You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							265 lines
						
					
					
						
							8.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							265 lines
						
					
					
						
							8.9 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/FFT> | |
|  | |
| template <typename T>  | |
| std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } | |
| 
 | |
| using namespace std; | |
| using namespace Eigen; | |
| 
 | |
| float norm(float x) {return x*x;} | |
| double norm(double x) {return x*x;} | |
| long double norm(long double x) {return x*x;} | |
| 
 | |
| template < typename T> | |
| complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } | |
| 
 | |
| complex<long double>  promote(float x) { return complex<long double>( x); } | |
| complex<long double>  promote(double x) { return complex<long double>( x); } | |
| complex<long double>  promote(long double x) { return complex<long double>( x); } | |
|      | |
| 
 | |
|     template <typename VT1,typename VT2> | |
|     long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) | |
|     { | |
|         long double totalpower=0; | |
|         long double difpower=0; | |
|         long double pi = acos((long double)-1 ); | |
|         for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { | |
|             complex<long double> acc = 0; | |
|             long double phinc = -2.*k0* pi / timebuf.size(); | |
|             for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { | |
|                 acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); | |
|             } | |
|             totalpower += norm(acc); | |
|             complex<long double> x = promote(fftbuf[k0]);  | |
|             complex<long double> dif = acc - x; | |
|             difpower += norm(dif); | |
|             //cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(norm(dif)) << endl; | |
|         } | |
|         cerr << "rmse:" << sqrt(difpower/totalpower) << endl; | |
|         return sqrt(difpower/totalpower); | |
|     } | |
| 
 | |
|     template <typename VT1,typename VT2> | |
|     long double dif_rmse( const VT1 buf1,const VT2 buf2) | |
|     { | |
|         long double totalpower=0; | |
|         long double difpower=0; | |
|         size_t n = (min)( buf1.size(),buf2.size() ); | |
|         for (size_t k=0;k<n;++k) { | |
|             totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.; | |
|             difpower += norm(buf1[k] - buf2[k]); | |
|         } | |
|         return sqrt(difpower/totalpower); | |
|     } | |
| 
 | |
| enum { StdVectorContainer, EigenVectorContainer }; | |
| 
 | |
| template<int Container, typename Scalar> struct VectorType; | |
| 
 | |
| template<typename Scalar> struct VectorType<StdVectorContainer,Scalar> | |
| { | |
|   typedef vector<Scalar> type; | |
| }; | |
| 
 | |
| template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar> | |
| { | |
|   typedef Matrix<Scalar,Dynamic,1> type; | |
| }; | |
| 
 | |
| template <int Container, typename T> | |
| void test_scalar_generic(int nfft) | |
| { | |
|     typedef typename FFT<T>::Complex Complex; | |
|     typedef typename FFT<T>::Scalar Scalar; | |
|     typedef typename VectorType<Container,Scalar>::type ScalarVector; | |
|     typedef typename VectorType<Container,Complex>::type ComplexVector; | |
| 
 | |
|     FFT<T> fft; | |
|     ScalarVector tbuf(nfft); | |
|     ComplexVector freqBuf; | |
|     for (int k=0;k<nfft;++k) | |
|         tbuf[k]= (T)( rand()/(double)RAND_MAX - .5); | |
| 
 | |
|     // make sure it DOESN'T give the right full spectrum answer | |
|     // if we've asked for half-spectrum | |
|     fft.SetFlag(fft.HalfSpectrum ); | |
|     fft.fwd( freqBuf,tbuf); | |
|     VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) ); | |
|     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check | |
|  | |
|     fft.ClearFlag(fft.HalfSpectrum ); | |
|     fft.fwd( freqBuf,tbuf); | |
|     VERIFY( (size_t)freqBuf.size() == (size_t)nfft); | |
|     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check | |
|  | |
|     if (nfft&1) | |
|         return; // odd FFTs get the wrong size inverse FFT | |
|  | |
|     ScalarVector tbuf2; | |
|     fft.inv( tbuf2 , freqBuf); | |
|     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check | |
|  | |
| 
 | |
|     // verify that the Unscaled flag takes effect | |
|     ScalarVector tbuf3; | |
|     fft.SetFlag(fft.Unscaled); | |
| 
 | |
|     fft.inv( tbuf3 , freqBuf); | |
| 
 | |
|     for (int k=0;k<nfft;++k) | |
|         tbuf3[k] *= T(1./nfft); | |
| 
 | |
| 
 | |
|     //for (size_t i=0;i<(size_t) tbuf.size();++i) | |
|     //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl; | |
|  | |
|     VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>()  );// gross check | |
|  | |
|     // verify that ClearFlag works | |
|     fft.ClearFlag(fft.Unscaled); | |
|     fft.inv( tbuf2 , freqBuf); | |
|     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check | |
| } | |
| 
 | |
| template <typename T> | |
| void test_scalar(int nfft) | |
| { | |
|   test_scalar_generic<StdVectorContainer,T>(nfft); | |
|   //test_scalar_generic<EigenVectorContainer,T>(nfft); | |
| } | |
| 
 | |
| 
 | |
| template <int Container, typename T> | |
| void test_complex_generic(int nfft) | |
| { | |
|     typedef typename FFT<T>::Complex Complex; | |
|     typedef typename VectorType<Container,Complex>::type ComplexVector; | |
| 
 | |
|     FFT<T> fft; | |
| 
 | |
|     ComplexVector inbuf(nfft); | |
|     ComplexVector outbuf; | |
|     ComplexVector buf3; | |
|     for (int k=0;k<nfft;++k) | |
|         inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); | |
|     fft.fwd( outbuf , inbuf); | |
| 
 | |
|     VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check | |
|     fft.inv( buf3 , outbuf); | |
| 
 | |
|     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check | |
|  | |
|     // verify that the Unscaled flag takes effect | |
|     ComplexVector buf4; | |
|     fft.SetFlag(fft.Unscaled); | |
|     fft.inv( buf4 , outbuf); | |
|     for (int k=0;k<nfft;++k) | |
|         buf4[k] *= T(1./nfft); | |
|     VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>()  );// gross check | |
|  | |
|     // verify that ClearFlag works | |
|     fft.ClearFlag(fft.Unscaled); | |
|     fft.inv( buf3 , outbuf); | |
|     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check | |
| } | |
| 
 | |
| template <typename T> | |
| void test_complex(int nfft) | |
| { | |
|   test_complex_generic<StdVectorContainer,T>(nfft); | |
|   test_complex_generic<EigenVectorContainer,T>(nfft); | |
| } | |
| /* | |
| template <typename T,int nrows,int ncols> | |
| void test_complex2d() | |
| { | |
|     typedef typename Eigen::FFT<T>::Complex Complex; | |
|     FFT<T> fft; | |
|     Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2; | |
|  | |
|     src = Eigen::Matrix<Complex,nrows,ncols>::Random(); | |
|     //src =  Eigen::Matrix<Complex,nrows,ncols>::Identity(); | |
|  | |
|     for (int k=0;k<ncols;k++) { | |
|         Eigen::Matrix<Complex,nrows,1> tmpOut; | |
|         fft.fwd( tmpOut,src.col(k) ); | |
|         dst2.col(k) = tmpOut; | |
|     } | |
|  | |
|     for (int k=0;k<nrows;k++) { | |
|         Eigen::Matrix<Complex,1,ncols> tmpOut; | |
|         fft.fwd( tmpOut,  dst2.row(k) ); | |
|         dst2.row(k) = tmpOut; | |
|     } | |
|  | |
|     fft.fwd2(dst.data(),src.data(),ncols,nrows); | |
|     fft.inv2(src2.data(),dst.data(),ncols,nrows); | |
|     VERIFY( (src-src2).norm() < test_precision<T>() ); | |
|     VERIFY( (dst-dst2).norm() < test_precision<T>() ); | |
| } | |
| */ | |
| 
 | |
| 
 | |
| void test_return_by_value(int len) | |
| { | |
|     VectorXf in; | |
|     VectorXf in1; | |
|     in.setRandom( len ); | |
|     VectorXcf out1,out2; | |
|     FFT<float> fft; | |
| 
 | |
|     fft.SetFlag(fft.HalfSpectrum ); | |
| 
 | |
|     fft.fwd(out1,in); | |
|     out2 = fft.fwd(in); | |
|     VERIFY( (out1-out2).norm() < test_precision<float>() ); | |
|     in1 = fft.inv(out1); | |
|     VERIFY( (in1-in).norm() < test_precision<float>() ); | |
| } | |
| 
 | |
| void test_FFTW() | |
| { | |
|   CALL_SUBTEST( test_return_by_value(32) ); | |
|   //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) ); | |
|   //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) ); | |
|   CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );  | |
|   CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );  | |
|   CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );  | |
|   CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );  | |
|   CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );  | |
|   CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );  | |
|   CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );  | |
| 
 | |
|   CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );  | |
|   CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );  | |
|   CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );  | |
|   CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );  | |
|   CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );  | |
|    | |
|   #ifdef EIGEN_HAS_FFTWL | |
|   CALL_SUBTEST( test_complex<long double>(32) ); | |
|   CALL_SUBTEST( test_complex<long double>(256) ); | |
|   CALL_SUBTEST( test_complex<long double>(3*8) ); | |
|   CALL_SUBTEST( test_complex<long double>(5*32) ); | |
|   CALL_SUBTEST( test_complex<long double>(2*3*4) ); | |
|   CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); | |
|   CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); | |
|    | |
|   CALL_SUBTEST( test_scalar<long double>(32) ); | |
|   CALL_SUBTEST( test_scalar<long double>(45) ); | |
|   CALL_SUBTEST( test_scalar<long double>(50) ); | |
|   CALL_SUBTEST( test_scalar<long double>(256) ); | |
|   CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); | |
|   #endif | |
| }
 |