You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							707 lines
						
					
					
						
							20 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							707 lines
						
					
					
						
							20 KiB
						
					
					
				| /**CFile*********************************************************************** | |
|  | |
|   FileName    [cuddMatMult.c] | |
|  | |
|   PackageName [cudd] | |
|  | |
|   Synopsis    [Matrix multiplication functions.] | |
|  | |
|   Description [External procedures included in this module: | |
| 		<ul> | |
| 		<li> Cudd_addMatrixMultiply() | |
| 		<li> Cudd_addTimesPlus() | |
| 		<li> Cudd_addTriangle() | |
| 		<li> Cudd_addOuterSum() | |
| 		</ul> | |
| 	Static procedures included in this module: | |
| 		<ul> | |
| 		<li> addMMRecur() | |
| 		<li> addTriangleRecur() | |
| 		<li> cuddAddOuterSumRecur() | |
| 		</ul>] | |
|  | |
|   Author      [Fabio Somenzi] | |
|  | |
|   Copyright   [Copyright (c) 1995-2012, Regents of the University of Colorado | |
|  | |
|   All rights reserved. | |
|  | |
|   Redistribution and use in source and binary forms, with or without | |
|   modification, are permitted provided that the following conditions | |
|   are met: | |
|  | |
|   Redistributions of source code must retain the above copyright | |
|   notice, this list of conditions and the following disclaimer. | |
|  | |
|   Redistributions in binary form must reproduce the above copyright | |
|   notice, this list of conditions and the following disclaimer in the | |
|   documentation and/or other materials provided with the distribution. | |
|  | |
|   Neither the name of the University of Colorado nor the names of its | |
|   contributors may be used to endorse or promote products derived from | |
|   this software without specific prior written permission. | |
|  | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
|   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
|   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
|   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
|   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
|   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
|   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
|   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
|   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
|   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
|   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
|   POSSIBILITY OF SUCH DAMAGE.] | |
|  | |
| ******************************************************************************/ | |
| 
 | |
| #include "util.h" | |
| #include "cuddInt.h" | |
|  | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Constant declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Stucture declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Type declarations                                                         */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Variable declarations                                                     */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| #ifndef lint | |
| static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.18 2012/02/05 01:07:19 fabio Exp $"; | |
| #endif | |
|  | |
| /*---------------------------------------------------------------------------*/ | |
| /* Macro declarations                                                        */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /**AutomaticStart*************************************************************/ | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Static function prototypes                                                */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars); | |
| static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube); | |
| static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c); | |
| 
 | |
| /**AutomaticEnd***************************************************************/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of exported functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis [Calculates the product of two matrices represented as | |
|   ADDs.] | |
|  | |
|   Description [Calculates the product of two matrices, A and B, | |
|   represented as ADDs. This procedure implements the quasiring multiplication | |
|   algorithm.  A is assumed to depend on variables x (rows) and z | |
|   (columns).  B is assumed to depend on variables z (rows) and y | |
|   (columns).  The product of A and B then depends on x (rows) and y | |
|   (columns).  Only the z variables have to be explicitly identified; | |
|   they are the "summation" variables.  Returns a pointer to the | |
|   result if successful; NULL otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_addMatrixMultiply( | |
|   DdManager * dd, | |
|   DdNode * A, | |
|   DdNode * B, | |
|   DdNode ** z, | |
|   int  nz) | |
| { | |
|     int i, nvars, *vars; | |
|     DdNode *res;  | |
| 
 | |
|     /* Array vars says what variables are "summation" variables. */ | |
|     nvars = dd->size; | |
|     vars = ALLOC(int,nvars); | |
|     if (vars == NULL) { | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(NULL); | |
|     } | |
|     for (i = 0; i < nvars; i++) { | |
|         vars[i] = 0; | |
|     } | |
|     for (i = 0; i < nz; i++) { | |
|         vars[z[i]->index] = 1; | |
|     } | |
| 
 | |
|     do { | |
| 	dd->reordered = 0; | |
| 	res = addMMRecur(dd,A,B,-1,vars); | |
|     } while (dd->reordered == 1); | |
|     FREE(vars); | |
|     return(res); | |
| 
 | |
| } /* end of Cudd_addMatrixMultiply */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Calculates the product of two matrices represented as | |
|   ADDs.] | |
|  | |
|   Description [Calculates the product of two matrices, A and B, | |
|   represented as ADDs, using the CMU matrix by matrix multiplication | |
|   procedure by Clarke et al..  Matrix A has x's as row variables and z's | |
|   as column variables, while matrix B has z's as row variables and y's | |
|   as column variables. Returns the pointer to the result if successful; | |
|   NULL otherwise. The resulting matrix has x's as row variables and y's | |
|   as column variables.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_addMatrixMultiply] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_addTimesPlus( | |
|   DdManager * dd, | |
|   DdNode * A, | |
|   DdNode * B, | |
|   DdNode ** z, | |
|   int  nz) | |
| { | |
|     DdNode *w, *cube, *tmp, *res;  | |
|     int i; | |
|     tmp = Cudd_addApply(dd,Cudd_addTimes,A,B); | |
|     if (tmp == NULL) return(NULL); | |
|     Cudd_Ref(tmp); | |
|     Cudd_Ref(cube = DD_ONE(dd)); | |
|     for (i = nz-1; i >= 0; i--) { | |
| 	 w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd)); | |
| 	 if (w == NULL) { | |
| 	    Cudd_RecursiveDeref(dd,tmp); | |
| 	    return(NULL); | |
| 	 } | |
| 	 Cudd_Ref(w); | |
| 	 Cudd_RecursiveDeref(dd,cube); | |
| 	 cube = w; | |
|     } | |
|     res = Cudd_addExistAbstract(dd,tmp,cube); | |
|     if (res == NULL) { | |
| 	Cudd_RecursiveDeref(dd,tmp); | |
| 	Cudd_RecursiveDeref(dd,cube); | |
| 	return(NULL); | |
|     } | |
|     Cudd_Ref(res); | |
|     Cudd_RecursiveDeref(dd,cube); | |
|     Cudd_RecursiveDeref(dd,tmp); | |
|     Cudd_Deref(res); | |
|     return(res); | |
| 
 | |
| } /* end of Cudd_addTimesPlus */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Performs the triangulation step for the shortest path | |
|   computation.] | |
|  | |
|   Description [Implements the semiring multiplication algorithm used in | |
|   the triangulation step for the shortest path computation.  f | |
|   is assumed to depend on variables x (rows) and z (columns).  g is | |
|   assumed to depend on variables z (rows) and y (columns).  The product | |
|   of f and g then depends on x (rows) and y (columns).  Only the z | |
|   variables have to be explicitly identified; they are the | |
|   "abstraction" variables.  Returns a pointer to the result if | |
|   successful; NULL otherwise. ] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [Cudd_addMatrixMultiply Cudd_bddAndAbstract] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_addTriangle( | |
|   DdManager * dd, | |
|   DdNode * f, | |
|   DdNode * g, | |
|   DdNode ** z, | |
|   int  nz) | |
| { | |
|     int    i, nvars, *vars; | |
|     DdNode *res, *cube; | |
| 
 | |
|     nvars = dd->size; | |
|     vars = ALLOC(int, nvars); | |
|     if (vars == NULL) { | |
| 	dd->errorCode = CUDD_MEMORY_OUT; | |
| 	return(NULL); | |
|     } | |
|     for (i = 0; i < nvars; i++) vars[i] = -1; | |
|     for (i = 0; i < nz; i++) vars[z[i]->index] = i; | |
|     cube = Cudd_addComputeCube(dd, z, NULL, nz); | |
|     if (cube == NULL) { | |
| 	FREE(vars); | |
| 	return(NULL); | |
|     } | |
|     cuddRef(cube); | |
| 
 | |
|     do { | |
| 	dd->reordered = 0; | |
| 	res = addTriangleRecur(dd, f, g, vars, cube); | |
|     } while (dd->reordered == 1); | |
|     if (res != NULL) cuddRef(res); | |
|     Cudd_RecursiveDeref(dd,cube); | |
|     if (res != NULL) cuddDeref(res); | |
|     FREE(vars); | |
|     return(res); | |
| 
 | |
| } /* end of Cudd_addTriangle */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Takes the minimum of a matrix and the outer sum of two vectors.] | |
|  | |
|   Description [Takes the pointwise minimum of a matrix and the outer | |
|   sum of two vectors.  This procedure is used in the Floyd-Warshall | |
|   all-pair shortest path algorithm.  Returns a pointer to the result if | |
|   successful; NULL otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| DdNode * | |
| Cudd_addOuterSum( | |
|   DdManager *dd, | |
|   DdNode *M, | |
|   DdNode *r, | |
|   DdNode *c) | |
| { | |
|     DdNode *res; | |
| 
 | |
|     do { | |
| 	dd->reordered = 0; | |
| 	res = cuddAddOuterSumRecur(dd, M, r, c); | |
|     } while (dd->reordered == 1); | |
|     return(res); | |
| 
 | |
| } /* end of Cudd_addOuterSum */ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of internal functions                                          */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/ | |
| /* Definition of static functions                                            */ | |
| /*---------------------------------------------------------------------------*/ | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Performs the recursive step of Cudd_addMatrixMultiply.] | |
|  | |
|   Description [Performs the recursive step of Cudd_addMatrixMultiply. | |
|   Returns a pointer to the result if successful; NULL otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
| ******************************************************************************/ | |
| static DdNode * | |
| addMMRecur( | |
|   DdManager * dd, | |
|   DdNode * A, | |
|   DdNode * B, | |
|   int  topP, | |
|   int * vars) | |
| { | |
|     DdNode *zero, | |
|            *At,		/* positive cofactor of first operand */ | |
| 	   *Ae,		/* negative cofactor of first operand */ | |
| 	   *Bt,		/* positive cofactor of second operand */ | |
| 	   *Be,		/* negative cofactor of second operand */ | |
| 	   *t,		/* positive cofactor of result */ | |
| 	   *e,		/* negative cofactor of result */ | |
| 	   *scaled,	/* scaled result */ | |
| 	   *add_scale,	/* ADD representing the scaling factor */ | |
| 	   *res; | |
|     int	i;		/* loop index */ | |
|     double scale;	/* scaling factor */ | |
|     int index;		/* index of the top variable */ | |
|     CUDD_VALUE_TYPE value; | |
|     unsigned int topA, topB, topV; | |
|     DD_CTFP cacheOp; | |
| 
 | |
|     statLine(dd); | |
|     zero = DD_ZERO(dd); | |
| 
 | |
|     if (A == zero || B == zero) { | |
|         return(zero); | |
|     } | |
| 
 | |
|     if (cuddIsConstant(A) && cuddIsConstant(B)) { | |
| 	/* Compute the scaling factor. It is 2^k, where k is the | |
| 	** number of summation variables below the current variable. | |
| 	** Indeed, these constants represent blocks of 2^k identical | |
| 	** constant values in both A and B. | |
| 	*/ | |
| 	value = cuddV(A) * cuddV(B); | |
| 	for (i = 0; i < dd->size; i++) { | |
| 	    if (vars[i]) { | |
| 		if (dd->perm[i] > topP) { | |
| 		    value *= (CUDD_VALUE_TYPE) 2; | |
| 		} | |
| 	    } | |
| 	} | |
| 	res = cuddUniqueConst(dd, value); | |
| 	return(res); | |
|     } | |
| 
 | |
|     /* Standardize to increase cache efficiency. Clearly, A*B != B*A | |
|     ** in matrix multiplication. However, which matrix is which is | |
|     ** determined by the variables appearing in the ADDs and not by | |
|     ** which one is passed as first argument. | |
|     */ | |
|     if (A > B) { | |
| 	DdNode *tmp = A; | |
| 	A = B; | |
| 	B = tmp; | |
|     } | |
| 
 | |
|     topA = cuddI(dd,A->index); topB = cuddI(dd,B->index); | |
|     topV = ddMin(topA,topB); | |
| 
 | |
|     cacheOp = (DD_CTFP) addMMRecur; | |
|     res = cuddCacheLookup2(dd,cacheOp,A,B); | |
|     if (res != NULL) { | |
| 	/* If the result is 0, there is no need to normalize. | |
| 	** Otherwise we count the number of z variables between | |
| 	** the current depth and the top of the ADDs. These are | |
| 	** the missing variables that determine the size of the | |
| 	** constant blocks. | |
| 	*/ | |
| 	if (res == zero) return(res); | |
| 	scale = 1.0; | |
| 	for (i = 0; i < dd->size; i++) { | |
| 	    if (vars[i]) { | |
| 		if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { | |
| 		    scale *= 2; | |
| 		} | |
| 	    } | |
| 	} | |
| 	if (scale > 1.0) { | |
| 	    cuddRef(res); | |
| 	    add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); | |
| 	    if (add_scale == NULL) { | |
| 		Cudd_RecursiveDeref(dd, res); | |
| 		return(NULL); | |
| 	    } | |
| 	    cuddRef(add_scale); | |
| 	    scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); | |
| 	    if (scaled == NULL) { | |
| 		Cudd_RecursiveDeref(dd, add_scale); | |
| 		Cudd_RecursiveDeref(dd, res); | |
| 		return(NULL); | |
| 	    } | |
| 	    cuddRef(scaled); | |
| 	    Cudd_RecursiveDeref(dd, add_scale); | |
| 	    Cudd_RecursiveDeref(dd, res); | |
| 	    res = scaled; | |
| 	    cuddDeref(res); | |
| 	} | |
|         return(res); | |
|     } | |
| 
 | |
|     /* compute the cofactors */ | |
|     if (topV == topA) { | |
| 	At = cuddT(A); | |
| 	Ae = cuddE(A); | |
|     } else { | |
| 	At = Ae = A; | |
|     } | |
|     if (topV == topB) { | |
| 	Bt = cuddT(B); | |
| 	Be = cuddE(B); | |
|     } else { | |
| 	Bt = Be = B; | |
|     } | |
| 
 | |
|     t = addMMRecur(dd, At, Bt, (int)topV, vars); | |
|     if (t == NULL) return(NULL); | |
|     cuddRef(t); | |
|     e = addMMRecur(dd, Ae, Be, (int)topV, vars); | |
|     if (e == NULL) { | |
| 	Cudd_RecursiveDeref(dd, t); | |
| 	return(NULL); | |
|     } | |
|     cuddRef(e); | |
| 
 | |
|     index = dd->invperm[topV]; | |
|     if (vars[index] == 0) { | |
| 	/* We have split on either the rows of A or the columns | |
| 	** of B. We just need to connect the two subresults, | |
| 	** which correspond to two submatrices of the result. | |
| 	*/ | |
| 	res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); | |
| 	if (res == NULL) { | |
| 	    Cudd_RecursiveDeref(dd, t); | |
| 	    Cudd_RecursiveDeref(dd, e); | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(res); | |
| 	cuddDeref(t); | |
| 	cuddDeref(e); | |
|     } else { | |
| 	/* we have simultaneously split on the columns of A and | |
| 	** the rows of B. The two subresults must be added. | |
| 	*/ | |
| 	res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e); | |
| 	if (res == NULL) { | |
| 	    Cudd_RecursiveDeref(dd, t); | |
| 	    Cudd_RecursiveDeref(dd, e); | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(res); | |
| 	Cudd_RecursiveDeref(dd, t); | |
| 	Cudd_RecursiveDeref(dd, e); | |
|     } | |
| 
 | |
|     cuddCacheInsert2(dd,cacheOp,A,B,res); | |
| 
 | |
|     /* We have computed (and stored in the computed table) a minimal | |
|     ** result; that is, a result that assumes no summation variables | |
|     ** between the current depth of the recursion and its top | |
|     ** variable. We now take into account the z variables by properly | |
|     ** scaling the result. | |
|     */ | |
|     if (res != zero) { | |
| 	scale = 1.0; | |
| 	for (i = 0; i < dd->size; i++) { | |
| 	    if (vars[i]) { | |
| 		if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { | |
| 		    scale *= 2; | |
| 		} | |
| 	    } | |
| 	} | |
| 	if (scale > 1.0) { | |
| 	    add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); | |
| 	    if (add_scale == NULL) { | |
| 		Cudd_RecursiveDeref(dd, res); | |
| 		return(NULL); | |
| 	    } | |
| 	    cuddRef(add_scale); | |
| 	    scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); | |
| 	    if (scaled == NULL) { | |
| 		Cudd_RecursiveDeref(dd, res); | |
| 		Cudd_RecursiveDeref(dd, add_scale); | |
| 		return(NULL); | |
| 	    } | |
| 	    cuddRef(scaled); | |
| 	    Cudd_RecursiveDeref(dd, add_scale); | |
| 	    Cudd_RecursiveDeref(dd, res); | |
| 	    res = scaled; | |
| 	} | |
|     } | |
|     cuddDeref(res); | |
|     return(res); | |
| 
 | |
| } /* end of addMMRecur */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Performs the recursive step of Cudd_addTriangle.] | |
|  | |
|   Description [Performs the recursive step of Cudd_addTriangle. Returns | |
|   a pointer to the result if successful; NULL otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
| ******************************************************************************/ | |
| static DdNode * | |
| addTriangleRecur( | |
|   DdManager * dd, | |
|   DdNode * f, | |
|   DdNode * g, | |
|   int * vars, | |
|   DdNode *cube) | |
| { | |
|     DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res; | |
|     CUDD_VALUE_TYPE value; | |
|     int top, topf, topg, index; | |
| 
 | |
|     statLine(dd); | |
|     if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) { | |
| 	return(DD_PLUS_INFINITY(dd)); | |
|     } | |
| 
 | |
|     if (cuddIsConstant(f) && cuddIsConstant(g)) { | |
| 	value = cuddV(f) + cuddV(g); | |
| 	res = cuddUniqueConst(dd, value); | |
| 	return(res); | |
|     } | |
|     if (f < g) { | |
| 	DdNode *tmp = f; | |
| 	f = g; | |
| 	g = tmp; | |
|     } | |
| 
 | |
|     if (f->ref != 1 || g->ref != 1) { | |
| 	res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube); | |
| 	if (res != NULL) { | |
| 	    return(res); | |
| 	} | |
|     } | |
| 
 | |
|     topf = cuddI(dd,f->index); topg = cuddI(dd,g->index); | |
|     top = ddMin(topf,topg); | |
| 
 | |
|     if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;} | |
|     if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;} | |
| 
 | |
|     t = addTriangleRecur(dd, fv, gv, vars, cube); | |
|     if (t == NULL) return(NULL); | |
|     cuddRef(t); | |
|     e = addTriangleRecur(dd, fvn, gvn, vars, cube); | |
|     if (e == NULL) { | |
| 	Cudd_RecursiveDeref(dd, t); | |
| 	return(NULL); | |
|     } | |
|     cuddRef(e); | |
| 
 | |
|     index = dd->invperm[top]; | |
|     if (vars[index] < 0) { | |
| 	res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); | |
| 	if (res == NULL) { | |
| 	    Cudd_RecursiveDeref(dd, t); | |
| 	    Cudd_RecursiveDeref(dd, e); | |
| 	    return(NULL); | |
| 	} | |
| 	cuddDeref(t); | |
| 	cuddDeref(e); | |
|     } else { | |
| 	res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e); | |
| 	if (res == NULL) { | |
| 	    Cudd_RecursiveDeref(dd, t); | |
| 	    Cudd_RecursiveDeref(dd, e); | |
| 	    return(NULL); | |
| 	} | |
| 	cuddRef(res); | |
| 	Cudd_RecursiveDeref(dd, t); | |
| 	Cudd_RecursiveDeref(dd, e); | |
| 	cuddDeref(res); | |
|     } | |
| 
 | |
|     if (f->ref != 1 || g->ref != 1) { | |
| 	cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res); | |
|     } | |
| 
 | |
|     return(res); | |
| 
 | |
| } /* end of addTriangleRecur */ | |
| 
 | |
| 
 | |
| /**Function******************************************************************** | |
|  | |
|   Synopsis    [Performs the recursive step of Cudd_addOuterSum.] | |
|  | |
|   Description [Performs the recursive step of Cudd_addOuterSum. | |
|   Returns a pointer to the result if successful; NULL otherwise.] | |
|  | |
|   SideEffects [None] | |
|  | |
|   SeeAlso     [] | |
|  | |
| ******************************************************************************/ | |
| static DdNode * | |
| cuddAddOuterSumRecur( | |
|   DdManager *dd, | |
|   DdNode *M, | |
|   DdNode *r, | |
|   DdNode *c) | |
| { | |
|     DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re; | |
|     int topM, topc, topr; | |
|     int v, index; | |
| 
 | |
|     statLine(dd); | |
|     /* Check special cases. */ | |
|     if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M);  | |
| 
 | |
|     if (cuddIsConstant(c) && cuddIsConstant(r)) { | |
| 	R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r)); | |
| 	cuddRef(R); | |
| 	if (cuddIsConstant(M)) { | |
| 	    if (cuddV(R) <= cuddV(M)) { | |
| 		cuddDeref(R); | |
| 	        return(R); | |
| 	    } else { | |
| 	        Cudd_RecursiveDeref(dd,R);        | |
| 		return(M); | |
| 	    } | |
| 	} else { | |
| 	    P = Cudd_addApply(dd,Cudd_addMinimum,R,M); | |
| 	    cuddRef(P); | |
| 	    Cudd_RecursiveDeref(dd,R); | |
| 	    cuddDeref(P); | |
| 	    return(P); | |
| 	} | |
|     } | |
| 
 | |
|     /* Check the cache. */ | |
|     R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c); | |
|     if (R != NULL) return(R); | |
| 
 | |
|     topM = cuddI(dd,M->index); topr = cuddI(dd,r->index); | |
|     topc = cuddI(dd,c->index); | |
|     v = ddMin(topM,ddMin(topr,topc)); | |
| 
 | |
|     /* Compute cofactors. */ | |
|     if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; } | |
|     if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; } | |
|     if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; } | |
| 
 | |
|     /* Recursively solve. */ | |
|     Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct); | |
|     if (Rt == NULL) return(NULL); | |
|     cuddRef(Rt); | |
|     Re = cuddAddOuterSumRecur(dd,Me,re,ce); | |
|     if (Re == NULL) { | |
| 	Cudd_RecursiveDeref(dd, Rt); | |
| 	return(NULL); | |
|     } | |
|     cuddRef(Re); | |
|     index = dd->invperm[v]; | |
|     R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re); | |
|     if (R == NULL) { | |
| 	Cudd_RecursiveDeref(dd, Rt); | |
| 	Cudd_RecursiveDeref(dd, Re); | |
| 	return(NULL); | |
|     } | |
|     cuddDeref(Rt); | |
|     cuddDeref(Re); | |
| 
 | |
|     /* Store the result in the cache. */ | |
|     cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R); | |
| 
 | |
|     return(R); | |
| 
 | |
| } /* end of cuddAddOuterSumRecur */
 |