You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							271 lines
						
					
					
						
							9.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							271 lines
						
					
					
						
							9.0 KiB
						
					
					
				| 
 | |
| // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2  ./a.out | |
| // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2  ./a.out | |
|  | |
| #include <iostream> | |
| #include <Eigen/Core> | |
| #include <bench/BenchTimer.h> | |
|  | |
| using namespace std; | |
| using namespace Eigen; | |
| 
 | |
| #ifndef SCALAR | |
| // #define SCALAR std::complex<float> | |
| #define SCALAR float | |
| #endif | |
|  | |
| typedef SCALAR Scalar; | |
| typedef NumTraits<Scalar>::Real RealScalar; | |
| typedef Matrix<RealScalar,Dynamic,Dynamic> A; | |
| typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B; | |
| typedef Matrix<Scalar,Dynamic,Dynamic> C; | |
| typedef Matrix<RealScalar,Dynamic,Dynamic> M; | |
| 
 | |
| #ifdef HAVE_BLAS | |
|  | |
| extern "C" { | |
|   #include <bench/btl/libs/C_BLAS/blas.h> | |
| } | |
| 
 | |
| static float fone = 1; | |
| static float fzero = 0; | |
| static double done = 1; | |
| static double szero = 0; | |
| static std::complex<float> cfone = 1; | |
| static std::complex<float> cfzero = 0; | |
| static std::complex<double> cdone = 1; | |
| static std::complex<double> cdzero = 0; | |
| static char notrans = 'N'; | |
| static char trans = 'T';   | |
| static char nonunit = 'N'; | |
| static char lower = 'L'; | |
| static char right = 'R'; | |
| static int intone = 1; | |
| 
 | |
| void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) | |
| { | |
|   int M = c.rows(); int N = c.cols(); int K = a.cols(); | |
|   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | |
| 
 | |
|   sgemm_(¬rans,¬rans,&M,&N,&K,&fone, | |
|          const_cast<float*>(a.data()),&lda, | |
|          const_cast<float*>(b.data()),&ldb,&fone, | |
|          c.data(),&ldc); | |
| } | |
| 
 | |
| EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) | |
| { | |
|   int M = c.rows(); int N = c.cols(); int K = a.cols(); | |
|   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | |
| 
 | |
|   dgemm_(¬rans,¬rans,&M,&N,&K,&done, | |
|          const_cast<double*>(a.data()),&lda, | |
|          const_cast<double*>(b.data()),&ldb,&done, | |
|          c.data(),&ldc); | |
| } | |
| 
 | |
| void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) | |
| { | |
|   int M = c.rows(); int N = c.cols(); int K = a.cols(); | |
|   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | |
| 
 | |
|   cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, | |
|          const_cast<float*>((const float*)a.data()),&lda, | |
|          const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, | |
|          (float*)c.data(),&ldc); | |
| } | |
| 
 | |
| void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) | |
| { | |
|   int M = c.rows(); int N = c.cols(); int K = a.cols(); | |
|   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | |
| 
 | |
|   zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, | |
|          const_cast<double*>((const double*)a.data()),&lda, | |
|          const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, | |
|          (double*)c.data(),&ldc); | |
| } | |
| 
 | |
| 
 | |
| 
 | |
| #endif | |
|  | |
| void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) | |
| { | |
|   cr.noalias() += ar * br; | |
|   cr.noalias() -= ai * bi; | |
|   ci.noalias() += ar * bi; | |
|   ci.noalias() += ai * br; | |
| } | |
| 
 | |
| void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) | |
| { | |
|   cr.noalias() += a * br; | |
|   ci.noalias() += a * bi; | |
| } | |
| 
 | |
| void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) | |
| { | |
|   cr.noalias() += ar * b; | |
|   ci.noalias() += ai * b; | |
| } | |
| 
 | |
| template<typename A, typename B, typename C> | |
| EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) | |
| { | |
|  c.noalias() += a * b; | |
| } | |
| 
 | |
| int main(int argc, char ** argv) | |
| { | |
|   std::ptrdiff_t l1 = internal::queryL1CacheSize(); | |
|   std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); | |
|   std::cout << "L1 cache size     = " << (l1>0 ? l1/1024 : -1) << " KB\n"; | |
|   std::cout << "L2/L3 cache size  = " << (l2>0 ? l2/1024 : -1) << " KB\n"; | |
|   typedef internal::gebp_traits<Scalar,Scalar> Traits; | |
|   std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; | |
| 
 | |
|   int rep = 1;    // number of repetitions per try | |
|   int tries = 2;  // number of tries, we keep the best | |
|  | |
|   int s = 2048; | |
|   int cache_size = -1; | |
| 
 | |
|   bool need_help = false; | |
|   for (int i=1; i<argc; ++i) | |
|   { | |
|     if(argv[i][0]=='s') | |
|       s = atoi(argv[i]+1); | |
|     else if(argv[i][0]=='c') | |
|       cache_size = atoi(argv[i]+1); | |
|     else if(argv[i][0]=='t') | |
|       tries = atoi(argv[i]+1); | |
|     else if(argv[i][0]=='p') | |
|       rep = atoi(argv[i]+1); | |
|     else | |
|       need_help = true; | |
|   } | |
| 
 | |
|   if(need_help) | |
|   { | |
|     std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n"; | |
|     return 1; | |
|   } | |
| 
 | |
|   if(cache_size>0) | |
|     setCpuCacheSizes(cache_size,96*cache_size); | |
| 
 | |
|   int m = s; | |
|   int n = s; | |
|   int p = s; | |
|   A a(m,p); a.setRandom(); | |
|   B b(p,n); b.setRandom(); | |
|   C c(m,n); c.setOnes(); | |
|   C rc = c; | |
| 
 | |
|   std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; | |
|   std::ptrdiff_t mc(m), nc(n), kc(p); | |
|   internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); | |
|   std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n"; | |
| 
 | |
|   C r = c; | |
| 
 | |
|   // check the parallel product is correct | |
|   #if defined EIGEN_HAS_OPENMP | |
|   int procs = omp_get_max_threads(); | |
|   if(procs>1) | |
|   { | |
|     #ifdef HAVE_BLAS | |
|     blas_gemm(a,b,r); | |
|     #else | |
|     omp_set_num_threads(1); | |
|     r.noalias() += a * b; | |
|     omp_set_num_threads(procs); | |
|     #endif | |
|     c.noalias() += a * b; | |
|     if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; | |
|   } | |
|   #elif defined HAVE_BLAS | |
|     blas_gemm(a,b,r); | |
|     c.noalias() += a * b; | |
|     if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; | |
|   #else | |
|     gemm(a,b,c); | |
|     r.noalias() += a.cast<Scalar>() * b.cast<Scalar>(); | |
|     if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; | |
|   #endif | |
|  | |
|   #ifdef HAVE_BLAS | |
|   BenchTimer tblas; | |
|   c = rc; | |
|   BENCH(tblas, tries, rep, blas_gemm(a,b,c)); | |
|   std::cout << "blas  cpu         " << tblas.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tblas.total(CPU_TIMER)  << "s)\n"; | |
|   std::cout << "blas  real        " << tblas.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; | |
|   #endif | |
|  | |
|   BenchTimer tmt; | |
|   c = rc; | |
|   BENCH(tmt, tries, rep, gemm(a,b,c)); | |
|   std::cout << "eigen cpu         " << tmt.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmt.total(CPU_TIMER)  << "s)\n"; | |
|   std::cout << "eigen real        " << tmt.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; | |
| 
 | |
|   #ifdef EIGEN_HAS_OPENMP | |
|   if(procs>1) | |
|   { | |
|     BenchTimer tmono; | |
|     omp_set_num_threads(1); | |
|     Eigen::internal::setNbThreads(1); | |
|     c = rc; | |
|     BENCH(tmono, tries, rep, gemm(a,b,c)); | |
|     std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmono.total(CPU_TIMER)  << "s)\n"; | |
|     std::cout << "eigen mono real   " << tmono.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; | |
|     std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)  << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; | |
|   } | |
|   #endif | |
|    | |
|   #ifdef DECOUPLED | |
|   if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) | |
|   { | |
|     M ar(m,p); ar.setRandom(); | |
|     M ai(m,p); ai.setRandom(); | |
|     M br(p,n); br.setRandom(); | |
|     M bi(p,n); bi.setRandom(); | |
|     M cr(m,n); cr.setRandom(); | |
|     M ci(m,n); ci.setRandom(); | |
|      | |
|     BenchTimer t; | |
|     BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | |
|   } | |
|   if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) | |
|   { | |
|     M a(m,p);  a.setRandom(); | |
|     M br(p,n); br.setRandom(); | |
|     M bi(p,n); bi.setRandom(); | |
|     M cr(m,n); cr.setRandom(); | |
|     M ci(m,n); ci.setRandom(); | |
|      | |
|     BenchTimer t; | |
|     BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | |
|   } | |
|   if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) | |
|   { | |
|     M ar(m,p); ar.setRandom(); | |
|     M ai(m,p); ai.setRandom(); | |
|     M b(p,n);  b.setRandom(); | |
|     M cr(m,n); cr.setRandom(); | |
|     M ci(m,n); ci.setRandom(); | |
|      | |
|     BenchTimer t; | |
|     BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | |
|   } | |
|   #endif | |
|  | |
|   return 0; | |
| } | |
| 
 |