You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1178 lines
						
					
					
						
							32 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							1178 lines
						
					
					
						
							32 KiB
						
					
					
				| /**CFile*********************************************************************** | |
|  | |
|   FileName    [testcudd.c] | |
|  | |
|   PackageName [cudd] | |
|  | |
|   Synopsis    [Sanity check tests for some CUDD functions.] | |
|  | |
|   Description [testcudd reads a matrix with real coefficients and | |
|   transforms it into an ADD. It then performs various operations on | |
|   the ADD and on the BDD corresponding to the ADD pattern. Finally, | |
|   testcudd tests functions relate to Walsh matrices and matrix | |
|   multiplication.] | |
|  | |
|   SeeAlso     [] | |
|  | |
|   Author      [Fabio Somenzi] | |
|  | |
|   Copyright   [Copyright (c) 1995-2012, Regents of the University of Colorado | |
|  | |
|   All rights reserved. | |
|  | |
|   Redistribution and use in source and binary forms, with or without | |
|   modification, are permitted provided that the following conditions | |
|   are met: | |
|  | |
|   Redistributions of source code must retain the above copyright | |
|   notice, this list of conditions and the following disclaimer. | |
|  | |
|   Redistributions in binary form must reproduce the above copyright | |
|   notice, this list of conditions and the following disclaimer in the | |
|   documentation and/or other materials provided with the distribution. | |
|  | |
|   Neither the name of the University of Colorado nor the names of its | |
|   contributors may be used to endorse or promote products derived from | |
|   this software without specific prior written permission. | |
|  | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
|   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
|   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
|   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
|   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
|   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
|   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
|   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
|   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
|   POSSIBILITY OF SUCH DAMAGE.] | |
|  | |
| ******************************************************************************/ | |
| 
 | |
| #include "util.h" | |
| #include "cuddInt.h" | |
|  | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Constant declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #define TESTCUDD_VERSION	"TestCudd Version #1.0, Release date 3/17/01" | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #ifndef lint | |
| static char rcsid[] DD_UNUSED = "$Id: testcudd.c,v 1.23 2012/02/05 05:30:29 fabio Exp $"; | |
| #endif | |
|  | |
| static const char *onames[] = { "C", "M" }; /* names of functions to be dumped */ | |
| 
 | |
| /**AutomaticStart*************************************************************/ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Static function prototypes                                                */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| static void usage (char * prog); | |
| static FILE *open_file (char *filename, const char *mode); | |
| static int testIterators (DdManager *dd, DdNode *M, DdNode *C, int pr); | |
| static int testXor (DdManager *dd, DdNode *f, int pr, int nvars); | |
| static int testHamming (DdManager *dd, DdNode *f, int pr); | |
| static int testWalsh (DdManager *dd, int N, int cmu, int approach, int pr); | |
| static int testSupport(DdManager *dd, DdNode *f, DdNode *g, int pr); | |
| 
 | |
| /**AutomaticEnd***************************************************************/ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Main function for testcudd.] | |
|  | |
|   Description [] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| int | |
| main(int argc, char * const *argv) | |
| { | |
|     FILE *fp;           /* pointer to input file */ | |
|     char *file = (char *) "";	/* input file name */ | |
|     FILE *dfp = NULL;	/* pointer to dump file */ | |
|     FILE *savefp = NULL;/* pointer to save current manager's stdout setting */ | |
|     char *dfile;	/* file for DD dump */ | |
|     DdNode *dfunc[2];	/* addresses of the functions to be dumped */ | |
|     DdManager *dd;	/* pointer to DD manager */ | |
|     DdNode *one;	/* fast access to constant function */ | |
|     DdNode *M; | |
|     DdNode **x;		/* pointers to variables */ | |
|     DdNode **y;		/* pointers to variables */ | |
|     DdNode **xn;	/* complements of row variables */ | |
|     DdNode **yn_;	/* complements of column variables */ | |
|     DdNode **xvars; | |
|     DdNode **yvars; | |
|     DdNode *C;		/* result of converting from ADD to BDD */ | |
|     DdNode *ess;	/* cube of essential variables */ | |
|     DdNode *shortP;	/* BDD cube of shortest path */ | |
|     DdNode *largest;	/* BDD of largest cube */ | |
|     DdNode *shortA;	/* ADD cube of shortest path */ | |
|     DdNode *constN;	/* value returned by evaluation of ADD */ | |
|     DdNode *ycube;	/* cube of the negated y vars for c-proj */ | |
|     DdNode *CP;		/* C-Projection of C */ | |
|     DdNode *CPr;	/* C-Selection of C */ | |
|     int    length;	/* length of the shortest path */ | |
|     int    nx;			/* number of variables */ | |
|     int    ny; | |
|     int    maxnx; | |
|     int    maxny; | |
|     int    m; | |
|     int    n; | |
|     int    N; | |
|     int    cmu;			/* use CMU multiplication */ | |
|     int    pr;			/* verbose printout level */ | |
|     int    harwell; | |
|     int    multiple;		/* read multiple matrices */ | |
|     int    ok; | |
|     int    c;			/* variable to read in options */ | |
|     int    approach;		/* reordering approach */ | |
|     int    autodyn;		/* automatic reordering */ | |
|     int    groupcheck;		/* option for group sifting */ | |
|     int    profile;		/* print heap profile if != 0 */ | |
|     int    keepperm;		/* keep track of permutation */ | |
|     int    clearcache;		/* clear the cache after each matrix */ | |
|     int    blifOrDot;		/* dump format: 0 -> dot, 1 -> blif, ... */ | |
|     int    retval;		/* return value */ | |
|     int    i;			/* loop index */ | |
|     unsigned long startTime;	/* initial time */ | |
|     unsigned long   lapTime; | |
|     int    size; | |
|     unsigned int cacheSize, maxMemory; | |
|     unsigned int nvars,nslots; | |
| 
 | |
|     startTime = util_cpu_time(); | |
| 
 | |
|     approach = CUDD_REORDER_NONE; | |
|     autodyn = 0; | |
|     pr = 0; | |
|     harwell = 0; | |
|     multiple = 0; | |
|     profile = 0; | |
|     keepperm = 0; | |
|     cmu = 0; | |
|     N = 4; | |
|     nvars = 4; | |
|     cacheSize = 127; | |
|     maxMemory = 0; | |
|     nslots = CUDD_UNIQUE_SLOTS; | |
|     clearcache = 0; | |
|     groupcheck = CUDD_GROUP_CHECK7; | |
|     dfile = NULL; | |
|     blifOrDot = 0; /* dot format */ | |
| 
 | |
|     /* Parse command line. */ | |
|     while ((c = getopt(argc, argv, "CDHMPS:a:bcd:g:hkmn:p:v:x:X:")) | |
| 	   != EOF) { | |
| 	switch(c) { | |
| 	case 'C': | |
| 	    cmu = 1; | |
| 	    break; | |
| 	case 'D': | |
| 	    autodyn = 1; | |
| 	    break; | |
| 	case 'H': | |
| 	    harwell = 1; | |
| 	    break; | |
| 	case 'M': | |
| #ifdef MNEMOSYNE | |
| 	    (void) mnem_setrecording(0); | |
| #endif | |
| 	    break; | |
| 	case 'P': | |
| 	    profile = 1; | |
| 	    break; | |
| 	case 'S': | |
| 	    nslots = atoi(optarg); | |
| 	    break; | |
| 	case 'X': | |
| 	    maxMemory = atoi(optarg); | |
| 	    break; | |
| 	case 'a': | |
| 	    approach = atoi(optarg); | |
| 	    break; | |
| 	case 'b': | |
| 	    blifOrDot = 1; /* blif format */ | |
| 	    break; | |
| 	case 'c': | |
| 	    clearcache = 1; | |
| 	    break; | |
| 	case 'd': | |
| 	    dfile = optarg; | |
| 	    break; | |
| 	case 'g': | |
| 	    groupcheck = atoi(optarg); | |
| 	    break; | |
| 	case 'k': | |
| 	    keepperm = 1; | |
| 	    break; | |
| 	case 'm': | |
| 	    multiple = 1; | |
| 	    break; | |
| 	case 'n': | |
| 	    N = atoi(optarg); | |
| 	    break; | |
| 	case 'p': | |
| 	    pr = atoi(optarg); | |
| 	    break; | |
| 	case 'v': | |
| 	    nvars = atoi(optarg); | |
| 	    break; | |
| 	case 'x': | |
| 	    cacheSize = atoi(optarg); | |
| 	    break; | |
| 	case 'h': | |
| 	default: | |
| 	    usage(argv[0]); | |
| 	    break; | |
| 	} | |
|     } | |
| 
 | |
|     if (argc - optind == 0) { | |
| 	file = (char *) "-"; | |
|     } else if (argc - optind == 1) { | |
| 	file = argv[optind]; | |
|     } else { | |
| 	usage(argv[0]); | |
|     } | |
|     if ((approach<0) || (approach>17)) { | |
| 	(void) fprintf(stderr,"Invalid approach: %d \n",approach); | |
| 	usage(argv[0]); | |
|     } | |
| 
 | |
|     if (pr > 0) { | |
| 	(void) printf("# %s\n", TESTCUDD_VERSION); | |
| 	/* Echo command line and arguments. */ | |
| 	(void) printf("#"); | |
| 	for (i = 0; i < argc; i++) { | |
| 	    (void) printf(" %s", argv[i]); | |
| 	} | |
| 	(void) printf("\n"); | |
| 	(void) fflush(stdout); | |
|     } | |
| 
 | |
|     /* Initialize manager and provide easy reference to terminals. */ | |
|     dd = Cudd_Init(nvars,0,nslots,cacheSize,maxMemory); | |
|     one = DD_ONE(dd); | |
|     dd->groupcheck = (Cudd_AggregationType) groupcheck; | |
|     if (autodyn) Cudd_AutodynEnable(dd,CUDD_REORDER_SAME); | |
| 
 | |
|     /* Open input file. */ | |
|     fp = open_file(file, "r"); | |
| 
 | |
|     /* Open dump file if requested */ | |
|     if (dfile != NULL) { | |
| 	dfp = open_file(dfile, "w"); | |
|     } | |
| 
 | |
|     x = y = xn = yn_ = NULL; | |
|     do { | |
| 	/* We want to start anew for every matrix. */ | |
| 	maxnx = maxny = 0; | |
| 	nx = maxnx; ny = maxny; | |
| 	if (pr>0) lapTime = util_cpu_time(); | |
| 	if (harwell) { | |
| 	    if (pr > 0) (void) printf(":name: "); | |
| 	    ok = Cudd_addHarwell(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny, | |
| 	    &m, &n, 0, 2, 1, 2, pr); | |
| 	} else { | |
| 	    ok = Cudd_addRead(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny, | |
| 	    &m, &n, 0, 2, 1, 2); | |
| 	    if (pr > 0) | |
| 		(void) printf(":name: %s: %d rows %d columns\n", file, m, n); | |
| 	} | |
| 	if (!ok) { | |
| 	    (void) fprintf(stderr, "Error reading matrix\n"); | |
| 	    exit(1); | |
| 	} | |
| 
 | |
| 	if (nx > maxnx) maxnx = nx; | |
| 	if (ny > maxny) maxny = ny; | |
| 
 | |
| 	/* Build cube of negated y's. */ | |
| 	ycube = DD_ONE(dd); | |
| 	Cudd_Ref(ycube); | |
| 	for (i = maxny - 1; i >= 0; i--) { | |
| 	    DdNode *tmpp; | |
| 	    tmpp = Cudd_bddAnd(dd,Cudd_Not(dd->vars[y[i]->index]),ycube); | |
| 	    if (tmpp == NULL) exit(2); | |
| 	    Cudd_Ref(tmpp); | |
| 	    Cudd_RecursiveDeref(dd,ycube); | |
| 	    ycube = tmpp; | |
| 	} | |
| 	/* Initialize vectors of BDD variables used by priority func. */ | |
| 	xvars = ALLOC(DdNode *, nx); | |
| 	if (xvars == NULL) exit(2); | |
| 	for (i = 0; i < nx; i++) { | |
| 	    xvars[i] = dd->vars[x[i]->index]; | |
| 	} | |
| 	yvars = ALLOC(DdNode *, ny); | |
| 	if (yvars == NULL) exit(2); | |
| 	for (i = 0; i < ny; i++) { | |
| 	    yvars[i] = dd->vars[y[i]->index]; | |
| 	} | |
| 
 | |
| 	/* Clean up */ | |
| 	for (i=0; i < maxnx; i++) { | |
| 	    Cudd_RecursiveDeref(dd, x[i]); | |
| 	    Cudd_RecursiveDeref(dd, xn[i]); | |
| 	} | |
| 	FREE(x); | |
| 	FREE(xn); | |
| 	for (i=0; i < maxny; i++) { | |
| 	    Cudd_RecursiveDeref(dd, y[i]); | |
| 	    Cudd_RecursiveDeref(dd, yn_[i]); | |
| 	} | |
| 	FREE(y); | |
| 	FREE(yn_); | |
| 
 | |
| 	if (pr>0) {(void) printf(":1: M"); Cudd_PrintDebug(dd,M,nx+ny,pr);} | |
| 
 | |
| 	if (pr>0) (void) printf(":2: time to read the matrix = %s\n", | |
| 		    util_print_time(util_cpu_time() - lapTime)); | |
| 
 | |
| 	C = Cudd_addBddPattern(dd, M); | |
| 	if (C == 0) exit(2); | |
| 	Cudd_Ref(C); | |
| 	if (pr>0) {(void) printf(":3: C"); Cudd_PrintDebug(dd,C,nx+ny,pr);} | |
| 
 | |
| 	/* Test iterators. */ | |
| 	retval = testIterators(dd,M,C,pr); | |
| 	if (retval == 0) exit(2); | |
| 
 | |
|         if (pr > 0) | |
|             cuddCacheProfile(dd,stdout); | |
| 
 | |
| 	/* Test XOR */ | |
| 	retval = testXor(dd,C,pr,nx+ny); | |
| 	if (retval == 0) exit(2); | |
| 
 | |
| 	/* Test Hamming distance functions. */ | |
| 	retval = testHamming(dd,C,pr); | |
| 	if (retval == 0) exit(2); | |
| 
 | |
| 	/* Test selection functions. */ | |
| 	CP = Cudd_CProjection(dd,C,ycube); | |
| 	if (CP == NULL) exit(2); | |
| 	Cudd_Ref(CP); | |
| 	if (pr>0) {(void) printf("ycube"); Cudd_PrintDebug(dd,ycube,nx+ny,pr);} | |
| 	if (pr>0) {(void) printf("CP"); Cudd_PrintDebug(dd,CP,nx+ny,pr);} | |
| 
 | |
| 	if (nx == ny) { | |
| 	    CPr = Cudd_PrioritySelect(dd,C,xvars,yvars,(DdNode **)NULL, | |
| 		(DdNode *)NULL,ny,Cudd_Xgty); | |
| 	    if (CPr == NULL) exit(2); | |
| 	    Cudd_Ref(CPr); | |
| 	    if (pr>0) {(void) printf(":4: CPr"); Cudd_PrintDebug(dd,CPr,nx+ny,pr);} | |
| 	    if (CP != CPr) { | |
| 		(void) printf("CP != CPr!\n"); | |
| 	    } | |
| 	    Cudd_RecursiveDeref(dd, CPr); | |
| 	} | |
| 
 | |
| 	/* Test inequality generator. */ | |
| 	{ | |
| 	    int Nmin = ddMin(nx,ny); | |
| 	    int q; | |
| 	    DdGen *gen; | |
| 	    int *cube; | |
| 	    DdNode *f = Cudd_Inequality(dd,Nmin,2,xvars,yvars); | |
| 	    if (f == NULL) exit(2); | |
| 	    Cudd_Ref(f); | |
| 	    if (pr>0) { | |
| 		(void) printf(":4: ineq"); | |
| 		Cudd_PrintDebug(dd,f,nx+ny,pr); | |
| 		if (pr>1) { | |
| 		    Cudd_ForeachPrime(dd,Cudd_Not(f),Cudd_Not(f),gen,cube) { | |
| 			for (q = 0; q < dd->size; q++) { | |
| 			    switch (cube[q]) { | |
| 			    case 0: | |
| 				(void) printf("1"); | |
| 				break; | |
| 			    case 1: | |
| 				(void) printf("0"); | |
| 				break; | |
| 			    case 2: | |
| 				(void) printf("-"); | |
| 				break; | |
| 			    default: | |
| 				(void) printf("?"); | |
| 			    } | |
| 			} | |
| 			(void) printf(" 1\n"); | |
| 		    } | |
| 		    (void) printf("\n"); | |
| 		} | |
| 	    } | |
| 	    Cudd_IterDerefBdd(dd, f); | |
| 	} | |
| 	FREE(xvars); FREE(yvars); | |
| 
 | |
| 	Cudd_RecursiveDeref(dd, CP); | |
| 
 | |
| 	/* Test functions for essential variables. */ | |
| 	ess = Cudd_FindEssential(dd,C); | |
| 	if (ess == NULL) exit(2); | |
| 	Cudd_Ref(ess); | |
| 	if (pr>0) {(void) printf(":4: ess"); Cudd_PrintDebug(dd,ess,nx+ny,pr);} | |
| 	Cudd_RecursiveDeref(dd, ess); | |
| 
 | |
| 	/* Test functions for shortest paths. */ | |
| 	shortP = Cudd_ShortestPath(dd, M, NULL, NULL, &length); | |
| 	if (shortP == NULL) exit(2); | |
| 	Cudd_Ref(shortP); | |
| 	if (pr>0) { | |
| 	    (void) printf(":5: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr); | |
| 	} | |
| 	/* Test functions for largest cubes. */ | |
| 	largest = Cudd_LargestCube(dd, Cudd_Not(C), &length); | |
| 	if (largest == NULL) exit(2); | |
| 	Cudd_Ref(largest); | |
| 	if (pr>0) { | |
| 	    (void) printf(":5b: largest"); | |
| 	    Cudd_PrintDebug(dd,largest,nx+ny,pr); | |
| 	} | |
| 	Cudd_RecursiveDeref(dd, largest); | |
| 
 | |
| 	/* Test Cudd_addEvalConst and Cudd_addIteConstant. */ | |
| 	shortA = Cudd_BddToAdd(dd,shortP); | |
| 	if (shortA == NULL) exit(2); | |
| 	Cudd_Ref(shortA); | |
| 	Cudd_RecursiveDeref(dd, shortP); | |
| 	constN = Cudd_addEvalConst(dd,shortA,M); | |
| 	if (constN == DD_NON_CONSTANT) exit(2); | |
| 	if (Cudd_addIteConstant(dd,shortA,M,constN) != constN) exit(2); | |
| 	if (pr>0) {(void) printf("The value of M along the chosen shortest path is %g\n", cuddV(constN));} | |
| 	Cudd_RecursiveDeref(dd, shortA); | |
| 
 | |
| 	shortP = Cudd_ShortestPath(dd, C, NULL, NULL, &length); | |
| 	if (shortP == NULL) exit(2); | |
| 	Cudd_Ref(shortP); | |
| 	if (pr>0) { | |
| 	    (void) printf(":6: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr); | |
| 	} | |
| 
 | |
| 	/* Test Cudd_bddIteConstant and Cudd_bddLeq. */ | |
| 	if (!Cudd_bddLeq(dd,shortP,C)) exit(2); | |
| 	if (Cudd_bddIteConstant(dd,Cudd_Not(shortP),one,C) != one) exit(2); | |
| 	Cudd_RecursiveDeref(dd, shortP); | |
| 
 | |
|         /* Experiment with support functions. */ | |
|         if (!testSupport(dd,M,ycube,pr)) { | |
|             exit(2); | |
|         } | |
| 	Cudd_RecursiveDeref(dd, ycube); | |
| 
 | |
| 	if (profile) { | |
| 	    retval = cuddHeapProfile(dd); | |
| 	} | |
| 
 | |
| 	size = dd->size; | |
| 
 | |
| 	if (pr>0) { | |
| 	    (void) printf("Average distance: %g\n", Cudd_AverageDistance(dd)); | |
| 	} | |
| 
 | |
| 	/* Reorder if so requested. */ | |
| 	if (approach != CUDD_REORDER_NONE) { | |
| #ifndef DD_STATS | |
| 	    retval = Cudd_EnableReorderingReporting(dd); | |
| 	    if (retval == 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_EnableReorderingReporting\n"); | |
| 		exit(3); | |
| 	    } | |
| #endif | |
| #ifdef DD_DEBUG | |
| 	    retval = Cudd_DebugCheck(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); | |
| 		exit(3); | |
| 	    } | |
| 	    retval = Cudd_CheckKeys(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n"); | |
| 		exit(3); | |
| 	    } | |
| #endif | |
| 	    retval = Cudd_ReduceHeap(dd,(Cudd_ReorderingType)approach,5); | |
| 	    if (retval == 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_ReduceHeap\n"); | |
| 		exit(3); | |
| 	    } | |
| #ifndef DD_STATS | |
| 	    retval = Cudd_DisableReorderingReporting(dd); | |
| 	    if (retval == 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_DisableReorderingReporting\n"); | |
| 		exit(3); | |
| 	    } | |
| #endif | |
| #ifdef DD_DEBUG | |
| 	    retval = Cudd_DebugCheck(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); | |
| 		exit(3); | |
| 	    } | |
| 	    retval = Cudd_CheckKeys(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n"); | |
| 		exit(3); | |
| 	    } | |
| #endif | |
| 	    if (approach == CUDD_REORDER_SYMM_SIFT || | |
| 	    approach == CUDD_REORDER_SYMM_SIFT_CONV) { | |
| 		Cudd_SymmProfile(dd,0,dd->size-1); | |
| 	    } | |
| 
 | |
| 	    if (pr>0) { | |
| 		(void) printf("Average distance: %g\n", Cudd_AverageDistance(dd)); | |
| 	    } | |
| 
 | |
| 	    if (keepperm) { | |
| 		/* Print variable permutation. */ | |
| 		(void) printf("Variable Permutation:"); | |
| 		for (i=0; i<size; i++) { | |
| 		    if (i%20 == 0) (void) printf("\n"); | |
| 		    (void) printf("%d ", dd->invperm[i]); | |
| 		} | |
| 		(void) printf("\n"); | |
| 		(void) printf("Inverse Permutation:"); | |
| 		for (i=0; i<size; i++) { | |
| 		    if (i%20 == 0) (void) printf("\n"); | |
| 		    (void) printf("%d ", dd->perm[i]); | |
| 		} | |
| 		(void) printf("\n"); | |
| 	    } | |
| 
 | |
| 	    if (pr>0) {(void) printf("M"); Cudd_PrintDebug(dd,M,nx+ny,pr);} | |
| 
 | |
| 	    if (profile) { | |
| 		retval = cuddHeapProfile(dd); | |
| 	    } | |
| 
 | |
| 	} | |
| 
 | |
| 	/* Dump DDs of C and M if so requested. */ | |
| 	if (dfile != NULL) { | |
| 	    dfunc[0] = C; | |
| 	    dfunc[1] = M; | |
| 	    if (blifOrDot == 1) { | |
| 		/* Only dump C because blif cannot handle ADDs */ | |
| 		retval = Cudd_DumpBlif(dd,1,dfunc,NULL,(char **)onames, | |
| 				       NULL,dfp,0); | |
| 	    } else { | |
| 		retval = Cudd_DumpDot(dd,2,dfunc,NULL,(char **)onames,dfp); | |
| 	    } | |
| 	    if (retval != 1) { | |
| 		(void) fprintf(stderr,"abnormal termination\n"); | |
| 		exit(2); | |
| 	    } | |
| 	} | |
| 
 | |
| 	Cudd_RecursiveDeref(dd, C); | |
| 	Cudd_RecursiveDeref(dd, M); | |
| 
 | |
| 	if (clearcache) { | |
| 	    if (pr>0) {(void) printf("Clearing the cache... ");} | |
| 	    for (i = dd->cacheSlots - 1; i>=0; i--) { | |
| 		dd->cache[i].data = NULL; | |
| 	    } | |
| 	    if (pr>0) {(void) printf("done\n");} | |
| 	} | |
| 	if (pr>0) { | |
| 	    (void) printf("Number of variables = %6d\t",dd->size); | |
| 	    (void) printf("Number of slots     = %6u\n",dd->slots); | |
| 	    (void) printf("Number of keys      = %6u\t",dd->keys); | |
| 	    (void) printf("Number of min dead  = %6u\n",dd->minDead); | |
| 	} | |
| 
 | |
|     } while (multiple && !feof(fp)); | |
| 
 | |
|     fclose(fp); | |
|     if (dfile != NULL) { | |
| 	fclose(dfp); | |
|     } | |
| 
 | |
|     /* Second phase: experiment with Walsh matrices. */ | |
|     if (!testWalsh(dd,N,cmu,approach,pr)) { | |
| 	exit(2); | |
|     } | |
| 
 | |
|     /* Check variable destruction. */ | |
|     assert(cuddDestroySubtables(dd,3)); | |
|     if (pr == 0) { | |
|         savefp = Cudd_ReadStdout(dd); | |
|         Cudd_SetStdout(dd,fopen("/dev/null","a")); | |
|     } | |
|     assert(Cudd_DebugCheck(dd) == 0); | |
|     assert(Cudd_CheckKeys(dd) == 0); | |
|     if (pr == 0) { | |
|         Cudd_SetStdout(dd,savefp); | |
|     } | |
| 
 | |
|     retval = Cudd_CheckZeroRef(dd); | |
|     ok = retval != 0;  /* ok == 0 means O.K. */ | |
|     if (retval != 0) { | |
| 	(void) fprintf(stderr, | |
| 	    "%d non-zero DD reference counts after dereferencing\n", retval); | |
|     } | |
| 
 | |
|     if (pr > 0) { | |
| 	(void) Cudd_PrintInfo(dd,stdout); | |
|     } | |
| 
 | |
|     Cudd_Quit(dd); | |
| 
 | |
| #ifdef MNEMOSYNE | |
|     mnem_writestats(); | |
| #endif | |
|  | |
|     if (pr>0) (void) printf("total time = %s\n", | |
| 		util_print_time(util_cpu_time() - startTime)); | |
| 
 | |
|     if (pr > 0) util_print_cpu_stats(stdout); | |
|     return ok; | |
|     /* NOTREACHED */ | |
| 
 | |
| } /* end of main */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of static functions                                            */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Prints usage info for testcudd.] | |
|  | |
|   Description [] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static void | |
| usage(char *prog) | |
| { | |
|     (void) fprintf(stderr, "usage: %s [options] [file]\n", prog); | |
|     (void) fprintf(stderr, "   -C\t\tuse CMU multiplication algorithm\n"); | |
|     (void) fprintf(stderr, "   -D\t\tenable automatic dynamic reordering\n"); | |
|     (void) fprintf(stderr, "   -H\t\tread matrix in Harwell format\n"); | |
|     (void) fprintf(stderr, "   -M\t\tturns off memory allocation recording\n"); | |
|     (void) fprintf(stderr, "   -P\t\tprint BDD heap profile\n"); | |
|     (void) fprintf(stderr, "   -S n\t\tnumber of slots for each subtable\n"); | |
|     (void) fprintf(stderr, "   -X n\t\ttarget maximum memory in bytes\n"); | |
|     (void) fprintf(stderr, "   -a n\t\tchoose reordering approach (0-13)\n"); | |
|     (void) fprintf(stderr, "   \t\t\t0: same as autoMethod\n"); | |
|     (void) fprintf(stderr, "   \t\t\t1: no reordering (default)\n"); | |
|     (void) fprintf(stderr, "   \t\t\t2: random\n"); | |
|     (void) fprintf(stderr, "   \t\t\t3: pivot\n"); | |
|     (void) fprintf(stderr, "   \t\t\t4: sifting\n"); | |
|     (void) fprintf(stderr, "   \t\t\t5: sifting to convergence\n"); | |
|     (void) fprintf(stderr, "   \t\t\t6: symmetric sifting\n"); | |
|     (void) fprintf(stderr, "   \t\t\t7: symmetric sifting to convergence\n"); | |
|     (void) fprintf(stderr, "   \t\t\t8-10: window of size 2-4\n"); | |
|     (void) fprintf(stderr, "   \t\t\t11-13: window of size 2-4 to conv.\n"); | |
|     (void) fprintf(stderr, "   \t\t\t14: group sifting\n"); | |
|     (void) fprintf(stderr, "   \t\t\t15: group sifting to convergence\n"); | |
|     (void) fprintf(stderr, "   \t\t\t16: simulated annealing\n"); | |
|     (void) fprintf(stderr, "   \t\t\t17: genetic algorithm\n"); | |
|     (void) fprintf(stderr, "   -b\t\tuse blif as format for dumps\n"); | |
|     (void) fprintf(stderr, "   -c\t\tclear the cache after each matrix\n"); | |
|     (void) fprintf(stderr, "   -d file\tdump DDs to file\n"); | |
|     (void) fprintf(stderr, "   -g\t\tselect aggregation criterion (0,5,7)\n"); | |
|     (void) fprintf(stderr, "   -h\t\tprints this message\n"); | |
|     (void) fprintf(stderr, "   -k\t\tprint the variable permutation\n"); | |
|     (void) fprintf(stderr, "   -m\t\tread multiple matrices (only with -H)\n"); | |
|     (void) fprintf(stderr, "   -n n\t\tnumber of variables\n"); | |
|     (void) fprintf(stderr, "   -p n\t\tcontrol verbosity\n"); | |
|     (void) fprintf(stderr, "   -v n\t\tinitial variables in the unique table\n"); | |
|     (void) fprintf(stderr, "   -x n\t\tinitial size of the cache\n"); | |
|     exit(2); | |
| } /* end of usage */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Opens a file.] | |
|  | |
|   Description [Opens a file, or fails with an error message and exits. | |
|   Allows '-' as a synonym for standard input.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static FILE * | |
| open_file(char *filename, const char *mode) | |
| { | |
|     FILE *fp; | |
| 
 | |
|     if (strcmp(filename, "-") == 0) { | |
| 	return mode[0] == 'r' ? stdin : stdout; | |
|     } else if ((fp = fopen(filename, mode)) == NULL) { | |
| 	perror(filename); | |
| 	exit(1); | |
|     } | |
|     return fp; | |
| 
 | |
| } /* end of open_file */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Tests Walsh matrix multiplication.] | |
|  | |
|   Description [Tests Walsh matrix multiplication.  Return 1 if successful; | |
|   0 otherwise.] | |
|  | |
|   SideEffects [May create new variables in the manager.] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| testWalsh( | |
|   DdManager *dd /* manager */, | |
|   int N /* number of variables */, | |
|   int cmu /* use CMU approach to matrix multiplication */, | |
|   int approach /* reordering approach */, | |
|   int pr /* verbosity level */) | |
| { | |
|     DdNode *walsh1, *walsh2, *wtw; | |
|     DdNode **x, **v, **z; | |
|     int i, retval; | |
|     DdNode *one = DD_ONE(dd); | |
|     DdNode *zero = DD_ZERO(dd); | |
| 
 | |
|     if (N > 3) { | |
| 	x = ALLOC(DdNode *,N); | |
| 	v = ALLOC(DdNode *,N); | |
| 	z = ALLOC(DdNode *,N); | |
| 
 | |
| 	for (i = N-1; i >= 0; i--) { | |
| 	    Cudd_Ref(x[i]=cuddUniqueInter(dd,3*i,one,zero)); | |
| 	    Cudd_Ref(v[i]=cuddUniqueInter(dd,3*i+1,one,zero)); | |
| 	    Cudd_Ref(z[i]=cuddUniqueInter(dd,3*i+2,one,zero)); | |
| 	} | |
| 	Cudd_Ref(walsh1 = Cudd_addWalsh(dd,v,z,N)); | |
| 	if (pr>0) {(void) printf("walsh1"); Cudd_PrintDebug(dd,walsh1,2*N,pr);} | |
| 	Cudd_Ref(walsh2 = Cudd_addWalsh(dd,x,v,N)); | |
| 	if (cmu) { | |
| 	    Cudd_Ref(wtw = Cudd_addTimesPlus(dd,walsh2,walsh1,v,N)); | |
| 	} else { | |
| 	    Cudd_Ref(wtw = Cudd_addMatrixMultiply(dd,walsh2,walsh1,v,N)); | |
| 	} | |
| 	if (pr>0) {(void) printf("wtw"); Cudd_PrintDebug(dd,wtw,2*N,pr);} | |
| 
 | |
| 	if (approach != CUDD_REORDER_NONE) { | |
| #ifdef DD_DEBUG | |
| 	    retval = Cudd_DebugCheck(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); | |
| 		return(0); | |
| 	    } | |
| #endif | |
| 	    retval = Cudd_ReduceHeap(dd,(Cudd_ReorderingType)approach,5); | |
| 	    if (retval == 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_ReduceHeap\n"); | |
| 		return(0); | |
| 	    } | |
| #ifdef DD_DEBUG | |
| 	    retval = Cudd_DebugCheck(dd); | |
| 	    if (retval != 0) { | |
| 		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); | |
| 		return(0); | |
| 	    } | |
| #endif | |
| 	    if (approach == CUDD_REORDER_SYMM_SIFT || | |
| 	    approach == CUDD_REORDER_SYMM_SIFT_CONV) { | |
| 		Cudd_SymmProfile(dd,0,dd->size-1); | |
| 	    } | |
| 	} | |
| 	/* Clean up. */ | |
| 	Cudd_RecursiveDeref(dd, wtw); | |
| 	Cudd_RecursiveDeref(dd, walsh1); | |
| 	Cudd_RecursiveDeref(dd, walsh2); | |
| 	for (i=0; i < N; i++) { | |
| 	    Cudd_RecursiveDeref(dd, x[i]); | |
| 	    Cudd_RecursiveDeref(dd, v[i]); | |
| 	    Cudd_RecursiveDeref(dd, z[i]); | |
| 	} | |
| 	FREE(x); | |
| 	FREE(v); | |
| 	FREE(z); | |
|     } | |
|     return(1); | |
| 
 | |
| } /* end of testWalsh */ | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Tests iterators.] | |
|  | |
|   Description [Tests iterators on cubes and nodes.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| testIterators( | |
|   DdManager *dd, | |
|   DdNode *M, | |
|   DdNode *C, | |
|   int pr) | |
| { | |
|     int *cube; | |
|     CUDD_VALUE_TYPE value; | |
|     DdGen *gen; | |
|     int q; | |
| 
 | |
|     /* Test iterator for cubes. */ | |
|     if (pr>1) { | |
| 	(void) printf("Testing iterator on cubes:\n"); | |
| 	Cudd_ForeachCube(dd,M,gen,cube,value) { | |
| 	    for (q = 0; q < dd->size; q++) { | |
| 		switch (cube[q]) { | |
| 		case 0: | |
| 		    (void) printf("0"); | |
| 		    break; | |
| 		case 1: | |
| 		    (void) printf("1"); | |
| 		    break; | |
| 		case 2: | |
| 		    (void) printf("-"); | |
| 		    break; | |
| 		default: | |
| 		    (void) printf("?"); | |
| 		} | |
| 	    } | |
| 	    (void) printf(" %g\n",value); | |
| 	} | |
| 	(void) printf("\n"); | |
|     } | |
| 
 | |
|     if (pr>1) { | |
| 	(void) printf("Testing prime expansion of cubes:\n"); | |
| 	if (!Cudd_bddPrintCover(dd,C,C)) return(0); | |
|     } | |
| 
 | |
|     if (pr>1) { | |
| 	(void) printf("Testing iterator on primes (CNF):\n"); | |
| 	Cudd_ForeachPrime(dd,Cudd_Not(C),Cudd_Not(C),gen,cube) { | |
| 	    for (q = 0; q < dd->size; q++) { | |
| 		switch (cube[q]) { | |
| 		case 0: | |
| 		    (void) printf("1"); | |
| 		    break; | |
| 		case 1: | |
| 		    (void) printf("0"); | |
| 		    break; | |
| 		case 2: | |
| 		    (void) printf("-"); | |
| 		    break; | |
| 		default: | |
| 		    (void) printf("?"); | |
| 		} | |
| 	    } | |
| 	    (void) printf(" 1\n"); | |
| 	} | |
| 	(void) printf("\n"); | |
|     } | |
| 
 | |
|     /* Test iterator on nodes. */ | |
|     if (pr>2) { | |
| 	DdNode *node; | |
| 	(void) printf("Testing iterator on nodes:\n"); | |
| 	Cudd_ForeachNode(dd,M,gen,node) { | |
| 	    if (Cudd_IsConstant(node)) { | |
| #if SIZEOF_VOID_P == 8 | |
| 		(void) printf("ID = 0x%lx\tvalue = %-9g\n", | |
| 			      (ptruint) node / | |
| 			      (ptruint) sizeof(DdNode), | |
| 			      Cudd_V(node)); | |
| #else | |
| 		(void) printf("ID = 0x%x\tvalue = %-9g\n", | |
| 			      (ptruint) node / | |
| 			      (ptruint) sizeof(DdNode), | |
| 			      Cudd_V(node)); | |
| #endif | |
| 	    } else { | |
| #if SIZEOF_VOID_P == 8 | |
| 		(void) printf("ID = 0x%lx\tindex = %u\tr = %u\n", | |
| 			      (ptruint) node / | |
| 			      (ptruint) sizeof(DdNode), | |
| 			      node->index, node->ref); | |
| #else | |
| 		(void) printf("ID = 0x%x\tindex = %u\tr = %u\n", | |
| 			      (ptruint) node / | |
| 			      (ptruint) sizeof(DdNode), | |
| 			      node->index, node->ref); | |
| #endif | |
| 	    } | |
| 	} | |
| 	(void) printf("\n"); | |
|     } | |
|     return(1); | |
| 
 | |
| } /* end of testIterators */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Tests the functions related to the exclusive OR.] | |
|  | |
|   Description [Tests the functions related to the exclusive OR. It | |
|   builds the boolean difference of the given function in three | |
|   different ways and checks that the results is the same. Returns 1 if | |
|   successful; 0 otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| testXor(DdManager *dd, DdNode *f, int pr, int nvars) | |
| { | |
|     DdNode *f1, *f0, *res1, *res2; | |
|     int x; | |
| 
 | |
|     /* Extract cofactors w.r.t. mid variable. */ | |
|     x = nvars / 2; | |
|     f1 = Cudd_Cofactor(dd,f,dd->vars[x]); | |
|     if (f1 == NULL) return(0); | |
|     Cudd_Ref(f1); | |
| 
 | |
|     f0 = Cudd_Cofactor(dd,f,Cudd_Not(dd->vars[x])); | |
|     if (f0 == NULL) { | |
| 	Cudd_RecursiveDeref(dd,f1); | |
| 	return(0); | |
|     } | |
|     Cudd_Ref(f0); | |
| 
 | |
|     /* Compute XOR of cofactors with ITE. */ | |
|     res1 = Cudd_bddIte(dd,f1,Cudd_Not(f0),f0); | |
|     if (res1 == NULL) return(0); | |
|     Cudd_Ref(res1); | |
| 
 | |
|     if (pr>0) {(void) printf("xor1"); Cudd_PrintDebug(dd,res1,nvars,pr);} | |
| 
 | |
|     /* Compute XOR of cofactors with XOR. */ | |
|     res2 = Cudd_bddXor(dd,f1,f0); | |
|     if (res2 == NULL) { | |
| 	Cudd_RecursiveDeref(dd,res1); | |
| 	return(0); | |
|     } | |
|     Cudd_Ref(res2); | |
| 
 | |
|     if (res1 != res2) { | |
| 	if (pr>0) {(void) printf("xor2"); Cudd_PrintDebug(dd,res2,nvars,pr);} | |
| 	Cudd_RecursiveDeref(dd,res1); | |
| 	Cudd_RecursiveDeref(dd,res2); | |
| 	return(0); | |
|     } | |
|     Cudd_RecursiveDeref(dd,res1); | |
|     Cudd_RecursiveDeref(dd,f1); | |
|     Cudd_RecursiveDeref(dd,f0); | |
| 
 | |
|     /* Compute boolean difference directly. */ | |
|     res1 = Cudd_bddBooleanDiff(dd,f,x); | |
|     if (res1 == NULL) { | |
| 	Cudd_RecursiveDeref(dd,res2); | |
| 	return(0); | |
|     } | |
|     Cudd_Ref(res1); | |
| 
 | |
|     if (res1 != res2) { | |
| 	if (pr>0) {(void) printf("xor3"); Cudd_PrintDebug(dd,res1,nvars,pr);} | |
| 	Cudd_RecursiveDeref(dd,res1); | |
| 	Cudd_RecursiveDeref(dd,res2); | |
| 	return(0); | |
|     } | |
|     Cudd_RecursiveDeref(dd,res1); | |
|     Cudd_RecursiveDeref(dd,res2); | |
|     return(1); | |
| 
 | |
| } /* end of testXor */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Tests the Hamming distance functions.] | |
|  | |
|   Description [Tests the Hammming distance functions. Returns | |
|   1 if successful; 0 otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| testHamming( | |
|   DdManager *dd, | |
|   DdNode *f, | |
|   int pr) | |
| { | |
|     DdNode **vars, *minBdd, *zero, *scan; | |
|     int i; | |
|     int d; | |
|     int *minterm; | |
|     int size = Cudd_ReadSize(dd); | |
| 
 | |
|     vars = ALLOC(DdNode *, size); | |
|     if (vars == NULL) return(0); | |
|     for (i = 0; i < size; i++) { | |
| 	vars[i] = Cudd_bddIthVar(dd,i); | |
|     } | |
| 
 | |
|     minBdd = Cudd_bddPickOneMinterm(dd,Cudd_Not(f),vars,size); | |
|     Cudd_Ref(minBdd); | |
|     if (pr > 0) { | |
| 	(void) printf("Chosen minterm for Hamming distance test: "); | |
| 	Cudd_PrintDebug(dd,minBdd,size,pr); | |
|     } | |
| 
 | |
|     minterm = ALLOC(int,size); | |
|     if (minterm == NULL) { | |
| 	FREE(vars); | |
| 	Cudd_RecursiveDeref(dd,minBdd); | |
| 	return(0); | |
|     } | |
|     scan = minBdd; | |
|     zero = Cudd_Not(DD_ONE(dd)); | |
|     while (!Cudd_IsConstant(scan)) { | |
| 	DdNode *R = Cudd_Regular(scan); | |
| 	DdNode *T = Cudd_T(R); | |
| 	DdNode *E = Cudd_E(R); | |
| 	if (R != scan) { | |
| 	    T = Cudd_Not(T); | |
| 	    E = Cudd_Not(E); | |
| 	} | |
| 	if (T == zero) { | |
| 	    minterm[R->index] = 0; | |
| 	    scan = E; | |
| 	} else { | |
| 	    minterm[R->index] = 1; | |
| 	    scan = T; | |
| 	} | |
|     } | |
|     Cudd_RecursiveDeref(dd,minBdd); | |
| 
 | |
|     d = Cudd_MinHammingDist(dd,f,minterm,size); | |
| 
 | |
|     if (pr > 0) | |
|         (void) printf("Minimum Hamming distance = %d\n", d); | |
| 
 | |
|     FREE(vars); | |
|     FREE(minterm); | |
|     return(1); | |
| 
 | |
| } /* end of testHamming */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Tests the support functions.] | |
|  | |
|   Description [Tests the support functions. Returns | |
|   1 if successful; 0 otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static int | |
| testSupport( | |
|   DdManager *dd, | |
|   DdNode *f, | |
|   DdNode *g, | |
|   int pr) | |
| { | |
|     DdNode *sb, *common, *onlyF, *onlyG; | |
|     DdNode *F[2]; | |
|     int *support; | |
|     int ret, ssize; | |
|     int size = Cudd_ReadSize(dd); | |
| 
 | |
|     sb = Cudd_Support(dd, f); | |
|     if (sb == NULL) return(0); | |
|     Cudd_Ref(sb); | |
|     if (pr > 0) { | |
| 	(void) printf("Support of f: "); | |
| 	Cudd_PrintDebug(dd,sb,size,pr); | |
|     } | |
|     Cudd_RecursiveDeref(dd, sb); | |
| 
 | |
|     ssize = Cudd_SupportIndices(dd, f, &support); | |
|     if (ssize == CUDD_OUT_OF_MEM) return(0); | |
|     if (pr > 0) { | |
| 	(void) printf("Size of the support of f: %d\n", ssize); | |
|     } | |
|     FREE(support); | |
| 
 | |
|     ssize = Cudd_SupportSize(dd, f); | |
|     if (pr > 0) { | |
| 	(void) printf("Size of the support of f: %d\n", ssize); | |
|     } | |
| 
 | |
|     F[0] = f; | |
|     F[1] = g; | |
|     sb = Cudd_VectorSupport(dd, F, 2); | |
|     if (sb == NULL) return(0); | |
|     Cudd_Ref(sb); | |
|     if (pr > 0) { | |
| 	(void) printf("Support of f and g: "); | |
| 	Cudd_PrintDebug(dd,sb,size,pr); | |
|     } | |
|     Cudd_RecursiveDeref(dd, sb); | |
| 
 | |
|     ssize = Cudd_VectorSupportIndices(dd, F, 2, &support); | |
|     if (ssize == CUDD_OUT_OF_MEM) return(0); | |
|     if (pr > 0) { | |
| 	(void) printf("Size of the support of f and g: %d\n", ssize); | |
|     } | |
|     FREE(support); | |
| 
 | |
|     ssize = Cudd_VectorSupportSize(dd, F, 2); | |
|     if (pr > 0) { | |
| 	(void) printf("Size of the support of f and g: %d\n", ssize); | |
|     } | |
| 
 | |
|     ret = Cudd_ClassifySupport(dd, f, g, &common, &onlyF, &onlyG); | |
|     if (ret == 0) return(0); | |
|     Cudd_Ref(common); Cudd_Ref(onlyF); Cudd_Ref(onlyG); | |
|     if (pr > 0) { | |
| 	(void) printf("Support common to f and g: "); | |
| 	Cudd_PrintDebug(dd,common,size,pr); | |
| 	(void) printf("Support private to f: "); | |
| 	Cudd_PrintDebug(dd,onlyF,size,pr); | |
| 	(void) printf("Support private to g: "); | |
| 	Cudd_PrintDebug(dd,onlyG,size,pr); | |
|     } | |
|     Cudd_RecursiveDeref(dd, common); | |
|     Cudd_RecursiveDeref(dd, onlyF); | |
|     Cudd_RecursiveDeref(dd, onlyG); | |
| 
 | |
|     return(1); | |
| 
 | |
| } /* end of testSupport */
 |