You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

314 lines
18 KiB

#include "storm/solver/EigenLinearEquationSolver.h"
#include "storm/adapters/EigenAdapter.h"
#include "storm/environment/solver/EigenSolverEnvironment.h"
#include "storm/utility/vector.h"
#include "storm/utility/macros.h"
#include "storm/exceptions/InvalidSettingsException.h"
namespace storm {
namespace solver {
template<typename ValueType>
EigenLinearEquationSolver<ValueType>::EigenLinearEquationSolver() {
// Intentionally left empty.
}
template<typename ValueType>
EigenLinearEquationSolver<ValueType>::EigenLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A) {
this->setMatrix(A);
}
template<typename ValueType>
EigenLinearEquationSolver<ValueType>::EigenLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A) {
this->setMatrix(std::move(A));
}
template<typename ValueType>
void EigenLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType> const& A) {
eigenA = storm::adapters::EigenAdapter::toEigenSparseMatrix<ValueType>(A);
this->clearCache();
}
template<typename ValueType>
void EigenLinearEquationSolver<ValueType>::setMatrix(storm::storage::SparseMatrix<ValueType>&& A) {
// Take ownership of the matrix so it is destroyed after we have translated it to Eigen's format.
storm::storage::SparseMatrix<ValueType> localA(std::move(A));
this->setMatrix(localA);
this->clearCache();
}
template<typename ValueType>
EigenLinearEquationSolverMethod EigenLinearEquationSolver<ValueType>::getMethod(Environment const& env, bool isExactMode) const {
// Adjust the method if none was specified and we are using rational numbers.
auto method = env.solver().eigen().getMethod();
if (isExactMode && method != EigenLinearEquationSolverMethod::SparseLU) {
if (env.solver().eigen().isMethodSetFromDefault()) {
STORM_LOG_INFO("Selecting 'SparseLU' as the solution technique to guarantee exact results.");
} else {
STORM_LOG_WARN("The selected solution method does not guarantee exact results. Falling back to SparseLU.");
}
method = EigenLinearEquationSolverMethod::SparseLU;
} else if (env.solver().isForceSoundness() && method != EigenLinearEquationSolverMethod::SparseLU) {
if (env.solver().eigen().isMethodSetFromDefault()) {
STORM_LOG_INFO("Selecting 'SparseLU' as the solution technique to guarantee sound results. If you want to override this, please explicitly specify a different method.");
method = EigenLinearEquationSolverMethod::SparseLU;
} else {
STORM_LOG_WARN("The selected solution method does not guarantee sound results.");
}
}
return method;
}
#ifdef STORM_HAVE_CARL
// Specialization for storm::RationalNumber
template<>
bool EigenLinearEquationSolver<storm::RationalNumber>::internalSolveEquations(Environment const& env, std::vector<storm::RationalNumber>& x, std::vector<storm::RationalNumber> const& b) const {
auto solutionMethod = getMethod(env, true);
STORM_LOG_WARN_COND(solutionMethod == EigenLinearEquationSolverMethod::SparseLU, "Switching method to SparseLU.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with with rational numbers using LU factorization (Eigen library).");
// Map the input vectors to Eigen's format.
auto eigenX = StormEigen::Matrix<storm::RationalNumber, StormEigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = StormEigen::Matrix<storm::RationalNumber, StormEigen::Dynamic, 1>::Map(b.data(), b.size());
StormEigen::SparseLU<StormEigen::SparseMatrix<storm::RationalNumber>, StormEigen::COLAMDOrdering<int>> solver;
solver.compute(*eigenA);
solver._solve_impl(eigenB, eigenX);
return solver.info() == StormEigen::ComputationInfo::Success;
}
// Specialization for storm::RationalFunction
template<>
bool EigenLinearEquationSolver<storm::RationalFunction>::internalSolveEquations(Environment const& env, std::vector<storm::RationalFunction>& x, std::vector<storm::RationalFunction> const& b) const {
auto solutionMethod = getMethod(env, true);
STORM_LOG_WARN_COND(solutionMethod == EigenLinearEquationSolverMethod::SparseLU, "Switching method to SparseLU.");
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with rational functions using LU factorization (Eigen library).");
// Map the input vectors to Eigen's format.
auto eigenX = StormEigen::Matrix<storm::RationalFunction, StormEigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = StormEigen::Matrix<storm::RationalFunction, StormEigen::Dynamic, 1>::Map(b.data(), b.size());
StormEigen::SparseLU<StormEigen::SparseMatrix<storm::RationalFunction>, StormEigen::COLAMDOrdering<int>> solver;
solver.compute(*eigenA);
solver._solve_impl(eigenB, eigenX);
return solver.info() == StormEigen::ComputationInfo::Success;
}
#endif
template<typename ValueType>
bool EigenLinearEquationSolver<ValueType>::internalSolveEquations(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Map the input vectors to Eigen's format.
auto eigenX = StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(b.data(), b.size());
auto solutionMethod = getMethod(env, false);
if (solutionMethod == EigenLinearEquationSolverMethod::SparseLU) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with sparse LU factorization (Eigen library).");
StormEigen::SparseLU<StormEigen::SparseMatrix<ValueType>, StormEigen::COLAMDOrdering<int>> solver;
solver.compute(*this->eigenA);
solver._solve_impl(eigenB, eigenX);
} else {
bool converged = false;
uint64_t numberOfIterations = 0;
uint64_t maxIter = env.solver().eigen().getMaximalNumberOfIterations();
uint64_t restartThreshold = env.solver().eigen().getRestartThreshold();
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().eigen().getPrecision());
EigenLinearEquationSolverPreconditioner preconditioner = env.solver().eigen().getPreconditioner();
if (solutionMethod == EigenLinearEquationSolverMethod::Bicgstab) {
if (preconditioner == EigenLinearEquationSolverPreconditioner::Ilu) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with BiCGSTAB with Ilu preconditioner (Eigen library).");
StormEigen::BiCGSTAB<StormEigen::SparseMatrix<ValueType>, StormEigen::IncompleteLUT<ValueType>> solver;
solver.compute(*this->eigenA);
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else if (preconditioner == EigenLinearEquationSolverPreconditioner::Diagonal) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with BiCGSTAB with Diagonal preconditioner (Eigen library).");
StormEigen::BiCGSTAB<StormEigen::SparseMatrix<ValueType>, StormEigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with BiCGSTAB with identity preconditioner (Eigen library).");
StormEigen::BiCGSTAB<StormEigen::SparseMatrix<ValueType>, StormEigen::IdentityPreconditioner> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
numberOfIterations = solver.iterations();
converged = solver.info() == StormEigen::ComputationInfo::Success;
}
} else if (solutionMethod == EigenLinearEquationSolverMethod::DGmres) {
if (preconditioner == EigenLinearEquationSolverPreconditioner::Ilu) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with DGMRES with Ilu preconditioner (Eigen library).");
StormEigen::DGMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::IncompleteLUT<ValueType>> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else if (preconditioner == EigenLinearEquationSolverPreconditioner::Diagonal) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with DGMRES with Diagonal preconditioner (Eigen library).");
StormEigen::DGMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with DGMRES with identity preconditioner (Eigen library).");
StormEigen::DGMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::IdentityPreconditioner> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
}
} else if (solutionMethod == EigenLinearEquationSolverMethod::Gmres) {
if (preconditioner == EigenLinearEquationSolverPreconditioner::Ilu) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with GMRES with Ilu preconditioner (Eigen library).");
StormEigen::GMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::IncompleteLUT<ValueType>> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else if (preconditioner == EigenLinearEquationSolverPreconditioner::Diagonal) {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with GMRES with Diagonal preconditioner (Eigen library).");
StormEigen::GMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
} else {
STORM_LOG_INFO("Solving linear equation system (" << x.size() << " rows) with GMRES with identity preconditioner (Eigen library).");
StormEigen::GMRES<StormEigen::SparseMatrix<ValueType>, StormEigen::IdentityPreconditioner> solver;
solver.setTolerance(precision);
solver.setMaxIterations(maxIter);
solver.set_restart(restartThreshold);
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
converged = solver.info() == StormEigen::ComputationInfo::Success;
numberOfIterations = solver.iterations();
}
}
// Make sure that all results conform to the (global) bounds.
storm::utility::vector::clip(x, this->lowerBound, this->upperBound);
// Check if the solver converged and issue a warning otherwise.
if (converged) {
STORM_LOG_INFO("Iterative solver converged after " << numberOfIterations << " iterations.");
return true;
} else {
STORM_LOG_WARN("Iterative solver did not converge.");
return false;
}
}
return true;
}
template<typename ValueType>
void EigenLinearEquationSolver<ValueType>::multiply(std::vector<ValueType>& x, std::vector<ValueType> const* b, std::vector<ValueType>& result) const {
// Typedef the map-type so we don't have to spell it out.
typedef decltype(StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(b->data(), b->size())) MapType;
auto eigenX = StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenResult = StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(result.data(), result.size());
std::unique_ptr<MapType> eigenB;
if (b != nullptr) {
eigenB = std::make_unique<MapType>(StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(b->data(), b->size()));
}
if (&x != &result) {
if (b != nullptr) {
eigenResult.noalias() = *eigenA * eigenX + *eigenB;
} else {
eigenResult.noalias() = *eigenA * eigenX;
}
} else {
if (b != nullptr) {
eigenResult = *eigenA * eigenX + *eigenB;
} else {
eigenResult = *eigenA * eigenX;
}
}
}
template<typename ValueType>
ValueType EigenLinearEquationSolver<ValueType>::multiplyRow(uint64_t const& rowIndex, std::vector<ValueType> const& x) const {
auto eigenX = StormEigen::Matrix<ValueType, StormEigen::Dynamic, 1>::Map(x.data(), x.size());
return (eigenA->row(rowIndex) * eigenX)(0);
}
template<typename ValueType>
LinearEquationSolverProblemFormat EigenLinearEquationSolver<ValueType>::getEquationProblemFormat(Environment const& env) const {
return LinearEquationSolverProblemFormat::EquationSystem;
}
template<typename ValueType>
uint64_t EigenLinearEquationSolver<ValueType>::getMatrixRowCount() const {
return eigenA->rows();
}
template<typename ValueType>
uint64_t EigenLinearEquationSolver<ValueType>::getMatrixColumnCount() const {
return eigenA->cols();
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> EigenLinearEquationSolverFactory<ValueType>::create(Environment const& env, LinearEquationSolverTask const& task) const {
return std::make_unique<storm::solver::EigenLinearEquationSolver<ValueType>>();
}
template<typename ValueType>
std::unique_ptr<LinearEquationSolverFactory<ValueType>> EigenLinearEquationSolverFactory<ValueType>::clone() const {
return std::make_unique<EigenLinearEquationSolverFactory<ValueType>>(*this);
}
template class EigenLinearEquationSolver<double>;
template class EigenLinearEquationSolverFactory<double>;
#ifdef STORM_HAVE_CARL
template class EigenLinearEquationSolver<storm::RationalNumber>;
template class EigenLinearEquationSolver<storm::RationalFunction>;
template class EigenLinearEquationSolverFactory<storm::RationalNumber>;
template class EigenLinearEquationSolverFactory<storm::RationalFunction>;
#endif
}
}