You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

216 lines
8.1 KiB

/* glplpf.h (LP basis factorization, Schur complement version) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#ifndef GLPLPF_H
#define GLPLPF_H
#if 0 /* 11/VIII-2013 */
#include "glpscf.h"
#else
#include "ifu.h"
#endif
#if 0 /* 06/VI-2013 */
#include "glpluf.h"
#else
#include "lufint.h"
#endif
/***********************************************************************
* The structure LPF defines the factorization of the basis mxm matrix
* B, where m is the number of rows in corresponding problem instance.
*
* This factorization is the following septet:
*
* [B] = (L0, U0, R, S, C, P, Q), (1)
*
* and is based on the following main equality:
*
* ( B F^) ( B0 F ) ( L0 0 ) ( U0 R )
* ( ) = P ( ) Q = P ( ) ( ) Q, (2)
* ( G^ H^) ( G H ) ( S I ) ( 0 C )
*
* where:
*
* B is the current basis matrix (not stored);
*
* F^, G^, H^ are some additional matrices (not stored);
*
* B0 is some initial basis matrix (not stored);
*
* F, G, H are some additional matrices (not stored);
*
* P, Q are permutation matrices (stored in both row- and column-like
* formats);
*
* L0, U0 are some matrices that defines a factorization of the initial
* basis matrix B0 = L0 * U0 (stored in an invertable form);
*
* R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
* a column-wise sparse format);
*
* S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
* a row-wise sparse format);
*
* C is the Schur complement for matrix (B0 F G H). It is defined from
* S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
* = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
*
* REFERENCES
*
* 1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
* tion," SCCM, Stanford University, 2006.
*
* 2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
* sity, Spring 2006.
*
* 3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
* ibid. */
typedef struct LPF LPF;
struct LPF
{ /* LP basis factorization */
int valid;
/* the factorization is valid only if this flag is set */
/*--------------------------------------------------------------*/
/* initial basis matrix B0 */
int m0_max;
/* maximal value of m0 (increased automatically, if necessary) */
int m0;
/* the order of B0 */
#if 0 /* 06/VI-2013 */
LUF *luf;
#else
LUFINT *lufint;
#endif
/* LU-factorization of B0 */
/*--------------------------------------------------------------*/
/* current basis matrix B */
int m;
/* the order of B */
double *B; /* double B[1+m*m]; */
/* B in dense format stored by rows and used only for debugging;
normally this array is not allocated */
/*--------------------------------------------------------------*/
/* augmented matrix (B0 F G H) of the order m0+n */
int n_max;
/* maximal number of additional rows and columns */
int n;
/* current number of additional rows and columns */
/*--------------------------------------------------------------*/
/* m0xn matrix R in column-wise format */
int *R_ptr; /* int R_ptr[1+n_max]; */
/* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
int *R_len; /* int R_len[1+n_max]; */
/* R_len[j], 1 <= j <= n, is the length of j-th column */
/*--------------------------------------------------------------*/
/* nxm0 matrix S in row-wise format */
int *S_ptr; /* int S_ptr[1+n_max]; */
/* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
int *S_len; /* int S_len[1+n_max]; */
/* S_len[i], 1 <= i <= n, is the length of i-th row */
/*--------------------------------------------------------------*/
/* Schur complement C of the order n */
#if 0 /* 11/VIII-2013 */
SCF *scf; /* SCF scf[1:n_max]; */
/* factorization of the Schur complement */
#else
IFU ifu;
/* IFU-factorization of the Schur complement */
int t_opt;
/* type of transformation used to restore triangular structure of
matrix U: */
#define SCF_TBG 1 /* Bartels-Golub elimination */
#define SCF_TGR 2 /* Givens plane rotations */
#endif
/*--------------------------------------------------------------*/
/* matrix P of the order m0+n */
int *P_row; /* int P_row[1+m0_max+n_max]; */
/* P_row[i] = j means that P[i,j] = 1 */
int *P_col; /* int P_col[1+m0_max+n_max]; */
/* P_col[j] = i means that P[i,j] = 1 */
/*--------------------------------------------------------------*/
/* matrix Q of the order m0+n */
int *Q_row; /* int Q_row[1+m0_max+n_max]; */
/* Q_row[i] = j means that Q[i,j] = 1 */
int *Q_col; /* int Q_col[1+m0_max+n_max]; */
/* Q_col[j] = i means that Q[i,j] = 1 */
/*--------------------------------------------------------------*/
/* Sparse Vector Area (SVA) is a set of locations intended to
store sparse vectors which represent columns of matrix R and
rows of matrix S; each location is a doublet (ind, val), where
ind is an index, val is a numerical value of a sparse vector
element; in the whole each sparse vector is a set of adjacent
locations defined by a pointer to its first element and its
length, i.e. the number of its elements */
int v_size;
/* the SVA size, in locations; locations are numbered by integers
1, 2, ..., v_size, and location 0 is not used */
int v_ptr;
/* pointer to the first available location */
int *v_ind; /* int v_ind[1+v_size]; */
/* v_ind[k], 1 <= k <= v_size, is the index field of location k */
double *v_val; /* double v_val[1+v_size]; */
/* v_val[k], 1 <= k <= v_size, is the value field of location k */
/*--------------------------------------------------------------*/
double *work1; /* double work1[1+m0+n_max]; */
/* working array */
double *work2; /* double work2[1+m0+n_max]; */
/* working array */
};
/* return codes: */
#define LPF_ESING 1 /* singular matrix */
#define LPF_ECOND 2 /* ill-conditioned matrix */
#define LPF_ELIMIT 3 /* update limit reached */
#define lpf_create_it _glp_lpf_create_it
LPF *lpf_create_it(void);
/* create LP basis factorization */
#define lpf_factorize _glp_lpf_factorize
int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
(void *info, int j, int ind[], double val[]), void *info);
/* compute LP basis factorization */
#define lpf_ftran _glp_lpf_ftran
void lpf_ftran(LPF *lpf, double x[]);
/* perform forward transformation (solve system B*x = b) */
#define lpf_btran _glp_lpf_btran
void lpf_btran(LPF *lpf, double x[]);
/* perform backward transformation (solve system B'*x = b) */
#define lpf_update_it _glp_lpf_update_it
int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
const double val[]);
/* update LP basis factorization */
#define lpf_delete_it _glp_lpf_delete_it
void lpf_delete_it(LPF *lpf);
/* delete LP basis factorization */
#endif
/* eof */