f::UnitY(); | |
|    | |
|   AD res = foo<VectorAD>(p); | |
|   std::cerr << res.value() << " <> " | |
|             << res.derivatives().transpose() << "\n\n"; | |
| } | |
| 
 | |
| void test_autodiff_jacobian() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); | |
|     CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); | |
|     CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); | |
|     CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); | |
|     CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); | |
|   } | |
| } | |
| 
 | |
| void test_autodiff() | |
| { | |
|     test_autodiff_scalar(); | |
|     test_autodiff_vector(); | |
| //     test_autodiff_jacobian(); | |
| } | |
| 
 |