You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
826 lines
26 KiB
826 lines
26 KiB
/* glpios02.c (preprocess current subproblem) */
|
|
|
|
/***********************************************************************
|
|
* This code is part of GLPK (GNU Linear Programming Kit).
|
|
*
|
|
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
|
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
|
|
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
|
|
* reserved. E-mail: <mao@gnu.org>.
|
|
*
|
|
* GLPK is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
|
***********************************************************************/
|
|
|
|
#include "env.h"
|
|
#include "glpios.h"
|
|
|
|
/***********************************************************************
|
|
* prepare_row_info - prepare row info to determine implied bounds
|
|
*
|
|
* Given a row (linear form)
|
|
*
|
|
* n
|
|
* sum a[j] * x[j] (1)
|
|
* j=1
|
|
*
|
|
* and bounds of columns (variables)
|
|
*
|
|
* l[j] <= x[j] <= u[j] (2)
|
|
*
|
|
* this routine computes f_min, j_min, f_max, j_max needed to determine
|
|
* implied bounds.
|
|
*
|
|
* ALGORITHM
|
|
*
|
|
* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
|
|
*
|
|
* Parameters f_min and j_min are computed as follows:
|
|
*
|
|
* 1) if there is no x[k] such that k in J+ and l[k] = -inf or k in J-
|
|
* and u[k] = +inf, then
|
|
*
|
|
* f_min := sum a[j] * l[j] + sum a[j] * u[j]
|
|
* j in J+ j in J-
|
|
* (3)
|
|
* j_min := 0
|
|
*
|
|
* 2) if there is exactly one x[k] such that k in J+ and l[k] = -inf
|
|
* or k in J- and u[k] = +inf, then
|
|
*
|
|
* f_min := sum a[j] * l[j] + sum a[j] * u[j]
|
|
* j in J+\{k} j in J-\{k}
|
|
* (4)
|
|
* j_min := k
|
|
*
|
|
* 3) if there are two or more x[k] such that k in J+ and l[k] = -inf
|
|
* or k in J- and u[k] = +inf, then
|
|
*
|
|
* f_min := -inf
|
|
* (5)
|
|
* j_min := 0
|
|
*
|
|
* Parameters f_max and j_max are computed in a similar way as follows:
|
|
*
|
|
* 1) if there is no x[k] such that k in J+ and u[k] = +inf or k in J-
|
|
* and l[k] = -inf, then
|
|
*
|
|
* f_max := sum a[j] * u[j] + sum a[j] * l[j]
|
|
* j in J+ j in J-
|
|
* (6)
|
|
* j_max := 0
|
|
*
|
|
* 2) if there is exactly one x[k] such that k in J+ and u[k] = +inf
|
|
* or k in J- and l[k] = -inf, then
|
|
*
|
|
* f_max := sum a[j] * u[j] + sum a[j] * l[j]
|
|
* j in J+\{k} j in J-\{k}
|
|
* (7)
|
|
* j_max := k
|
|
*
|
|
* 3) if there are two or more x[k] such that k in J+ and u[k] = +inf
|
|
* or k in J- and l[k] = -inf, then
|
|
*
|
|
* f_max := +inf
|
|
* (8)
|
|
* j_max := 0 */
|
|
|
|
struct f_info
|
|
{ int j_min, j_max;
|
|
double f_min, f_max;
|
|
};
|
|
|
|
static void prepare_row_info(int n, const double a[], const double l[],
|
|
const double u[], struct f_info *f)
|
|
{ int j, j_min, j_max;
|
|
double f_min, f_max;
|
|
xassert(n >= 0);
|
|
/* determine f_min and j_min */
|
|
f_min = 0.0, j_min = 0;
|
|
for (j = 1; j <= n; j++)
|
|
{ if (a[j] > 0.0)
|
|
{ if (l[j] == -DBL_MAX)
|
|
{ if (j_min == 0)
|
|
j_min = j;
|
|
else
|
|
{ f_min = -DBL_MAX, j_min = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
f_min += a[j] * l[j];
|
|
}
|
|
else if (a[j] < 0.0)
|
|
{ if (u[j] == +DBL_MAX)
|
|
{ if (j_min == 0)
|
|
j_min = j;
|
|
else
|
|
{ f_min = -DBL_MAX, j_min = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
f_min += a[j] * u[j];
|
|
}
|
|
else
|
|
xassert(a != a);
|
|
}
|
|
f->f_min = f_min, f->j_min = j_min;
|
|
/* determine f_max and j_max */
|
|
f_max = 0.0, j_max = 0;
|
|
for (j = 1; j <= n; j++)
|
|
{ if (a[j] > 0.0)
|
|
{ if (u[j] == +DBL_MAX)
|
|
{ if (j_max == 0)
|
|
j_max = j;
|
|
else
|
|
{ f_max = +DBL_MAX, j_max = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
f_max += a[j] * u[j];
|
|
}
|
|
else if (a[j] < 0.0)
|
|
{ if (l[j] == -DBL_MAX)
|
|
{ if (j_max == 0)
|
|
j_max = j;
|
|
else
|
|
{ f_max = +DBL_MAX, j_max = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
f_max += a[j] * l[j];
|
|
}
|
|
else
|
|
xassert(a != a);
|
|
}
|
|
f->f_max = f_max, f->j_max = j_max;
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* row_implied_bounds - determine row implied bounds
|
|
*
|
|
* Given a row (linear form)
|
|
*
|
|
* n
|
|
* sum a[j] * x[j]
|
|
* j=1
|
|
*
|
|
* and bounds of columns (variables)
|
|
*
|
|
* l[j] <= x[j] <= u[j]
|
|
*
|
|
* this routine determines implied bounds of the row.
|
|
*
|
|
* ALGORITHM
|
|
*
|
|
* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
|
|
*
|
|
* The implied lower bound of the row is computed as follows:
|
|
*
|
|
* L' := sum a[j] * l[j] + sum a[j] * u[j] (9)
|
|
* j in J+ j in J-
|
|
*
|
|
* and as it follows from (3), (4), and (5):
|
|
*
|
|
* L' := if j_min = 0 then f_min else -inf (10)
|
|
*
|
|
* The implied upper bound of the row is computed as follows:
|
|
*
|
|
* U' := sum a[j] * u[j] + sum a[j] * l[j] (11)
|
|
* j in J+ j in J-
|
|
*
|
|
* and as it follows from (6), (7), and (8):
|
|
*
|
|
* U' := if j_max = 0 then f_max else +inf (12)
|
|
*
|
|
* The implied bounds are stored in locations LL and UU. */
|
|
|
|
static void row_implied_bounds(const struct f_info *f, double *LL,
|
|
double *UU)
|
|
{ *LL = (f->j_min == 0 ? f->f_min : -DBL_MAX);
|
|
*UU = (f->j_max == 0 ? f->f_max : +DBL_MAX);
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* col_implied_bounds - determine column implied bounds
|
|
*
|
|
* Given a row (constraint)
|
|
*
|
|
* n
|
|
* L <= sum a[j] * x[j] <= U (13)
|
|
* j=1
|
|
*
|
|
* and bounds of columns (variables)
|
|
*
|
|
* l[j] <= x[j] <= u[j]
|
|
*
|
|
* this routine determines implied bounds of variable x[k].
|
|
*
|
|
* It is assumed that if L != -inf, the lower bound of the row can be
|
|
* active, and if U != +inf, the upper bound of the row can be active.
|
|
*
|
|
* ALGORITHM
|
|
*
|
|
* From (13) it follows that
|
|
*
|
|
* L <= sum a[j] * x[j] + a[k] * x[k] <= U
|
|
* j!=k
|
|
* or
|
|
*
|
|
* L - sum a[j] * x[j] <= a[k] * x[k] <= U - sum a[j] * x[j]
|
|
* j!=k j!=k
|
|
*
|
|
* Thus, if the row lower bound L can be active, implied lower bound of
|
|
* term a[k] * x[k] can be determined as follows:
|
|
*
|
|
* ilb(a[k] * x[k]) = min(L - sum a[j] * x[j]) =
|
|
* j!=k
|
|
* (14)
|
|
* = L - max sum a[j] * x[j]
|
|
* j!=k
|
|
*
|
|
* where, as it follows from (6), (7), and (8)
|
|
*
|
|
* / f_max - a[k] * u[k], j_max = 0, a[k] > 0
|
|
* |
|
|
* | f_max - a[k] * l[k], j_max = 0, a[k] < 0
|
|
* max sum a[j] * x[j] = {
|
|
* j!=k | f_max, j_max = k
|
|
* |
|
|
* \ +inf, j_max != 0
|
|
*
|
|
* and if the upper bound U can be active, implied upper bound of term
|
|
* a[k] * x[k] can be determined as follows:
|
|
*
|
|
* iub(a[k] * x[k]) = max(U - sum a[j] * x[j]) =
|
|
* j!=k
|
|
* (15)
|
|
* = U - min sum a[j] * x[j]
|
|
* j!=k
|
|
*
|
|
* where, as it follows from (3), (4), and (5)
|
|
*
|
|
* / f_min - a[k] * l[k], j_min = 0, a[k] > 0
|
|
* |
|
|
* | f_min - a[k] * u[k], j_min = 0, a[k] < 0
|
|
* min sum a[j] * x[j] = {
|
|
* j!=k | f_min, j_min = k
|
|
* |
|
|
* \ -inf, j_min != 0
|
|
*
|
|
* Since
|
|
*
|
|
* ilb(a[k] * x[k]) <= a[k] * x[k] <= iub(a[k] * x[k])
|
|
*
|
|
* implied lower and upper bounds of x[k] are determined as follows:
|
|
*
|
|
* l'[k] := if a[k] > 0 then ilb / a[k] else ulb / a[k] (16)
|
|
*
|
|
* u'[k] := if a[k] > 0 then ulb / a[k] else ilb / a[k] (17)
|
|
*
|
|
* The implied bounds are stored in locations ll and uu. */
|
|
|
|
static void col_implied_bounds(const struct f_info *f, int n,
|
|
const double a[], double L, double U, const double l[],
|
|
const double u[], int k, double *ll, double *uu)
|
|
{ double ilb, iub;
|
|
xassert(n >= 0);
|
|
xassert(1 <= k && k <= n);
|
|
/* determine implied lower bound of term a[k] * x[k] (14) */
|
|
if (L == -DBL_MAX || f->f_max == +DBL_MAX)
|
|
ilb = -DBL_MAX;
|
|
else if (f->j_max == 0)
|
|
{ if (a[k] > 0.0)
|
|
{ xassert(u[k] != +DBL_MAX);
|
|
ilb = L - (f->f_max - a[k] * u[k]);
|
|
}
|
|
else if (a[k] < 0.0)
|
|
{ xassert(l[k] != -DBL_MAX);
|
|
ilb = L - (f->f_max - a[k] * l[k]);
|
|
}
|
|
else
|
|
xassert(a != a);
|
|
}
|
|
else if (f->j_max == k)
|
|
ilb = L - f->f_max;
|
|
else
|
|
ilb = -DBL_MAX;
|
|
/* determine implied upper bound of term a[k] * x[k] (15) */
|
|
if (U == +DBL_MAX || f->f_min == -DBL_MAX)
|
|
iub = +DBL_MAX;
|
|
else if (f->j_min == 0)
|
|
{ if (a[k] > 0.0)
|
|
{ xassert(l[k] != -DBL_MAX);
|
|
iub = U - (f->f_min - a[k] * l[k]);
|
|
}
|
|
else if (a[k] < 0.0)
|
|
{ xassert(u[k] != +DBL_MAX);
|
|
iub = U - (f->f_min - a[k] * u[k]);
|
|
}
|
|
else
|
|
xassert(a != a);
|
|
}
|
|
else if (f->j_min == k)
|
|
iub = U - f->f_min;
|
|
else
|
|
iub = +DBL_MAX;
|
|
/* determine implied bounds of x[k] (16) and (17) */
|
|
#if 1
|
|
/* do not use a[k] if it has small magnitude to prevent wrong
|
|
implied bounds; for example, 1e-15 * x1 >= x2 + x3, where
|
|
x1 >= -10, x2, x3 >= 0, would lead to wrong conclusion that
|
|
x1 >= 0 */
|
|
if (fabs(a[k]) < 1e-6)
|
|
*ll = -DBL_MAX, *uu = +DBL_MAX; else
|
|
#endif
|
|
if (a[k] > 0.0)
|
|
{ *ll = (ilb == -DBL_MAX ? -DBL_MAX : ilb / a[k]);
|
|
*uu = (iub == +DBL_MAX ? +DBL_MAX : iub / a[k]);
|
|
}
|
|
else if (a[k] < 0.0)
|
|
{ *ll = (iub == +DBL_MAX ? -DBL_MAX : iub / a[k]);
|
|
*uu = (ilb == -DBL_MAX ? +DBL_MAX : ilb / a[k]);
|
|
}
|
|
else
|
|
xassert(a != a);
|
|
return;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* check_row_bounds - check and relax original row bounds
|
|
*
|
|
* Given a row (constraint)
|
|
*
|
|
* n
|
|
* L <= sum a[j] * x[j] <= U
|
|
* j=1
|
|
*
|
|
* and bounds of columns (variables)
|
|
*
|
|
* l[j] <= x[j] <= u[j]
|
|
*
|
|
* this routine checks the original row bounds L and U for feasibility
|
|
* and redundancy. If the original lower bound L or/and upper bound U
|
|
* cannot be active due to bounds of variables, the routine remove them
|
|
* replacing by -inf or/and +inf, respectively.
|
|
*
|
|
* If no primal infeasibility is detected, the routine returns zero,
|
|
* otherwise non-zero. */
|
|
|
|
static int check_row_bounds(const struct f_info *f, double *L_,
|
|
double *U_)
|
|
{ int ret = 0;
|
|
double L = *L_, U = *U_, LL, UU;
|
|
/* determine implied bounds of the row */
|
|
row_implied_bounds(f, &LL, &UU);
|
|
/* check if the original lower bound is infeasible */
|
|
if (L != -DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(L));
|
|
if (UU < L - eps)
|
|
{ ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
/* check if the original upper bound is infeasible */
|
|
if (U != +DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(U));
|
|
if (LL > U + eps)
|
|
{ ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
/* check if the original lower bound is redundant */
|
|
if (L != -DBL_MAX)
|
|
{ double eps = 1e-12 * (1.0 + fabs(L));
|
|
if (LL > L - eps)
|
|
{ /* it cannot be active, so remove it */
|
|
*L_ = -DBL_MAX;
|
|
}
|
|
}
|
|
/* check if the original upper bound is redundant */
|
|
if (U != +DBL_MAX)
|
|
{ double eps = 1e-12 * (1.0 + fabs(U));
|
|
if (UU < U + eps)
|
|
{ /* it cannot be active, so remove it */
|
|
*U_ = +DBL_MAX;
|
|
}
|
|
}
|
|
done: return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* check_col_bounds - check and tighten original column bounds
|
|
*
|
|
* Given a row (constraint)
|
|
*
|
|
* n
|
|
* L <= sum a[j] * x[j] <= U
|
|
* j=1
|
|
*
|
|
* and bounds of columns (variables)
|
|
*
|
|
* l[j] <= x[j] <= u[j]
|
|
*
|
|
* for column (variable) x[j] this routine checks the original column
|
|
* bounds l[j] and u[j] for feasibility and redundancy. If the original
|
|
* lower bound l[j] or/and upper bound u[j] cannot be active due to
|
|
* bounds of the constraint and other variables, the routine tighten
|
|
* them replacing by corresponding implied bounds, if possible.
|
|
*
|
|
* NOTE: It is assumed that if L != -inf, the row lower bound can be
|
|
* active, and if U != +inf, the row upper bound can be active.
|
|
*
|
|
* The flag means that variable x[j] is required to be integer.
|
|
*
|
|
* New actual bounds for x[j] are stored in locations lj and uj.
|
|
*
|
|
* If no primal infeasibility is detected, the routine returns zero,
|
|
* otherwise non-zero. */
|
|
|
|
static int check_col_bounds(const struct f_info *f, int n,
|
|
const double a[], double L, double U, const double l[],
|
|
const double u[], int flag, int j, double *_lj, double *_uj)
|
|
{ int ret = 0;
|
|
double lj, uj, ll, uu;
|
|
xassert(n >= 0);
|
|
xassert(1 <= j && j <= n);
|
|
lj = l[j], uj = u[j];
|
|
/* determine implied bounds of the column */
|
|
col_implied_bounds(f, n, a, L, U, l, u, j, &ll, &uu);
|
|
/* if x[j] is integral, round its implied bounds */
|
|
if (flag)
|
|
{ if (ll != -DBL_MAX)
|
|
ll = (ll - floor(ll) < 1e-3 ? floor(ll) : ceil(ll));
|
|
if (uu != +DBL_MAX)
|
|
uu = (ceil(uu) - uu < 1e-3 ? ceil(uu) : floor(uu));
|
|
}
|
|
/* check if the original lower bound is infeasible */
|
|
if (lj != -DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(lj));
|
|
if (uu < lj - eps)
|
|
{ ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
/* check if the original upper bound is infeasible */
|
|
if (uj != +DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(uj));
|
|
if (ll > uj + eps)
|
|
{ ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
/* check if the original lower bound is redundant */
|
|
if (ll != -DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(ll));
|
|
if (lj < ll - eps)
|
|
{ /* it cannot be active, so tighten it */
|
|
lj = ll;
|
|
}
|
|
}
|
|
/* check if the original upper bound is redundant */
|
|
if (uu != +DBL_MAX)
|
|
{ double eps = 1e-3 * (1.0 + fabs(uu));
|
|
if (uj > uu + eps)
|
|
{ /* it cannot be active, so tighten it */
|
|
uj = uu;
|
|
}
|
|
}
|
|
/* due to round-off errors it may happen that lj > uj (although
|
|
lj < uj + eps, since no primal infeasibility is detected), so
|
|
adjuct the new actual bounds to provide lj <= uj */
|
|
if (!(lj == -DBL_MAX || uj == +DBL_MAX))
|
|
{ double t1 = fabs(lj), t2 = fabs(uj);
|
|
double eps = 1e-10 * (1.0 + (t1 <= t2 ? t1 : t2));
|
|
if (lj > uj - eps)
|
|
{ if (lj == l[j])
|
|
uj = lj;
|
|
else if (uj == u[j])
|
|
lj = uj;
|
|
else if (t1 <= t2)
|
|
uj = lj;
|
|
else
|
|
lj = uj;
|
|
}
|
|
}
|
|
*_lj = lj, *_uj = uj;
|
|
done: return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* check_efficiency - check if change in column bounds is efficient
|
|
*
|
|
* Given the original bounds of a column l and u and its new actual
|
|
* bounds l' and u' (possibly tighten by the routine check_col_bounds)
|
|
* this routine checks if the change in the column bounds is efficient
|
|
* enough. If so, the routine returns non-zero, otherwise zero.
|
|
*
|
|
* The flag means that the variable is required to be integer. */
|
|
|
|
static int check_efficiency(int flag, double l, double u, double ll,
|
|
double uu)
|
|
{ int eff = 0;
|
|
/* check efficiency for lower bound */
|
|
if (l < ll)
|
|
{ if (flag || l == -DBL_MAX)
|
|
eff++;
|
|
else
|
|
{ double r;
|
|
if (u == +DBL_MAX)
|
|
r = 1.0 + fabs(l);
|
|
else
|
|
r = 1.0 + (u - l);
|
|
if (ll - l >= 0.25 * r)
|
|
eff++;
|
|
}
|
|
}
|
|
/* check efficiency for upper bound */
|
|
if (u > uu)
|
|
{ if (flag || u == +DBL_MAX)
|
|
eff++;
|
|
else
|
|
{ double r;
|
|
if (l == -DBL_MAX)
|
|
r = 1.0 + fabs(u);
|
|
else
|
|
r = 1.0 + (u - l);
|
|
if (u - uu >= 0.25 * r)
|
|
eff++;
|
|
}
|
|
}
|
|
return eff;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* basic_preprocessing - perform basic preprocessing
|
|
*
|
|
* This routine performs basic preprocessing of the specified MIP that
|
|
* includes relaxing some row bounds and tightening some column bounds.
|
|
*
|
|
* On entry the arrays L and U contains original row bounds, and the
|
|
* arrays l and u contains original column bounds:
|
|
*
|
|
* L[0] is the lower bound of the objective row;
|
|
* L[i], i = 1,...,m, is the lower bound of i-th row;
|
|
* U[0] is the upper bound of the objective row;
|
|
* U[i], i = 1,...,m, is the upper bound of i-th row;
|
|
* l[0] is not used;
|
|
* l[j], j = 1,...,n, is the lower bound of j-th column;
|
|
* u[0] is not used;
|
|
* u[j], j = 1,...,n, is the upper bound of j-th column.
|
|
*
|
|
* On exit the arrays L, U, l, and u contain new actual bounds of rows
|
|
* and column in the same locations.
|
|
*
|
|
* The parameters nrs and num specify an initial list of rows to be
|
|
* processed:
|
|
*
|
|
* nrs is the number of rows in the initial list, 0 <= nrs <= m+1;
|
|
* num[0] is not used;
|
|
* num[1,...,nrs] are row numbers (0 means the objective row).
|
|
*
|
|
* The parameter max_pass specifies the maximal number of times that
|
|
* each row can be processed, max_pass > 0.
|
|
*
|
|
* If no primal infeasibility is detected, the routine returns zero,
|
|
* otherwise non-zero. */
|
|
|
|
static int basic_preprocessing(glp_prob *mip, double L[], double U[],
|
|
double l[], double u[], int nrs, const int num[], int max_pass)
|
|
{ int m = mip->m;
|
|
int n = mip->n;
|
|
struct f_info f;
|
|
int i, j, k, len, size, ret = 0;
|
|
int *ind, *list, *mark, *pass;
|
|
double *val, *lb, *ub;
|
|
xassert(0 <= nrs && nrs <= m+1);
|
|
xassert(max_pass > 0);
|
|
/* allocate working arrays */
|
|
ind = xcalloc(1+n, sizeof(int));
|
|
list = xcalloc(1+m+1, sizeof(int));
|
|
mark = xcalloc(1+m+1, sizeof(int));
|
|
memset(&mark[0], 0, (m+1) * sizeof(int));
|
|
pass = xcalloc(1+m+1, sizeof(int));
|
|
memset(&pass[0], 0, (m+1) * sizeof(int));
|
|
val = xcalloc(1+n, sizeof(double));
|
|
lb = xcalloc(1+n, sizeof(double));
|
|
ub = xcalloc(1+n, sizeof(double));
|
|
/* initialize the list of rows to be processed */
|
|
size = 0;
|
|
for (k = 1; k <= nrs; k++)
|
|
{ i = num[k];
|
|
xassert(0 <= i && i <= m);
|
|
/* duplicate row numbers are not allowed */
|
|
xassert(!mark[i]);
|
|
list[++size] = i, mark[i] = 1;
|
|
}
|
|
xassert(size == nrs);
|
|
/* process rows in the list until it becomes empty */
|
|
while (size > 0)
|
|
{ /* get a next row from the list */
|
|
i = list[size--], mark[i] = 0;
|
|
/* increase the row processing count */
|
|
pass[i]++;
|
|
/* if the row is free, skip it */
|
|
if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
|
|
/* obtain coefficients of the row */
|
|
len = 0;
|
|
if (i == 0)
|
|
{ for (j = 1; j <= n; j++)
|
|
{ GLPCOL *col = mip->col[j];
|
|
if (col->coef != 0.0)
|
|
len++, ind[len] = j, val[len] = col->coef;
|
|
}
|
|
}
|
|
else
|
|
{ GLPROW *row = mip->row[i];
|
|
GLPAIJ *aij;
|
|
for (aij = row->ptr; aij != NULL; aij = aij->r_next)
|
|
len++, ind[len] = aij->col->j, val[len] = aij->val;
|
|
}
|
|
/* determine lower and upper bounds of columns corresponding
|
|
to non-zero row coefficients */
|
|
for (k = 1; k <= len; k++)
|
|
j = ind[k], lb[k] = l[j], ub[k] = u[j];
|
|
/* prepare the row info to determine implied bounds */
|
|
prepare_row_info(len, val, lb, ub, &f);
|
|
/* check and relax bounds of the row */
|
|
if (check_row_bounds(&f, &L[i], &U[i]))
|
|
{ /* the feasible region is empty */
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
/* if the row became free, drop it */
|
|
if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
|
|
/* process columns having non-zero coefficients in the row */
|
|
for (k = 1; k <= len; k++)
|
|
{ GLPCOL *col;
|
|
int flag, eff;
|
|
double ll, uu;
|
|
/* take a next column in the row */
|
|
j = ind[k], col = mip->col[j];
|
|
flag = col->kind != GLP_CV;
|
|
/* check and tighten bounds of the column */
|
|
if (check_col_bounds(&f, len, val, L[i], U[i], lb, ub,
|
|
flag, k, &ll, &uu))
|
|
{ /* the feasible region is empty */
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
/* check if change in the column bounds is efficient */
|
|
eff = check_efficiency(flag, l[j], u[j], ll, uu);
|
|
/* set new actual bounds of the column */
|
|
l[j] = ll, u[j] = uu;
|
|
/* if the change is efficient, add all rows affected by the
|
|
corresponding column, to the list */
|
|
if (eff > 0)
|
|
{ GLPAIJ *aij;
|
|
for (aij = col->ptr; aij != NULL; aij = aij->c_next)
|
|
{ int ii = aij->row->i;
|
|
/* if the row was processed maximal number of times,
|
|
skip it */
|
|
if (pass[ii] >= max_pass) continue;
|
|
/* if the row is free, skip it */
|
|
if (L[ii] == -DBL_MAX && U[ii] == +DBL_MAX) continue;
|
|
/* put the row into the list */
|
|
if (mark[ii] == 0)
|
|
{ xassert(size <= m);
|
|
list[++size] = ii, mark[ii] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
done: /* free working arrays */
|
|
xfree(ind);
|
|
xfree(list);
|
|
xfree(mark);
|
|
xfree(pass);
|
|
xfree(val);
|
|
xfree(lb);
|
|
xfree(ub);
|
|
return ret;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* NAME
|
|
*
|
|
* ios_preprocess_node - preprocess current subproblem
|
|
*
|
|
* SYNOPSIS
|
|
*
|
|
* #include "glpios.h"
|
|
* int ios_preprocess_node(glp_tree *tree, int max_pass);
|
|
*
|
|
* DESCRIPTION
|
|
*
|
|
* The routine ios_preprocess_node performs basic preprocessing of the
|
|
* current subproblem.
|
|
*
|
|
* RETURNS
|
|
*
|
|
* If no primal infeasibility is detected, the routine returns zero,
|
|
* otherwise non-zero. */
|
|
|
|
int ios_preprocess_node(glp_tree *tree, int max_pass)
|
|
{ glp_prob *mip = tree->mip;
|
|
int m = mip->m;
|
|
int n = mip->n;
|
|
int i, j, nrs, *num, ret = 0;
|
|
double *L, *U, *l, *u;
|
|
/* the current subproblem must exist */
|
|
xassert(tree->curr != NULL);
|
|
/* determine original row bounds */
|
|
L = xcalloc(1+m, sizeof(double));
|
|
U = xcalloc(1+m, sizeof(double));
|
|
switch (mip->mip_stat)
|
|
{ case GLP_UNDEF:
|
|
L[0] = -DBL_MAX, U[0] = +DBL_MAX;
|
|
break;
|
|
case GLP_FEAS:
|
|
switch (mip->dir)
|
|
{ case GLP_MIN:
|
|
L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0;
|
|
break;
|
|
case GLP_MAX:
|
|
L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX;
|
|
break;
|
|
default:
|
|
xassert(mip != mip);
|
|
}
|
|
break;
|
|
default:
|
|
xassert(mip != mip);
|
|
}
|
|
for (i = 1; i <= m; i++)
|
|
{ L[i] = glp_get_row_lb(mip, i);
|
|
U[i] = glp_get_row_ub(mip, i);
|
|
}
|
|
/* determine original column bounds */
|
|
l = xcalloc(1+n, sizeof(double));
|
|
u = xcalloc(1+n, sizeof(double));
|
|
for (j = 1; j <= n; j++)
|
|
{ l[j] = glp_get_col_lb(mip, j);
|
|
u[j] = glp_get_col_ub(mip, j);
|
|
}
|
|
/* build the initial list of rows to be analyzed */
|
|
nrs = m + 1;
|
|
num = xcalloc(1+nrs, sizeof(int));
|
|
for (i = 1; i <= nrs; i++) num[i] = i - 1;
|
|
/* perform basic preprocessing */
|
|
if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass))
|
|
{ ret = 1;
|
|
goto done;
|
|
}
|
|
/* set new actual (relaxed) row bounds */
|
|
for (i = 1; i <= m; i++)
|
|
{ /* consider only non-active rows to keep dual feasibility */
|
|
if (glp_get_row_stat(mip, i) == GLP_BS)
|
|
{ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX)
|
|
glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0);
|
|
else if (U[i] == +DBL_MAX)
|
|
glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0);
|
|
else if (L[i] == -DBL_MAX)
|
|
glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]);
|
|
}
|
|
}
|
|
/* set new actual (tightened) column bounds */
|
|
for (j = 1; j <= n; j++)
|
|
{ int type;
|
|
if (l[j] == -DBL_MAX && u[j] == +DBL_MAX)
|
|
type = GLP_FR;
|
|
else if (u[j] == +DBL_MAX)
|
|
type = GLP_LO;
|
|
else if (l[j] == -DBL_MAX)
|
|
type = GLP_UP;
|
|
else if (l[j] != u[j])
|
|
type = GLP_DB;
|
|
else
|
|
type = GLP_FX;
|
|
glp_set_col_bnds(mip, j, type, l[j], u[j]);
|
|
}
|
|
done: /* free working arrays and return */
|
|
xfree(L);
|
|
xfree(U);
|
|
xfree(l);
|
|
xfree(u);
|
|
xfree(num);
|
|
return ret;
|
|
}
|
|
|
|
/* eof */
|