You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

826 lines
26 KiB

/* glpios02.c (preprocess current subproblem) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpios.h"
/***********************************************************************
* prepare_row_info - prepare row info to determine implied bounds
*
* Given a row (linear form)
*
* n
* sum a[j] * x[j] (1)
* j=1
*
* and bounds of columns (variables)
*
* l[j] <= x[j] <= u[j] (2)
*
* this routine computes f_min, j_min, f_max, j_max needed to determine
* implied bounds.
*
* ALGORITHM
*
* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
*
* Parameters f_min and j_min are computed as follows:
*
* 1) if there is no x[k] such that k in J+ and l[k] = -inf or k in J-
* and u[k] = +inf, then
*
* f_min := sum a[j] * l[j] + sum a[j] * u[j]
* j in J+ j in J-
* (3)
* j_min := 0
*
* 2) if there is exactly one x[k] such that k in J+ and l[k] = -inf
* or k in J- and u[k] = +inf, then
*
* f_min := sum a[j] * l[j] + sum a[j] * u[j]
* j in J+\{k} j in J-\{k}
* (4)
* j_min := k
*
* 3) if there are two or more x[k] such that k in J+ and l[k] = -inf
* or k in J- and u[k] = +inf, then
*
* f_min := -inf
* (5)
* j_min := 0
*
* Parameters f_max and j_max are computed in a similar way as follows:
*
* 1) if there is no x[k] such that k in J+ and u[k] = +inf or k in J-
* and l[k] = -inf, then
*
* f_max := sum a[j] * u[j] + sum a[j] * l[j]
* j in J+ j in J-
* (6)
* j_max := 0
*
* 2) if there is exactly one x[k] such that k in J+ and u[k] = +inf
* or k in J- and l[k] = -inf, then
*
* f_max := sum a[j] * u[j] + sum a[j] * l[j]
* j in J+\{k} j in J-\{k}
* (7)
* j_max := k
*
* 3) if there are two or more x[k] such that k in J+ and u[k] = +inf
* or k in J- and l[k] = -inf, then
*
* f_max := +inf
* (8)
* j_max := 0 */
struct f_info
{ int j_min, j_max;
double f_min, f_max;
};
static void prepare_row_info(int n, const double a[], const double l[],
const double u[], struct f_info *f)
{ int j, j_min, j_max;
double f_min, f_max;
xassert(n >= 0);
/* determine f_min and j_min */
f_min = 0.0, j_min = 0;
for (j = 1; j <= n; j++)
{ if (a[j] > 0.0)
{ if (l[j] == -DBL_MAX)
{ if (j_min == 0)
j_min = j;
else
{ f_min = -DBL_MAX, j_min = 0;
break;
}
}
else
f_min += a[j] * l[j];
}
else if (a[j] < 0.0)
{ if (u[j] == +DBL_MAX)
{ if (j_min == 0)
j_min = j;
else
{ f_min = -DBL_MAX, j_min = 0;
break;
}
}
else
f_min += a[j] * u[j];
}
else
xassert(a != a);
}
f->f_min = f_min, f->j_min = j_min;
/* determine f_max and j_max */
f_max = 0.0, j_max = 0;
for (j = 1; j <= n; j++)
{ if (a[j] > 0.0)
{ if (u[j] == +DBL_MAX)
{ if (j_max == 0)
j_max = j;
else
{ f_max = +DBL_MAX, j_max = 0;
break;
}
}
else
f_max += a[j] * u[j];
}
else if (a[j] < 0.0)
{ if (l[j] == -DBL_MAX)
{ if (j_max == 0)
j_max = j;
else
{ f_max = +DBL_MAX, j_max = 0;
break;
}
}
else
f_max += a[j] * l[j];
}
else
xassert(a != a);
}
f->f_max = f_max, f->j_max = j_max;
return;
}
/***********************************************************************
* row_implied_bounds - determine row implied bounds
*
* Given a row (linear form)
*
* n
* sum a[j] * x[j]
* j=1
*
* and bounds of columns (variables)
*
* l[j] <= x[j] <= u[j]
*
* this routine determines implied bounds of the row.
*
* ALGORITHM
*
* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
*
* The implied lower bound of the row is computed as follows:
*
* L' := sum a[j] * l[j] + sum a[j] * u[j] (9)
* j in J+ j in J-
*
* and as it follows from (3), (4), and (5):
*
* L' := if j_min = 0 then f_min else -inf (10)
*
* The implied upper bound of the row is computed as follows:
*
* U' := sum a[j] * u[j] + sum a[j] * l[j] (11)
* j in J+ j in J-
*
* and as it follows from (6), (7), and (8):
*
* U' := if j_max = 0 then f_max else +inf (12)
*
* The implied bounds are stored in locations LL and UU. */
static void row_implied_bounds(const struct f_info *f, double *LL,
double *UU)
{ *LL = (f->j_min == 0 ? f->f_min : -DBL_MAX);
*UU = (f->j_max == 0 ? f->f_max : +DBL_MAX);
return;
}
/***********************************************************************
* col_implied_bounds - determine column implied bounds
*
* Given a row (constraint)
*
* n
* L <= sum a[j] * x[j] <= U (13)
* j=1
*
* and bounds of columns (variables)
*
* l[j] <= x[j] <= u[j]
*
* this routine determines implied bounds of variable x[k].
*
* It is assumed that if L != -inf, the lower bound of the row can be
* active, and if U != +inf, the upper bound of the row can be active.
*
* ALGORITHM
*
* From (13) it follows that
*
* L <= sum a[j] * x[j] + a[k] * x[k] <= U
* j!=k
* or
*
* L - sum a[j] * x[j] <= a[k] * x[k] <= U - sum a[j] * x[j]
* j!=k j!=k
*
* Thus, if the row lower bound L can be active, implied lower bound of
* term a[k] * x[k] can be determined as follows:
*
* ilb(a[k] * x[k]) = min(L - sum a[j] * x[j]) =
* j!=k
* (14)
* = L - max sum a[j] * x[j]
* j!=k
*
* where, as it follows from (6), (7), and (8)
*
* / f_max - a[k] * u[k], j_max = 0, a[k] > 0
* |
* | f_max - a[k] * l[k], j_max = 0, a[k] < 0
* max sum a[j] * x[j] = {
* j!=k | f_max, j_max = k
* |
* \ +inf, j_max != 0
*
* and if the upper bound U can be active, implied upper bound of term
* a[k] * x[k] can be determined as follows:
*
* iub(a[k] * x[k]) = max(U - sum a[j] * x[j]) =
* j!=k
* (15)
* = U - min sum a[j] * x[j]
* j!=k
*
* where, as it follows from (3), (4), and (5)
*
* / f_min - a[k] * l[k], j_min = 0, a[k] > 0
* |
* | f_min - a[k] * u[k], j_min = 0, a[k] < 0
* min sum a[j] * x[j] = {
* j!=k | f_min, j_min = k
* |
* \ -inf, j_min != 0
*
* Since
*
* ilb(a[k] * x[k]) <= a[k] * x[k] <= iub(a[k] * x[k])
*
* implied lower and upper bounds of x[k] are determined as follows:
*
* l'[k] := if a[k] > 0 then ilb / a[k] else ulb / a[k] (16)
*
* u'[k] := if a[k] > 0 then ulb / a[k] else ilb / a[k] (17)
*
* The implied bounds are stored in locations ll and uu. */
static void col_implied_bounds(const struct f_info *f, int n,
const double a[], double L, double U, const double l[],
const double u[], int k, double *ll, double *uu)
{ double ilb, iub;
xassert(n >= 0);
xassert(1 <= k && k <= n);
/* determine implied lower bound of term a[k] * x[k] (14) */
if (L == -DBL_MAX || f->f_max == +DBL_MAX)
ilb = -DBL_MAX;
else if (f->j_max == 0)
{ if (a[k] > 0.0)
{ xassert(u[k] != +DBL_MAX);
ilb = L - (f->f_max - a[k] * u[k]);
}
else if (a[k] < 0.0)
{ xassert(l[k] != -DBL_MAX);
ilb = L - (f->f_max - a[k] * l[k]);
}
else
xassert(a != a);
}
else if (f->j_max == k)
ilb = L - f->f_max;
else
ilb = -DBL_MAX;
/* determine implied upper bound of term a[k] * x[k] (15) */
if (U == +DBL_MAX || f->f_min == -DBL_MAX)
iub = +DBL_MAX;
else if (f->j_min == 0)
{ if (a[k] > 0.0)
{ xassert(l[k] != -DBL_MAX);
iub = U - (f->f_min - a[k] * l[k]);
}
else if (a[k] < 0.0)
{ xassert(u[k] != +DBL_MAX);
iub = U - (f->f_min - a[k] * u[k]);
}
else
xassert(a != a);
}
else if (f->j_min == k)
iub = U - f->f_min;
else
iub = +DBL_MAX;
/* determine implied bounds of x[k] (16) and (17) */
#if 1
/* do not use a[k] if it has small magnitude to prevent wrong
implied bounds; for example, 1e-15 * x1 >= x2 + x3, where
x1 >= -10, x2, x3 >= 0, would lead to wrong conclusion that
x1 >= 0 */
if (fabs(a[k]) < 1e-6)
*ll = -DBL_MAX, *uu = +DBL_MAX; else
#endif
if (a[k] > 0.0)
{ *ll = (ilb == -DBL_MAX ? -DBL_MAX : ilb / a[k]);
*uu = (iub == +DBL_MAX ? +DBL_MAX : iub / a[k]);
}
else if (a[k] < 0.0)
{ *ll = (iub == +DBL_MAX ? -DBL_MAX : iub / a[k]);
*uu = (ilb == -DBL_MAX ? +DBL_MAX : ilb / a[k]);
}
else
xassert(a != a);
return;
}
/***********************************************************************
* check_row_bounds - check and relax original row bounds
*
* Given a row (constraint)
*
* n
* L <= sum a[j] * x[j] <= U
* j=1
*
* and bounds of columns (variables)
*
* l[j] <= x[j] <= u[j]
*
* this routine checks the original row bounds L and U for feasibility
* and redundancy. If the original lower bound L or/and upper bound U
* cannot be active due to bounds of variables, the routine remove them
* replacing by -inf or/and +inf, respectively.
*
* If no primal infeasibility is detected, the routine returns zero,
* otherwise non-zero. */
static int check_row_bounds(const struct f_info *f, double *L_,
double *U_)
{ int ret = 0;
double L = *L_, U = *U_, LL, UU;
/* determine implied bounds of the row */
row_implied_bounds(f, &LL, &UU);
/* check if the original lower bound is infeasible */
if (L != -DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(L));
if (UU < L - eps)
{ ret = 1;
goto done;
}
}
/* check if the original upper bound is infeasible */
if (U != +DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(U));
if (LL > U + eps)
{ ret = 1;
goto done;
}
}
/* check if the original lower bound is redundant */
if (L != -DBL_MAX)
{ double eps = 1e-12 * (1.0 + fabs(L));
if (LL > L - eps)
{ /* it cannot be active, so remove it */
*L_ = -DBL_MAX;
}
}
/* check if the original upper bound is redundant */
if (U != +DBL_MAX)
{ double eps = 1e-12 * (1.0 + fabs(U));
if (UU < U + eps)
{ /* it cannot be active, so remove it */
*U_ = +DBL_MAX;
}
}
done: return ret;
}
/***********************************************************************
* check_col_bounds - check and tighten original column bounds
*
* Given a row (constraint)
*
* n
* L <= sum a[j] * x[j] <= U
* j=1
*
* and bounds of columns (variables)
*
* l[j] <= x[j] <= u[j]
*
* for column (variable) x[j] this routine checks the original column
* bounds l[j] and u[j] for feasibility and redundancy. If the original
* lower bound l[j] or/and upper bound u[j] cannot be active due to
* bounds of the constraint and other variables, the routine tighten
* them replacing by corresponding implied bounds, if possible.
*
* NOTE: It is assumed that if L != -inf, the row lower bound can be
* active, and if U != +inf, the row upper bound can be active.
*
* The flag means that variable x[j] is required to be integer.
*
* New actual bounds for x[j] are stored in locations lj and uj.
*
* If no primal infeasibility is detected, the routine returns zero,
* otherwise non-zero. */
static int check_col_bounds(const struct f_info *f, int n,
const double a[], double L, double U, const double l[],
const double u[], int flag, int j, double *_lj, double *_uj)
{ int ret = 0;
double lj, uj, ll, uu;
xassert(n >= 0);
xassert(1 <= j && j <= n);
lj = l[j], uj = u[j];
/* determine implied bounds of the column */
col_implied_bounds(f, n, a, L, U, l, u, j, &ll, &uu);
/* if x[j] is integral, round its implied bounds */
if (flag)
{ if (ll != -DBL_MAX)
ll = (ll - floor(ll) < 1e-3 ? floor(ll) : ceil(ll));
if (uu != +DBL_MAX)
uu = (ceil(uu) - uu < 1e-3 ? ceil(uu) : floor(uu));
}
/* check if the original lower bound is infeasible */
if (lj != -DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(lj));
if (uu < lj - eps)
{ ret = 1;
goto done;
}
}
/* check if the original upper bound is infeasible */
if (uj != +DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(uj));
if (ll > uj + eps)
{ ret = 1;
goto done;
}
}
/* check if the original lower bound is redundant */
if (ll != -DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(ll));
if (lj < ll - eps)
{ /* it cannot be active, so tighten it */
lj = ll;
}
}
/* check if the original upper bound is redundant */
if (uu != +DBL_MAX)
{ double eps = 1e-3 * (1.0 + fabs(uu));
if (uj > uu + eps)
{ /* it cannot be active, so tighten it */
uj = uu;
}
}
/* due to round-off errors it may happen that lj > uj (although
lj < uj + eps, since no primal infeasibility is detected), so
adjuct the new actual bounds to provide lj <= uj */
if (!(lj == -DBL_MAX || uj == +DBL_MAX))
{ double t1 = fabs(lj), t2 = fabs(uj);
double eps = 1e-10 * (1.0 + (t1 <= t2 ? t1 : t2));
if (lj > uj - eps)
{ if (lj == l[j])
uj = lj;
else if (uj == u[j])
lj = uj;
else if (t1 <= t2)
uj = lj;
else
lj = uj;
}
}
*_lj = lj, *_uj = uj;
done: return ret;
}
/***********************************************************************
* check_efficiency - check if change in column bounds is efficient
*
* Given the original bounds of a column l and u and its new actual
* bounds l' and u' (possibly tighten by the routine check_col_bounds)
* this routine checks if the change in the column bounds is efficient
* enough. If so, the routine returns non-zero, otherwise zero.
*
* The flag means that the variable is required to be integer. */
static int check_efficiency(int flag, double l, double u, double ll,
double uu)
{ int eff = 0;
/* check efficiency for lower bound */
if (l < ll)
{ if (flag || l == -DBL_MAX)
eff++;
else
{ double r;
if (u == +DBL_MAX)
r = 1.0 + fabs(l);
else
r = 1.0 + (u - l);
if (ll - l >= 0.25 * r)
eff++;
}
}
/* check efficiency for upper bound */
if (u > uu)
{ if (flag || u == +DBL_MAX)
eff++;
else
{ double r;
if (l == -DBL_MAX)
r = 1.0 + fabs(u);
else
r = 1.0 + (u - l);
if (u - uu >= 0.25 * r)
eff++;
}
}
return eff;
}
/***********************************************************************
* basic_preprocessing - perform basic preprocessing
*
* This routine performs basic preprocessing of the specified MIP that
* includes relaxing some row bounds and tightening some column bounds.
*
* On entry the arrays L and U contains original row bounds, and the
* arrays l and u contains original column bounds:
*
* L[0] is the lower bound of the objective row;
* L[i], i = 1,...,m, is the lower bound of i-th row;
* U[0] is the upper bound of the objective row;
* U[i], i = 1,...,m, is the upper bound of i-th row;
* l[0] is not used;
* l[j], j = 1,...,n, is the lower bound of j-th column;
* u[0] is not used;
* u[j], j = 1,...,n, is the upper bound of j-th column.
*
* On exit the arrays L, U, l, and u contain new actual bounds of rows
* and column in the same locations.
*
* The parameters nrs and num specify an initial list of rows to be
* processed:
*
* nrs is the number of rows in the initial list, 0 <= nrs <= m+1;
* num[0] is not used;
* num[1,...,nrs] are row numbers (0 means the objective row).
*
* The parameter max_pass specifies the maximal number of times that
* each row can be processed, max_pass > 0.
*
* If no primal infeasibility is detected, the routine returns zero,
* otherwise non-zero. */
static int basic_preprocessing(glp_prob *mip, double L[], double U[],
double l[], double u[], int nrs, const int num[], int max_pass)
{ int m = mip->m;
int n = mip->n;
struct f_info f;
int i, j, k, len, size, ret = 0;
int *ind, *list, *mark, *pass;
double *val, *lb, *ub;
xassert(0 <= nrs && nrs <= m+1);
xassert(max_pass > 0);
/* allocate working arrays */
ind = xcalloc(1+n, sizeof(int));
list = xcalloc(1+m+1, sizeof(int));
mark = xcalloc(1+m+1, sizeof(int));
memset(&mark[0], 0, (m+1) * sizeof(int));
pass = xcalloc(1+m+1, sizeof(int));
memset(&pass[0], 0, (m+1) * sizeof(int));
val = xcalloc(1+n, sizeof(double));
lb = xcalloc(1+n, sizeof(double));
ub = xcalloc(1+n, sizeof(double));
/* initialize the list of rows to be processed */
size = 0;
for (k = 1; k <= nrs; k++)
{ i = num[k];
xassert(0 <= i && i <= m);
/* duplicate row numbers are not allowed */
xassert(!mark[i]);
list[++size] = i, mark[i] = 1;
}
xassert(size == nrs);
/* process rows in the list until it becomes empty */
while (size > 0)
{ /* get a next row from the list */
i = list[size--], mark[i] = 0;
/* increase the row processing count */
pass[i]++;
/* if the row is free, skip it */
if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
/* obtain coefficients of the row */
len = 0;
if (i == 0)
{ for (j = 1; j <= n; j++)
{ GLPCOL *col = mip->col[j];
if (col->coef != 0.0)
len++, ind[len] = j, val[len] = col->coef;
}
}
else
{ GLPROW *row = mip->row[i];
GLPAIJ *aij;
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
len++, ind[len] = aij->col->j, val[len] = aij->val;
}
/* determine lower and upper bounds of columns corresponding
to non-zero row coefficients */
for (k = 1; k <= len; k++)
j = ind[k], lb[k] = l[j], ub[k] = u[j];
/* prepare the row info to determine implied bounds */
prepare_row_info(len, val, lb, ub, &f);
/* check and relax bounds of the row */
if (check_row_bounds(&f, &L[i], &U[i]))
{ /* the feasible region is empty */
ret = 1;
goto done;
}
/* if the row became free, drop it */
if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
/* process columns having non-zero coefficients in the row */
for (k = 1; k <= len; k++)
{ GLPCOL *col;
int flag, eff;
double ll, uu;
/* take a next column in the row */
j = ind[k], col = mip->col[j];
flag = col->kind != GLP_CV;
/* check and tighten bounds of the column */
if (check_col_bounds(&f, len, val, L[i], U[i], lb, ub,
flag, k, &ll, &uu))
{ /* the feasible region is empty */
ret = 1;
goto done;
}
/* check if change in the column bounds is efficient */
eff = check_efficiency(flag, l[j], u[j], ll, uu);
/* set new actual bounds of the column */
l[j] = ll, u[j] = uu;
/* if the change is efficient, add all rows affected by the
corresponding column, to the list */
if (eff > 0)
{ GLPAIJ *aij;
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
{ int ii = aij->row->i;
/* if the row was processed maximal number of times,
skip it */
if (pass[ii] >= max_pass) continue;
/* if the row is free, skip it */
if (L[ii] == -DBL_MAX && U[ii] == +DBL_MAX) continue;
/* put the row into the list */
if (mark[ii] == 0)
{ xassert(size <= m);
list[++size] = ii, mark[ii] = 1;
}
}
}
}
}
done: /* free working arrays */
xfree(ind);
xfree(list);
xfree(mark);
xfree(pass);
xfree(val);
xfree(lb);
xfree(ub);
return ret;
}
/***********************************************************************
* NAME
*
* ios_preprocess_node - preprocess current subproblem
*
* SYNOPSIS
*
* #include "glpios.h"
* int ios_preprocess_node(glp_tree *tree, int max_pass);
*
* DESCRIPTION
*
* The routine ios_preprocess_node performs basic preprocessing of the
* current subproblem.
*
* RETURNS
*
* If no primal infeasibility is detected, the routine returns zero,
* otherwise non-zero. */
int ios_preprocess_node(glp_tree *tree, int max_pass)
{ glp_prob *mip = tree->mip;
int m = mip->m;
int n = mip->n;
int i, j, nrs, *num, ret = 0;
double *L, *U, *l, *u;
/* the current subproblem must exist */
xassert(tree->curr != NULL);
/* determine original row bounds */
L = xcalloc(1+m, sizeof(double));
U = xcalloc(1+m, sizeof(double));
switch (mip->mip_stat)
{ case GLP_UNDEF:
L[0] = -DBL_MAX, U[0] = +DBL_MAX;
break;
case GLP_FEAS:
switch (mip->dir)
{ case GLP_MIN:
L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0;
break;
case GLP_MAX:
L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX;
break;
default:
xassert(mip != mip);
}
break;
default:
xassert(mip != mip);
}
for (i = 1; i <= m; i++)
{ L[i] = glp_get_row_lb(mip, i);
U[i] = glp_get_row_ub(mip, i);
}
/* determine original column bounds */
l = xcalloc(1+n, sizeof(double));
u = xcalloc(1+n, sizeof(double));
for (j = 1; j <= n; j++)
{ l[j] = glp_get_col_lb(mip, j);
u[j] = glp_get_col_ub(mip, j);
}
/* build the initial list of rows to be analyzed */
nrs = m + 1;
num = xcalloc(1+nrs, sizeof(int));
for (i = 1; i <= nrs; i++) num[i] = i - 1;
/* perform basic preprocessing */
if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass))
{ ret = 1;
goto done;
}
/* set new actual (relaxed) row bounds */
for (i = 1; i <= m; i++)
{ /* consider only non-active rows to keep dual feasibility */
if (glp_get_row_stat(mip, i) == GLP_BS)
{ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX)
glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0);
else if (U[i] == +DBL_MAX)
glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0);
else if (L[i] == -DBL_MAX)
glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]);
}
}
/* set new actual (tightened) column bounds */
for (j = 1; j <= n; j++)
{ int type;
if (l[j] == -DBL_MAX && u[j] == +DBL_MAX)
type = GLP_FR;
else if (u[j] == +DBL_MAX)
type = GLP_LO;
else if (l[j] == -DBL_MAX)
type = GLP_UP;
else if (l[j] != u[j])
type = GLP_DB;
else
type = GLP_FX;
glp_set_col_bnds(mip, j, type, l[j], u[j]);
}
done: /* free working arrays and return */
xfree(L);
xfree(U);
xfree(l);
xfree(u);
xfree(num);
return ret;
}
/* eof */