You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							110 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							110 lines
						
					
					
						
							3.6 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "sparse.h" | |
|  | |
| template<typename Scalar,typename Index> void sparse_vector(int rows, int cols) | |
| { | |
|   double densityMat = (std::max)(8./(rows*cols), 0.01); | |
|   double densityVec = (std::max)(8./float(rows), 0.1); | |
|   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
|   typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
|   typedef SparseVector<Scalar,0,Index> SparseVectorType; | |
|   typedef SparseMatrix<Scalar,0,Index> SparseMatrixType; | |
|   Scalar eps = 1e-6; | |
| 
 | |
|   SparseMatrixType m1(rows,rows); | |
|   SparseVectorType v1(rows), v2(rows), v3(rows); | |
|   DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | |
|   DenseVector refV1 = DenseVector::Random(rows), | |
|     refV2 = DenseVector::Random(rows), | |
|     refV3 = DenseVector::Random(rows); | |
| 
 | |
|   std::vector<int> zerocoords, nonzerocoords; | |
|   initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); | |
|   initSparse<Scalar>(densityMat, refM1, m1); | |
| 
 | |
|   initSparse<Scalar>(densityVec, refV2, v2); | |
|   initSparse<Scalar>(densityVec, refV3, v3); | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(); | |
| 
 | |
|   // test coeff and coeffRef | |
|   for (unsigned int i=0; i<zerocoords.size(); ++i) | |
|   { | |
|     VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); | |
|     //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); | |
|   } | |
|   { | |
|     VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); | |
|     int j=0; | |
|     for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) | |
|     { | |
|       VERIFY(nonzerocoords[j]==it.index()); | |
|       VERIFY(it.value()==v1.coeff(it.index())); | |
|       VERIFY(it.value()==refV1.coeff(it.index())); | |
|     } | |
|   } | |
|   VERIFY_IS_APPROX(v1, refV1); | |
| 
 | |
|   v1.coeffRef(nonzerocoords[0]) = Scalar(5); | |
|   refV1.coeffRef(nonzerocoords[0]) = Scalar(5); | |
|   VERIFY_IS_APPROX(v1, refV1); | |
| 
 | |
|   VERIFY_IS_APPROX(v1+v2, refV1+refV2); | |
|   VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); | |
| 
 | |
|   VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); | |
| 
 | |
|   VERIFY_IS_APPROX(v1*=s1, refV1*=s1); | |
|   VERIFY_IS_APPROX(v1/=s1, refV1/=s1); | |
| 
 | |
|   VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); | |
|   VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); | |
| 
 | |
|   VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); | |
|   VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); | |
| 
 | |
|   VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); | |
|   int i = internal::random<int>(0,rows-1); | |
|   VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); | |
| 
 | |
| 
 | |
|   VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); | |
|    | |
|   VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); | |
| 
 | |
|   // test aliasing | |
|   VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); | |
|   VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); | |
|   VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); | |
|    | |
|   // sparse matrix to sparse vector | |
|   SparseMatrixType mv1; | |
|   VERIFY_IS_APPROX((mv1=v1),v1); | |
|   VERIFY_IS_APPROX(mv1,(v1=mv1)); | |
|   VERIFY_IS_APPROX(mv1,(v1=mv1.transpose())); | |
|    | |
|   // check copy to dense vector with transpose | |
|   refV3.resize(0); | |
|   VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense());  | |
|   VERIFY_IS_APPROX(DenseVector(v1),v1.toDense());  | |
| 
 | |
| } | |
| 
 | |
| void test_sparse_vector() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) )); | |
|     CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(16, 16) )); | |
|     CALL_SUBTEST_1(( sparse_vector<double,long int>(299, 535) )); | |
|     CALL_SUBTEST_1(( sparse_vector<double,short>(299, 535) )); | |
|   } | |
| } | |
| 
 |