386 lines
22 KiB

#include "src/solver/EigenLinearEquationSolver.h"
#include "src/adapters/EigenAdapter.h"
#include "src/settings/SettingsManager.h"
#include "src/settings/modules/EigenEquationSolverSettings.h"
#include "src/utility/macros.h"
#include "src/exceptions/InvalidSettingsException.h"
namespace storm {
namespace solver {
template<typename ValueType>
EigenLinearEquationSolverSettings<ValueType>::EigenLinearEquationSolverSettings() {
// Get the settings object to customize linear solving.
storm::settings::modules::EigenEquationSolverSettings const& settings = storm::settings::getModule<storm::settings::modules::EigenEquationSolverSettings>();
// Get appropriate settings.
maximalNumberOfIterations = settings.getMaximalIterationCount();
precision = settings.getPrecision();
restart = settings.getRestartIterationCount();
// Determine the method to be used.
storm::settings::modules::EigenEquationSolverSettings::LinearEquationMethod methodAsSetting = settings.getLinearEquationSystemMethod();
if (methodAsSetting == storm::settings::modules::EigenEquationSolverSettings::LinearEquationMethod::BiCGSTAB) {
method = SolutionMethod::BiCGSTAB;
} else if (methodAsSetting == storm::settings::modules::EigenEquationSolverSettings::LinearEquationMethod::SparseLU) {
method = SolutionMethod::SparseLU;
} else if (methodAsSetting == storm::settings::modules::EigenEquationSolverSettings::LinearEquationMethod::DGMRES) {
method = SolutionMethod::DGMRES;
} else if (methodAsSetting == storm::settings::modules::EigenEquationSolverSettings::LinearEquationMethod::GMRES) {
method = SolutionMethod::GMRES;
}
// Check which preconditioner to use.
storm::settings::modules::EigenEquationSolverSettings::PreconditioningMethod preconditionAsSetting = settings.getPreconditioningMethod();
if (preconditionAsSetting == storm::settings::modules::EigenEquationSolverSettings::PreconditioningMethod::Ilu) {
preconditioner = Preconditioner::Ilu;
} else if (preconditionAsSetting == storm::settings::modules::EigenEquationSolverSettings::PreconditioningMethod::Diagonal) {
preconditioner = Preconditioner::Diagonal;
} else if (preconditionAsSetting == storm::settings::modules::EigenEquationSolverSettings::PreconditioningMethod::None) {
preconditioner = Preconditioner::None;
}
}
template<typename ValueType>
void EigenLinearEquationSolverSettings<ValueType>::setSolutionMethod(SolutionMethod const& method) {
this->method = method;
}
template<typename ValueType>
void EigenLinearEquationSolverSettings<ValueType>::setPreconditioner(Preconditioner const& preconditioner) {
this->preconditioner = preconditioner;
}
template<typename ValueType>
void EigenLinearEquationSolverSettings<ValueType>::setPrecision(ValueType precision) {
this->precision = precision;
}
template<typename ValueType>
void EigenLinearEquationSolverSettings<ValueType>::setMaximalNumberOfIterations(uint64_t maximalNumberOfIterations) {
this->maximalNumberOfIterations = maximalNumberOfIterations;
}
template<typename ValueType>
void EigenLinearEquationSolverSettings<ValueType>::setNumberOfIterationsUntilRestart(uint64_t restart) {
this->restart = restart;
}
template<typename ValueType>
typename EigenLinearEquationSolverSettings<ValueType>::SolutionMethod EigenLinearEquationSolverSettings<ValueType>::getSolutionMethod() const {
return this->method;
}
template<typename ValueType>
typename EigenLinearEquationSolverSettings<ValueType>::Preconditioner EigenLinearEquationSolverSettings<ValueType>::getPreconditioner() const {
return this->preconditioner;
}
template<typename ValueType>
ValueType EigenLinearEquationSolverSettings<ValueType>::getPrecision() const {
return this->precision;
}
template<typename ValueType>
uint64_t EigenLinearEquationSolverSettings<ValueType>::getMaximalNumberOfIterations() const {
return this->maximalNumberOfIterations;
}
template<typename ValueType>
uint64_t EigenLinearEquationSolverSettings<ValueType>::getNumberOfIterationsUntilRestart() const {
return restart;
}
EigenLinearEquationSolverSettings<storm::RationalNumber>::EigenLinearEquationSolverSettings() {
// Intentionally left empty.
}
EigenLinearEquationSolverSettings<storm::RationalFunction>::EigenLinearEquationSolverSettings() {
// Intentionally left empty.
}
template<typename ValueType>
EigenLinearEquationSolver<ValueType>::EigenLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, EigenLinearEquationSolverSettings<ValueType> const& settings) : eigenA(storm::adapters::EigenAdapter::toEigenSparseMatrix<ValueType>(A)), settings(settings) {
// Intentionally left empty.
}
template<typename ValueType>
EigenLinearEquationSolver<ValueType>::EigenLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, EigenLinearEquationSolverSettings<ValueType> const& settings) : settings(settings) {
storm::storage::SparseMatrix<ValueType> localA(std::move(A));
eigenA = storm::adapters::EigenAdapter::toEigenSparseMatrix<ValueType>(localA);
}
template<typename ValueType>
void EigenLinearEquationSolver<ValueType>::solveEquationSystem(std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult) const {
// Map the input vectors to Eigen's format.
auto eigenX = Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(b.data(), b.size());
typename EigenLinearEquationSolverSettings<ValueType>::SolutionMethod solutionMethod = this->getSettings().getSolutionMethod();
if (solutionMethod == EigenLinearEquationSolverSettings<ValueType>::SolutionMethod::SparseLU) {
Eigen::SparseLU<Eigen::SparseMatrix<ValueType>, Eigen::COLAMDOrdering<int>> solver;
solver.compute(*this->eigenA);
solver._solve_impl(eigenB, eigenX);
} else {
typename EigenLinearEquationSolverSettings<ValueType>::Preconditioner preconditioner = this->getSettings().getPreconditioner();
if (solutionMethod == EigenLinearEquationSolverSettings<ValueType>::SolutionMethod::BiCGSTAB) {
if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Ilu) {
Eigen::BiCGSTAB<Eigen::SparseMatrix<ValueType>, Eigen::IncompleteLUT<ValueType>> solver;
solver.compute(*this->eigenA);
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Diagonal) {
Eigen::BiCGSTAB<Eigen::SparseMatrix<ValueType>, Eigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else {
Eigen::BiCGSTAB<Eigen::SparseMatrix<ValueType>, Eigen::IdentityPreconditioner> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
}
} else if (solutionMethod == EigenLinearEquationSolverSettings<ValueType>::SolutionMethod::DGMRES) {
if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Ilu) {
Eigen::DGMRES<Eigen::SparseMatrix<ValueType>, Eigen::IncompleteLUT<ValueType>> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Diagonal) {
Eigen::DGMRES<Eigen::SparseMatrix<ValueType>, Eigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else {
Eigen::DGMRES<Eigen::SparseMatrix<ValueType>, Eigen::IdentityPreconditioner> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
}
} else if (solutionMethod == EigenLinearEquationSolverSettings<ValueType>::SolutionMethod::GMRES) {
if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Ilu) {
Eigen::GMRES<Eigen::SparseMatrix<ValueType>, Eigen::IncompleteLUT<ValueType>> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else if (preconditioner == EigenLinearEquationSolverSettings<ValueType>::Preconditioner::Diagonal) {
Eigen::GMRES<Eigen::SparseMatrix<ValueType>, Eigen::DiagonalPreconditioner<ValueType>> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
} else {
Eigen::GMRES<Eigen::SparseMatrix<ValueType>, Eigen::IdentityPreconditioner> solver;
solver.setTolerance(this->getSettings().getPrecision());
solver.setMaxIterations(this->getSettings().getMaximalNumberOfIterations());
solver.set_restart(this->getSettings().getNumberOfIterationsUntilRestart());
solver.compute(*this->eigenA);
eigenX = solver.solveWithGuess(eigenB, eigenX);
}
}
}
}
template<typename ValueType>
void EigenLinearEquationSolver<ValueType>::performMatrixVectorMultiplication(std::vector<ValueType>& x, std::vector<ValueType> const* b, uint_fast64_t n, std::vector<ValueType>* multiplyResult) const {
// Typedef the map-type so we don't have to spell it out.
typedef decltype(Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(b->data(), b->size())) MapType;
bool multiplyResultProvided = multiplyResult != nullptr;
if (!multiplyResult) {
multiplyResult = new std::vector<ValueType>(eigenA->cols());
}
auto eigenMultiplyResult = Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(multiplyResult->data(), multiplyResult->size());
// Map the input vectors x and b to Eigen's format.
std::unique_ptr<MapType> eigenB;
if (b != nullptr) {
eigenB = std::make_unique<MapType>(Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(b->data(), b->size()));
}
auto eigenX = Eigen::Matrix<ValueType, Eigen::Dynamic, 1>::Map(x.data(), x.size());
// Perform n matrix-vector multiplications.
auto currentX = &eigenX;
auto nextX = &eigenMultiplyResult;
for (uint64_t iteration = 0; iteration < n; ++iteration) {
if (eigenB) {
nextX->noalias() = *eigenA * *currentX + *eigenB;
} else {
nextX->noalias() = *eigenA * *currentX;
}
std::swap(nextX, currentX);
}
// If the last result we obtained is not the one in the input vector x, we swap the result there.
if (currentX != &eigenX) {
std::swap(*nextX, *currentX);
}
if (!multiplyResultProvided) {
delete multiplyResult;
}
}
template<typename ValueType>
EigenLinearEquationSolverSettings<ValueType>& EigenLinearEquationSolver<ValueType>::getSettings() {
return settings;
}
template<typename ValueType>
EigenLinearEquationSolverSettings<ValueType> const& EigenLinearEquationSolver<ValueType>::getSettings() const {
return settings;
}
// Specialization form storm::RationalNumber
template<>
void EigenLinearEquationSolver<storm::RationalNumber>::solveEquationSystem(std::vector<storm::RationalNumber>& x, std::vector<storm::RationalNumber> const& b, std::vector<storm::RationalNumber>* multiplyResult) const {
// Map the input vectors to Eigen's format.
auto eigenX = Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(b.data(), b.size());
Eigen::SparseLU<Eigen::SparseMatrix<storm::RationalNumber>, Eigen::COLAMDOrdering<int>> solver;
solver.compute(*eigenA);
solver._solve_impl(eigenB, eigenX);
}
template<>
void EigenLinearEquationSolver<storm::RationalNumber>::performMatrixVectorMultiplication(std::vector<storm::RationalNumber>& x, std::vector<storm::RationalNumber> const* b, uint_fast64_t n, std::vector<storm::RationalNumber>* multiplyResult) const {
// Typedef the map-type so we don't have to spell it out.
typedef decltype(Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(b->data(), b->size())) MapType;
bool multiplyResultProvided = multiplyResult != nullptr;
if (!multiplyResult) {
multiplyResult = new std::vector<storm::RationalNumber>(eigenA->cols());
}
auto eigenMultiplyResult = Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(multiplyResult->data(), multiplyResult->size());
// Map the input vectors x and b to Eigen's format.
std::unique_ptr<MapType> eigenB;
if (b != nullptr) {
eigenB = std::make_unique<MapType>(Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(b->data(), b->size()));
}
auto eigenX = Eigen::Matrix<storm::RationalNumber, Eigen::Dynamic, 1>::Map(x.data(), x.size());
// Perform n matrix-vector multiplications.
auto currentX = &eigenX;
auto nextX = &eigenMultiplyResult;
for (uint64_t iteration = 0; iteration < n; ++iteration) {
if (eigenB) {
nextX->noalias() = *eigenA * *currentX + *eigenB;
} else {
nextX->noalias() = *eigenA * *currentX;
}
}
// If the last result we obtained is not the one in the input vector x, we swap the result there.
if (currentX != &eigenX) {
std::swap(*nextX, *currentX);
}
if (!multiplyResultProvided) {
delete multiplyResult;
}
}
// Specialization form storm::RationalFunction
template<>
void EigenLinearEquationSolver<storm::RationalFunction>::solveEquationSystem(std::vector<storm::RationalFunction>& x, std::vector<storm::RationalFunction> const& b, std::vector<storm::RationalFunction>* multiplyResult) const {
// Map the input vectors to Eigen's format.
auto eigenX = Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(x.data(), x.size());
auto eigenB = Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(b.data(), b.size());
Eigen::SparseLU<Eigen::SparseMatrix<storm::RationalFunction>, Eigen::COLAMDOrdering<int>> solver;
solver.compute(*eigenA);
solver._solve_impl(eigenB, eigenX);
}
template<>
void EigenLinearEquationSolver<storm::RationalFunction>::performMatrixVectorMultiplication(std::vector<storm::RationalFunction>& x, std::vector<storm::RationalFunction> const* b, uint_fast64_t n, std::vector<storm::RationalFunction>* multiplyResult) const {
// Typedef the map-type so we don't have to spell it out.
typedef decltype(Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(b->data(), b->size())) MapType;
bool multiplyResultProvided = multiplyResult != nullptr;
if (!multiplyResult) {
multiplyResult = new std::vector<storm::RationalFunction>(eigenA->cols());
}
auto eigenMultiplyResult = Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(multiplyResult->data(), multiplyResult->size());
// Map the input vectors x and b to Eigen's format.
std::unique_ptr<MapType> eigenB;
if (b != nullptr) {
eigenB = std::make_unique<MapType>(Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(b->data(), b->size()));
}
auto eigenX = Eigen::Matrix<storm::RationalFunction, Eigen::Dynamic, 1>::Map(x.data(), x.size());
// Perform n matrix-vector multiplications.
auto currentX = &eigenX;
auto nextX = &eigenMultiplyResult;
for (uint64_t iteration = 0; iteration < n; ++iteration) {
if (eigenB) {
nextX->noalias() = *eigenA * *currentX + *eigenB;
} else {
nextX->noalias() = *eigenA * *currentX;
}
}
// If the last result we obtained is not the one in the input vector x, we swap the result there.
if (currentX != &eigenX) {
std::swap(*nextX, *currentX);
}
if (!multiplyResultProvided) {
delete multiplyResult;
}
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> EigenLinearEquationSolverFactory<ValueType>::create(storm::storage::SparseMatrix<ValueType> const& matrix) const {
return std::make_unique<storm::solver::EigenLinearEquationSolver<ValueType>>(matrix, settings);
}
template<typename ValueType>
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> EigenLinearEquationSolverFactory<ValueType>::create(storm::storage::SparseMatrix<ValueType>&& matrix) const {
return std::make_unique<storm::solver::EigenLinearEquationSolver<ValueType>>(std::move(matrix), settings);
}
template<typename ValueType>
EigenLinearEquationSolverSettings<ValueType>& EigenLinearEquationSolverFactory<ValueType>::getSettings() {
return settings;
}
template<typename ValueType>
EigenLinearEquationSolverSettings<ValueType> const& EigenLinearEquationSolverFactory<ValueType>::getSettings() const {
return settings;
}
template class EigenLinearEquationSolverSettings<double>;
template class EigenLinearEquationSolverSettings<storm::RationalNumber>;
template class EigenLinearEquationSolverSettings<storm::RationalFunction>;
template class EigenLinearEquationSolver<double>;
template class EigenLinearEquationSolver<storm::RationalNumber>;
template class EigenLinearEquationSolver<storm::RationalFunction>;
template class EigenLinearEquationSolverFactory<double>;
template class EigenLinearEquationSolverFactory<storm::RationalNumber>;
template class EigenLinearEquationSolverFactory<storm::RationalFunction>;
}
}