151 lines
8.2 KiB

#ifndef STORM_SOLVER_ABSTRACTNONDETERMINISTICLINEAREQUATIONSOLVER_H_
#define STORM_SOLVER_ABSTRACTNONDETERMINISTICLINEAREQUATIONSOLVER_H_
#include "src/storage/SparseMatrix.h"
#include "src/utility/vector.h"
#include "src/settings/Settings.h"
#include <vector>
namespace storm {
namespace solver {
template<class Type>
class AbstractNondeterministicLinearEquationSolver {
public:
AbstractNondeterministicLinearEquationSolver() {
storm::settings::Settings* s = storm::settings::Settings::getInstance();
precision = s->getOptionByLongName("precision").getArgument(0).getValueAsDouble();
maxIterations = s->getOptionByLongName("maxiter").getArgument(0).getValueAsUnsignedInteger();
relative = !s->isSet("absolute");
}
AbstractNondeterministicLinearEquationSolver(double precision, uint_fast64_t maxIterations, bool relative) : precision(precision), maxIterations(maxIterations), relative(relative) {
// Intentionally left empty.
}
virtual AbstractNondeterministicLinearEquationSolver<Type>* clone() const {
return new AbstractNondeterministicLinearEquationSolver<Type>(this->precision, this->maxIterations, this->relative);
}
/*!
* Performs (repeated) matrix-vector multiplication with the given parameters, i.e. computes x[i+1] = A*x[i] + b
* until x[n], where x[0] = x.
*
* @param minimize If set, all choices are resolved such that the solution value becomes minimal and maximal otherwise.
* @param A The matrix that is to be multiplied against the vector.
* @param x The initial vector that is to be multiplied against the matrix. This is also the output parameter,
* i.e. after the method returns, this vector will contain the computed values.
* @param nondeterministicChoiceIndices The assignment of states to their rows in the matrix.
* @param b If not null, this vector is being added to the result after each matrix-vector multiplication.
* @param n Specifies the number of iterations the matrix-vector multiplication is performed.
* @returns The result of the repeated matrix-vector multiplication as the content of the parameter vector.
*/
virtual void performMatrixVectorMultiplication(bool minimize, storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, std::vector<Type>* b = nullptr, uint_fast64_t n = 1) const {
// Create vector for result of multiplication, which is reduced to the result vector after
// each multiplication.
std::vector<Type> multiplyResult(A.getRowCount());
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
for (uint_fast64_t i = 0; i < n; ++i) {
A.multiplyWithVector(x, multiplyResult);
// Add b if it is non-null.
if (b != nullptr) {
storm::utility::vector::addVectorsInPlace(multiplyResult, *b);
}
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (minimize) {
storm::utility::vector::reduceVectorMin(multiplyResult, x, nondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax(multiplyResult, x, nondeterministicChoiceIndices);
}
}
}
/*!
* Solves the equation system A*x = b given by the parameters.
*
* @param minimize If set, all choices are resolved such that the solution value becomes minimal and maximal otherwise.
* @param A The matrix specifying the coefficients of the linear equations.
* @param x The solution vector x. The initial values of x represent a guess of the real values to the solver, but
* may be ignored.
* @param b The right-hand side of the equation system.
* @param nondeterministicChoiceIndices The assignment of states to their rows in the matrix.
* @param takenChoices If not null, this vector will be filled with the nondeterministic choices taken by the states
* to achieve the solution of the equation system. This assumes that the given vector has at least as many elements
* as there are states in the MDP.
* @returns The solution vector x of the system of linear equations as the content of the parameter x.
*/
virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<Type> const& A, std::vector<Type>& x, std::vector<Type> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, std::vector<Type>* multiplyResult = nullptr, std::vector<Type>* newX = nullptr) const {
// Set up the environment for the power method.
bool multiplyResultMemoryProvided = true;
if (multiplyResult == nullptr) {
multiplyResult = new std::vector<Type>(A.getRowCount());
multiplyResultMemoryProvided = false;
}
std::vector<Type>* currentX = &x;
bool xMemoryProvided = true;
if (newX == nullptr) {
newX = new std::vector<Type>(x.size());
xMemoryProvided = false;
}
std::vector<Type>* swap = nullptr;
uint_fast64_t iterations = 0;
bool converged = false;
// Proceed with the iterations as long as the method did not converge or reach the
// user-specified maximum number of iterations.
while (!converged && iterations < maxIterations) {
// Compute x' = A*x + b.
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
// Reduce the vector x' by applying min/max for all non-deterministic choices as given by the topmost
// element of the min/max operator stack.
if (minimize) {
storm::utility::vector::reduceVectorMin(*multiplyResult, *newX, nondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax(*multiplyResult, *newX, nondeterministicChoiceIndices);
}
// Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, precision, relative);
// Update environment variables.
swap = currentX;
currentX = newX;
newX = swap;
++iterations;
}
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
if (iterations % 2 == 1) {
std::swap(x, *currentX);
if (!xMemoryProvided) {
delete currentX;
}
} else if (!xMemoryProvided) {
delete newX;
}
if (!multiplyResultMemoryProvided) {
delete multiplyResult;
}
}
protected:
double precision;
uint_fast64_t maxIterations;
bool relative;
};
} // namespace solver
} // namespace storm
#endif /* STORM_SOLVER_ABSTRACTNONDETERMINISTICLINEAREQUATIONSOLVER_H_ */