You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1235 lines
44 KiB

/* glpapi11.c (utility routines) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpsdf.h"
#include "prob.h"
#define xfprintf glp_format
int glp_print_sol(glp_prob *P, const char *fname)
{ /* write basic solution in printable format */
glp_file *fp;
GLPROW *row;
GLPCOL *col;
int i, j, t, ae_ind, re_ind, ret;
double ae_max, re_max;
xprintf("Writing basic solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xfprintf(fp, "%-12s%s\n", "Problem:",
P->name == NULL ? "" : P->name);
xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
xfprintf(fp, "%-12s%d\n", "Columns:", P->n);
xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
t = glp_get_status(P);
xfprintf(fp, "%-12s%s\n", "Status:",
t == GLP_OPT ? "OPTIMAL" :
t == GLP_FEAS ? "FEASIBLE" :
t == GLP_INFEAS ? "INFEASIBLE (INTERMEDIATE)" :
t == GLP_NOFEAS ? "INFEASIBLE (FINAL)" :
t == GLP_UNBND ? "UNBOUNDED" :
t == GLP_UNDEF ? "UNDEFINED" : "???");
xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
P->obj == NULL ? "" : P->obj,
P->obj == NULL ? "" : " = ", P->obj_val,
P->dir == GLP_MIN ? "MINimum" :
P->dir == GLP_MAX ? "MAXimum" : "???");
xfprintf(fp, "\n");
xfprintf(fp, " No. Row name St Activity Lower bound "
" Upper bound Marginal\n");
xfprintf(fp, "------ ------------ -- ------------- ------------- "
"------------- -------------\n");
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
xfprintf(fp, "%6d ", i);
if (row->name == NULL || strlen(row->name) <= 12)
xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
else
xfprintf(fp, "%s\n%20s", row->name, "");
xfprintf(fp, "%s ",
row->stat == GLP_BS ? "B " :
row->stat == GLP_NL ? "NL" :
row->stat == GLP_NU ? "NU" :
row->stat == GLP_NF ? "NF" :
row->stat == GLP_NS ? "NS" : "??");
xfprintf(fp, "%13.6g ",
fabs(row->prim) <= 1e-9 ? 0.0 : row->prim);
if (row->type == GLP_LO || row->type == GLP_DB ||
row->type == GLP_FX)
xfprintf(fp, "%13.6g ", row->lb);
else
xfprintf(fp, "%13s ", "");
if (row->type == GLP_UP || row->type == GLP_DB)
xfprintf(fp, "%13.6g ", row->ub);
else
xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
if (row->stat != GLP_BS)
{ if (fabs(row->dual) <= 1e-9)
xfprintf(fp, "%13s", "< eps");
else
xfprintf(fp, "%13.6g ", row->dual);
}
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, " No. Column name St Activity Lower bound "
" Upper bound Marginal\n");
xfprintf(fp, "------ ------------ -- ------------- ------------- "
"------------- -------------\n");
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
xfprintf(fp, "%6d ", j);
if (col->name == NULL || strlen(col->name) <= 12)
xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
else
xfprintf(fp, "%s\n%20s", col->name, "");
xfprintf(fp, "%s ",
col->stat == GLP_BS ? "B " :
col->stat == GLP_NL ? "NL" :
col->stat == GLP_NU ? "NU" :
col->stat == GLP_NF ? "NF" :
col->stat == GLP_NS ? "NS" : "??");
xfprintf(fp, "%13.6g ",
fabs(col->prim) <= 1e-9 ? 0.0 : col->prim);
if (col->type == GLP_LO || col->type == GLP_DB ||
col->type == GLP_FX)
xfprintf(fp, "%13.6g ", col->lb);
else
xfprintf(fp, "%13s ", "");
if (col->type == GLP_UP || col->type == GLP_DB)
xfprintf(fp, "%13.6g ", col->ub);
else
xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
if (col->stat != GLP_BS)
{ if (fabs(col->dual) <= 1e-9)
xfprintf(fp, "%13s", "< eps");
else
xfprintf(fp, "%13.6g ", col->dual);
}
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
ae_max, ae_ind);
xfprintf(fp, " max.rel.err = %.2e on row %d\n",
re_max, re_ind);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS WRONG");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
ae_max, ae_ind <= P->m ? "row" : "column",
ae_ind <= P->m ? ae_ind : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on %s %d\n",
re_max, re_ind <= P->m ? "row" : "column",
re_ind <= P->m ? re_ind : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS INFEASIBL"
"E");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.DE: max.abs.err = %.2e on column %d\n",
ae_max, ae_ind == 0 ? 0 : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on column %d\n",
re_max, re_ind == 0 ? 0 : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS WRONG");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.DB: max.abs.err = %.2e on %s %d\n",
ae_max, ae_ind <= P->m ? "row" : "column",
ae_ind <= P->m ? ae_ind : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on %s %d\n",
re_max, re_ind <= P->m ? "row" : "column",
re_ind <= P->m ? re_ind : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS INFEASIBLE")
;
xfprintf(fp, "\n");
xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
ret = 0;
done: if (fp != NULL) glp_close(fp);
return ret;
}
/***********************************************************************
* NAME
*
* glp_read_sol - read basic solution from text file
*
* SYNOPSIS
*
* int glp_read_sol(glp_prob *lp, const char *fname);
*
* DESCRIPTION
*
* The routine glp_read_sol reads basic solution from a text file whose
* name is specified by the parameter fname into the problem object.
*
* For the file format see description of the routine glp_write_sol.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero. */
int glp_read_sol(glp_prob *lp, const char *fname)
{ glp_data *data;
jmp_buf jump;
int i, j, k, ret = 0;
xprintf("Reading basic solution from `%s'...\n", fname);
data = glp_sdf_open_file(fname);
if (data == NULL)
{ ret = 1;
goto done;
}
if (setjmp(jump))
{ ret = 1;
goto done;
}
glp_sdf_set_jump(data, jump);
/* number of rows, number of columns */
k = glp_sdf_read_int(data);
if (k != lp->m)
glp_sdf_error(data, "wrong number of rows\n");
k = glp_sdf_read_int(data);
if (k != lp->n)
glp_sdf_error(data, "wrong number of columns\n");
/* primal status, dual status, objective value */
k = glp_sdf_read_int(data);
if (!(k == GLP_UNDEF || k == GLP_FEAS || k == GLP_INFEAS ||
k == GLP_NOFEAS))
glp_sdf_error(data, "invalid primal status\n");
lp->pbs_stat = k;
k = glp_sdf_read_int(data);
if (!(k == GLP_UNDEF || k == GLP_FEAS || k == GLP_INFEAS ||
k == GLP_NOFEAS))
glp_sdf_error(data, "invalid dual status\n");
lp->dbs_stat = k;
lp->obj_val = glp_sdf_read_num(data);
/* rows (auxiliary variables) */
for (i = 1; i <= lp->m; i++)
{ GLPROW *row = lp->row[i];
/* status, primal value, dual value */
k = glp_sdf_read_int(data);
if (!(k == GLP_BS || k == GLP_NL || k == GLP_NU ||
k == GLP_NF || k == GLP_NS))
glp_sdf_error(data, "invalid row status\n");
glp_set_row_stat(lp, i, k);
row->prim = glp_sdf_read_num(data);
row->dual = glp_sdf_read_num(data);
}
/* columns (structural variables) */
for (j = 1; j <= lp->n; j++)
{ GLPCOL *col = lp->col[j];
/* status, primal value, dual value */
k = glp_sdf_read_int(data);
if (!(k == GLP_BS || k == GLP_NL || k == GLP_NU ||
k == GLP_NF || k == GLP_NS))
glp_sdf_error(data, "invalid column status\n");
glp_set_col_stat(lp, j, k);
col->prim = glp_sdf_read_num(data);
col->dual = glp_sdf_read_num(data);
}
xprintf("%d lines were read\n", glp_sdf_line(data));
done: if (ret) lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
if (data != NULL) glp_sdf_close_file(data);
return ret;
}
/***********************************************************************
* NAME
*
* glp_write_sol - write basic solution to text file
*
* SYNOPSIS
*
* int glp_write_sol(glp_prob *lp, const char *fname);
*
* DESCRIPTION
*
* The routine glp_write_sol writes the current basic solution to a
* text file whose name is specified by the parameter fname. This file
* can be read back with the routine glp_read_sol.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero.
*
* FILE FORMAT
*
* The file created by the routine glp_write_sol is a plain text file,
* which contains the following information:
*
* m n
* p_stat d_stat obj_val
* r_stat[1] r_prim[1] r_dual[1]
* . . .
* r_stat[m] r_prim[m] r_dual[m]
* c_stat[1] c_prim[1] c_dual[1]
* . . .
* c_stat[n] c_prim[n] c_dual[n]
*
* where:
* m is the number of rows (auxiliary variables);
* n is the number of columns (structural variables);
* p_stat is the primal status of the basic solution (GLP_UNDEF = 1,
* GLP_FEAS = 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
* d_stat is the dual status of the basic solution (GLP_UNDEF = 1,
* GLP_FEAS = 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
* obj_val is the objective value;
* r_stat[i], i = 1,...,m, is the status of i-th row (GLP_BS = 1,
* GLP_NL = 2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
* r_prim[i], i = 1,...,m, is the primal value of i-th row;
* r_dual[i], i = 1,...,m, is the dual value of i-th row;
* c_stat[j], j = 1,...,n, is the status of j-th column (GLP_BS = 1,
* GLP_NL = 2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
* c_prim[j], j = 1,...,n, is the primal value of j-th column;
* c_dual[j], j = 1,...,n, is the dual value of j-th column. */
int glp_write_sol(glp_prob *lp, const char *fname)
{ glp_file *fp;
int i, j, ret = 0;
xprintf("Writing basic solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
/* number of rows, number of columns */
xfprintf(fp, "%d %d\n", lp->m, lp->n);
/* primal status, dual status, objective value */
xfprintf(fp, "%d %d %.*g\n", lp->pbs_stat, lp->dbs_stat, DBL_DIG,
lp->obj_val);
/* rows (auxiliary variables) */
for (i = 1; i <= lp->m; i++)
{ GLPROW *row = lp->row[i];
/* status, primal value, dual value */
xfprintf(fp, "%d %.*g %.*g\n", row->stat, DBL_DIG, row->prim,
DBL_DIG, row->dual);
}
/* columns (structural variables) */
for (j = 1; j <= lp->n; j++)
{ GLPCOL *col = lp->col[j];
/* status, primal value, dual value */
xfprintf(fp, "%d %.*g %.*g\n", col->stat, DBL_DIG, col->prim,
DBL_DIG, col->dual);
}
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xprintf("%d lines were written\n", 2 + lp->m + lp->n);
done: if (fp != NULL) glp_close(fp);
return ret;
}
/**********************************************************************/
static char *format(char buf[13+1], double x)
{ /* format floating-point number in MPS/360-like style */
if (x == -DBL_MAX)
strcpy(buf, " -Inf");
else if (x == +DBL_MAX)
strcpy(buf, " +Inf");
else if (fabs(x) <= 999999.99998)
{ sprintf(buf, "%13.5f", x);
#if 1
if (strcmp(buf, " 0.00000") == 0 ||
strcmp(buf, " -0.00000") == 0)
strcpy(buf, " . ");
else if (memcmp(buf, " 0.", 8) == 0)
memcpy(buf, " .", 8);
else if (memcmp(buf, " -0.", 8) == 0)
memcpy(buf, " -.", 8);
#endif
}
else
sprintf(buf, "%13.6g", x);
return buf;
}
int glp_print_ranges(glp_prob *P, int len, const int list[],
int flags, const char *fname)
{ /* print sensitivity analysis report */
glp_file *fp = NULL;
GLPROW *row;
GLPCOL *col;
int m, n, pass, k, t, numb, type, stat, var1, var2, count, page,
ret;
double lb, ub, slack, coef, prim, dual, value1, value2, coef1,
coef2, obj1, obj2;
const char *name, *limit;
char buf[13+1];
/* sanity checks */
if (P == NULL || P->magic != GLP_PROB_MAGIC)
xerror("glp_print_ranges: P = %p; invalid problem object\n",
P);
m = P->m, n = P->n;
if (len < 0)
xerror("glp_print_ranges: len = %d; invalid list length\n",
len);
if (len > 0)
{ if (list == NULL)
xerror("glp_print_ranges: list = %p: invalid parameter\n",
list);
for (t = 1; t <= len; t++)
{ k = list[t];
if (!(1 <= k && k <= m+n))
xerror("glp_print_ranges: list[%d] = %d; row/column numb"
"er out of range\n", t, k);
}
}
if (flags != 0)
xerror("glp_print_ranges: flags = %d; invalid parameter\n",
flags);
if (fname == NULL)
xerror("glp_print_ranges: fname = %p; invalid parameter\n",
fname);
if (glp_get_status(P) != GLP_OPT)
{ xprintf("glp_print_ranges: optimal basic solution required\n");
ret = 1;
goto done;
}
if (!glp_bf_exists(P))
{ xprintf("glp_print_ranges: basis factorization required\n");
ret = 2;
goto done;
}
/* start reporting */
xprintf("Write sensitivity analysis report to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 3;
goto done;
}
page = count = 0;
for (pass = 1; pass <= 2; pass++)
for (t = 1; t <= (len == 0 ? m+n : len); t++)
{ if (t == 1) count = 0;
k = (len == 0 ? t : list[t]);
if (pass == 1 && k > m || pass == 2 && k <= m)
continue;
if (count == 0)
{ xfprintf(fp, "GLPK %-4s - SENSITIVITY ANALYSIS REPORT%73sPa"
"ge%4d\n", glp_version(), "", ++page);
xfprintf(fp, "\n");
xfprintf(fp, "%-12s%s\n", "Problem:",
P->name == NULL ? "" : P->name);
xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
P->obj == NULL ? "" : P->obj,
P->obj == NULL ? "" : " = ", P->obj_val,
P->dir == GLP_MIN ? "MINimum" :
P->dir == GLP_MAX ? "MAXimum" : "???");
xfprintf(fp, "\n");
xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s "
"%s\n", "No.", pass == 1 ? "Row name" : "Column name",
"St", "Activity", pass == 1 ? "Slack" : "Obj coef",
"Lower bound", "Activity", "Obj coef", "Obj value at",
"Limiting");
xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s "
"%s\n", "", "", "", "", "Marginal", "Upper bound",
"range", "range", "break point", "variable");
xfprintf(fp, "------ ------------ -- ------------- --------"
"----- ------------- ------------- ------------- ------"
"------- ------------\n");
}
if (pass == 1)
{ numb = k;
xassert(1 <= numb && numb <= m);
row = P->row[numb];
name = row->name;
type = row->type;
lb = glp_get_row_lb(P, numb);
ub = glp_get_row_ub(P, numb);
coef = 0.0;
stat = row->stat;
prim = row->prim;
if (type == GLP_FR)
slack = - prim;
else if (type == GLP_LO)
slack = lb - prim;
else if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
slack = ub - prim;
dual = row->dual;
}
else
{ numb = k - m;
xassert(1 <= numb && numb <= n);
col = P->col[numb];
name = col->name;
lb = glp_get_col_lb(P, numb);
ub = glp_get_col_ub(P, numb);
coef = col->coef;
stat = col->stat;
prim = col->prim;
slack = 0.0;
dual = col->dual;
}
if (stat != GLP_BS)
{ glp_analyze_bound(P, k, &value1, &var1, &value2, &var2);
if (stat == GLP_NF)
coef1 = coef2 = coef;
else if (stat == GLP_NS)
coef1 = -DBL_MAX, coef2 = +DBL_MAX;
else if (stat == GLP_NL && P->dir == GLP_MIN ||
stat == GLP_NU && P->dir == GLP_MAX)
coef1 = coef - dual, coef2 = +DBL_MAX;
else
coef1 = -DBL_MAX, coef2 = coef - dual;
if (value1 == -DBL_MAX)
{ if (dual < -1e-9)
obj1 = +DBL_MAX;
else if (dual > +1e-9)
obj1 = -DBL_MAX;
else
obj1 = P->obj_val;
}
else
obj1 = P->obj_val + dual * (value1 - prim);
if (value2 == +DBL_MAX)
{ if (dual < -1e-9)
obj2 = -DBL_MAX;
else if (dual > +1e-9)
obj2 = +DBL_MAX;
else
obj2 = P->obj_val;
}
else
obj2 = P->obj_val + dual * (value2 - prim);
}
else
{ glp_analyze_coef(P, k, &coef1, &var1, &value1, &coef2,
&var2, &value2);
if (coef1 == -DBL_MAX)
{ if (prim < -1e-9)
obj1 = +DBL_MAX;
else if (prim > +1e-9)
obj1 = -DBL_MAX;
else
obj1 = P->obj_val;
}
else
obj1 = P->obj_val + (coef1 - coef) * prim;
if (coef2 == +DBL_MAX)
{ if (prim < -1e-9)
obj2 = -DBL_MAX;
else if (prim > +1e-9)
obj2 = +DBL_MAX;
else
obj2 = P->obj_val;
}
else
obj2 = P->obj_val + (coef2 - coef) * prim;
}
/*** first line ***/
/* row/column number */
xfprintf(fp, "%6d", numb);
/* row/column name */
xfprintf(fp, " %-12.12s", name == NULL ? "" : name);
if (name != NULL && strlen(name) > 12)
xfprintf(fp, "%s\n%6s %12s", name+12, "", "");
/* row/column status */
xfprintf(fp, " %2s",
stat == GLP_BS ? "BS" : stat == GLP_NL ? "NL" :
stat == GLP_NU ? "NU" : stat == GLP_NF ? "NF" :
stat == GLP_NS ? "NS" : "??");
/* row/column activity */
xfprintf(fp, " %s", format(buf, prim));
/* row slack, column objective coefficient */
xfprintf(fp, " %s", format(buf, k <= m ? slack : coef));
/* row/column lower bound */
xfprintf(fp, " %s", format(buf, lb));
/* row/column activity range */
xfprintf(fp, " %s", format(buf, value1));
/* row/column objective coefficient range */
xfprintf(fp, " %s", format(buf, coef1));
/* objective value at break point */
xfprintf(fp, " %s", format(buf, obj1));
/* limiting variable name */
if (var1 != 0)
{ if (var1 <= m)
limit = glp_get_row_name(P, var1);
else
limit = glp_get_col_name(P, var1 - m);
if (limit != NULL)
xfprintf(fp, " %s", limit);
}
xfprintf(fp, "\n");
/*** second line ***/
xfprintf(fp, "%6s %-12s %2s %13s", "", "", "", "");
/* row/column reduced cost */
xfprintf(fp, " %s", format(buf, dual));
/* row/column upper bound */
xfprintf(fp, " %s", format(buf, ub));
/* row/column activity range */
xfprintf(fp, " %s", format(buf, value2));
/* row/column objective coefficient range */
xfprintf(fp, " %s", format(buf, coef2));
/* objective value at break point */
xfprintf(fp, " %s", format(buf, obj2));
/* limiting variable name */
if (var2 != 0)
{ if (var2 <= m)
limit = glp_get_row_name(P, var2);
else
limit = glp_get_col_name(P, var2 - m);
if (limit != NULL)
xfprintf(fp, " %s", limit);
}
xfprintf(fp, "\n");
xfprintf(fp, "\n");
/* print 10 items per page */
count = (count + 1) % 10;
}
xfprintf(fp, "End of report\n");
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 4;
goto done;
}
ret = 0;
done: if (fp != NULL) glp_close(fp);
return ret;
}
/**********************************************************************/
int glp_print_ipt(glp_prob *P, const char *fname)
{ /* write interior-point solution in printable format */
glp_file *fp;
GLPROW *row;
GLPCOL *col;
int i, j, t, ae_ind, re_ind, ret;
double ae_max, re_max;
xprintf("Writing interior-point solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xfprintf(fp, "%-12s%s\n", "Problem:",
P->name == NULL ? "" : P->name);
xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
xfprintf(fp, "%-12s%d\n", "Columns:", P->n);
xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
t = glp_ipt_status(P);
xfprintf(fp, "%-12s%s\n", "Status:",
t == GLP_OPT ? "OPTIMAL" :
t == GLP_UNDEF ? "UNDEFINED" :
t == GLP_INFEAS ? "INFEASIBLE (INTERMEDIATE)" :
t == GLP_NOFEAS ? "INFEASIBLE (FINAL)" : "???");
xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
P->obj == NULL ? "" : P->obj,
P->obj == NULL ? "" : " = ", P->ipt_obj,
P->dir == GLP_MIN ? "MINimum" :
P->dir == GLP_MAX ? "MAXimum" : "???");
xfprintf(fp, "\n");
xfprintf(fp, " No. Row name Activity Lower bound "
" Upper bound Marginal\n");
xfprintf(fp, "------ ------------ ------------- ------------- "
"------------- -------------\n");
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
xfprintf(fp, "%6d ", i);
if (row->name == NULL || strlen(row->name) <= 12)
xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
else
xfprintf(fp, "%s\n%20s", row->name, "");
xfprintf(fp, "%3s", "");
xfprintf(fp, "%13.6g ",
fabs(row->pval) <= 1e-9 ? 0.0 : row->pval);
if (row->type == GLP_LO || row->type == GLP_DB ||
row->type == GLP_FX)
xfprintf(fp, "%13.6g ", row->lb);
else
xfprintf(fp, "%13s ", "");
if (row->type == GLP_UP || row->type == GLP_DB)
xfprintf(fp, "%13.6g ", row->ub);
else
xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
if (fabs(row->dval) <= 1e-9)
xfprintf(fp, "%13s", "< eps");
else
xfprintf(fp, "%13.6g ", row->dval);
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, " No. Column name Activity Lower bound "
" Upper bound Marginal\n");
xfprintf(fp, "------ ------------ ------------- ------------- "
"------------- -------------\n");
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
xfprintf(fp, "%6d ", j);
if (col->name == NULL || strlen(col->name) <= 12)
xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
else
xfprintf(fp, "%s\n%20s", col->name, "");
xfprintf(fp, "%3s", "");
xfprintf(fp, "%13.6g ",
fabs(col->pval) <= 1e-9 ? 0.0 : col->pval);
if (col->type == GLP_LO || col->type == GLP_DB ||
col->type == GLP_FX)
xfprintf(fp, "%13.6g ", col->lb);
else
xfprintf(fp, "%13s ", "");
if (col->type == GLP_UP || col->type == GLP_DB)
xfprintf(fp, "%13.6g ", col->ub);
else
xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
if (fabs(col->dval) <= 1e-9)
xfprintf(fp, "%13s", "< eps");
else
xfprintf(fp, "%13.6g ", col->dval);
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_IPT, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
ae_max, ae_ind);
xfprintf(fp, " max.rel.err = %.2e on row %d\n",
re_max, re_ind);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS WRONG");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_IPT, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
ae_max, ae_ind <= P->m ? "row" : "column",
ae_ind <= P->m ? ae_ind : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on %s %d\n",
re_max, re_ind <= P->m ? "row" : "column",
re_ind <= P->m ? re_ind : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS INFEASIBL"
"E");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_IPT, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.DE: max.abs.err = %.2e on column %d\n",
ae_max, ae_ind == 0 ? 0 : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on column %d\n",
re_max, re_ind == 0 ? 0 : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS WRONG");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_IPT, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.DB: max.abs.err = %.2e on %s %d\n",
ae_max, ae_ind <= P->m ? "row" : "column",
ae_ind <= P->m ? ae_ind : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on %s %d\n",
re_max, re_ind <= P->m ? "row" : "column",
re_ind <= P->m ? re_ind : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS INFEASIBLE")
;
xfprintf(fp, "\n");
xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
ret = 0;
done: if (fp != NULL) glp_close(fp);
return ret;
}
/***********************************************************************
* NAME
*
* glp_read_ipt - read interior-point solution from text file
*
* SYNOPSIS
*
* int glp_read_ipt(glp_prob *lp, const char *fname);
*
* DESCRIPTION
*
* The routine glp_read_ipt reads interior-point solution from a text
* file whose name is specified by the parameter fname into the problem
* object.
*
* For the file format see description of the routine glp_write_ipt.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero. */
int glp_read_ipt(glp_prob *lp, const char *fname)
{ glp_data *data;
jmp_buf jump;
int i, j, k, ret = 0;
xprintf("Reading interior-point solution from `%s'...\n", fname);
data = glp_sdf_open_file(fname);
if (data == NULL)
{ ret = 1;
goto done;
}
if (setjmp(jump))
{ ret = 1;
goto done;
}
glp_sdf_set_jump(data, jump);
/* number of rows, number of columns */
k = glp_sdf_read_int(data);
if (k != lp->m)
glp_sdf_error(data, "wrong number of rows\n");
k = glp_sdf_read_int(data);
if (k != lp->n)
glp_sdf_error(data, "wrong number of columns\n");
/* solution status, objective value */
k = glp_sdf_read_int(data);
if (!(k == GLP_UNDEF || k == GLP_OPT))
glp_sdf_error(data, "invalid solution status\n");
lp->ipt_stat = k;
lp->ipt_obj = glp_sdf_read_num(data);
/* rows (auxiliary variables) */
for (i = 1; i <= lp->m; i++)
{ GLPROW *row = lp->row[i];
/* primal value, dual value */
row->pval = glp_sdf_read_num(data);
row->dval = glp_sdf_read_num(data);
}
/* columns (structural variables) */
for (j = 1; j <= lp->n; j++)
{ GLPCOL *col = lp->col[j];
/* primal value, dual value */
col->pval = glp_sdf_read_num(data);
col->dval = glp_sdf_read_num(data);
}
xprintf("%d lines were read\n", glp_sdf_line(data));
done: if (ret) lp->ipt_stat = GLP_UNDEF;
if (data != NULL) glp_sdf_close_file(data);
return ret;
}
/***********************************************************************
* NAME
*
* glp_write_ipt - write interior-point solution to text file
*
* SYNOPSIS
*
* int glp_write_ipt(glp_prob *lp, const char *fname);
*
* DESCRIPTION
*
* The routine glp_write_ipt writes the current interior-point solution
* to a text file whose name is specified by the parameter fname. This
* file can be read back with the routine glp_read_ipt.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero.
*
* FILE FORMAT
*
* The file created by the routine glp_write_ipt is a plain text file,
* which contains the following information:
*
* m n
* stat obj_val
* r_prim[1] r_dual[1]
* . . .
* r_prim[m] r_dual[m]
* c_prim[1] c_dual[1]
* . . .
* c_prim[n] c_dual[n]
*
* where:
* m is the number of rows (auxiliary variables);
* n is the number of columns (structural variables);
* stat is the solution status (GLP_UNDEF = 1 or GLP_OPT = 5);
* obj_val is the objective value;
* r_prim[i], i = 1,...,m, is the primal value of i-th row;
* r_dual[i], i = 1,...,m, is the dual value of i-th row;
* c_prim[j], j = 1,...,n, is the primal value of j-th column;
* c_dual[j], j = 1,...,n, is the dual value of j-th column. */
int glp_write_ipt(glp_prob *lp, const char *fname)
{ glp_file *fp;
int i, j, ret = 0;
xprintf("Writing interior-point solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
/* number of rows, number of columns */
xfprintf(fp, "%d %d\n", lp->m, lp->n);
/* solution status, objective value */
xfprintf(fp, "%d %.*g\n", lp->ipt_stat, DBL_DIG, lp->ipt_obj);
/* rows (auxiliary variables) */
for (i = 1; i <= lp->m; i++)
{ GLPROW *row = lp->row[i];
/* primal value, dual value */
xfprintf(fp, "%.*g %.*g\n", DBL_DIG, row->pval, DBL_DIG,
row->dval);
}
/* columns (structural variables) */
for (j = 1; j <= lp->n; j++)
{ GLPCOL *col = lp->col[j];
/* primal value, dual value */
xfprintf(fp, "%.*g %.*g\n", DBL_DIG, col->pval, DBL_DIG,
col->dval);
}
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xprintf("%d lines were written\n", 2 + lp->m + lp->n);
done: if (fp != NULL) glp_close(fp);
return ret;
}
/**********************************************************************/
int glp_print_mip(glp_prob *P, const char *fname)
{ /* write MIP solution in printable format */
glp_file *fp;
GLPROW *row;
GLPCOL *col;
int i, j, t, ae_ind, re_ind, ret;
double ae_max, re_max;
xprintf("Writing MIP solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xfprintf(fp, "%-12s%s\n", "Problem:",
P->name == NULL ? "" : P->name);
xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
xfprintf(fp, "%-12s%d (%d integer, %d binary)\n", "Columns:",
P->n, glp_get_num_int(P), glp_get_num_bin(P));
xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
t = glp_mip_status(P);
xfprintf(fp, "%-12s%s\n", "Status:",
t == GLP_OPT ? "INTEGER OPTIMAL" :
t == GLP_FEAS ? "INTEGER NON-OPTIMAL" :
t == GLP_NOFEAS ? "INTEGER EMPTY" :
t == GLP_UNDEF ? "INTEGER UNDEFINED" : "???");
xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
P->obj == NULL ? "" : P->obj,
P->obj == NULL ? "" : " = ", P->mip_obj,
P->dir == GLP_MIN ? "MINimum" :
P->dir == GLP_MAX ? "MAXimum" : "???");
xfprintf(fp, "\n");
xfprintf(fp, " No. Row name Activity Lower bound "
" Upper bound\n");
xfprintf(fp, "------ ------------ ------------- ------------- "
"-------------\n");
for (i = 1; i <= P->m; i++)
{ row = P->row[i];
xfprintf(fp, "%6d ", i);
if (row->name == NULL || strlen(row->name) <= 12)
xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
else
xfprintf(fp, "%s\n%20s", row->name, "");
xfprintf(fp, "%3s", "");
xfprintf(fp, "%13.6g ",
fabs(row->mipx) <= 1e-9 ? 0.0 : row->mipx);
if (row->type == GLP_LO || row->type == GLP_DB ||
row->type == GLP_FX)
xfprintf(fp, "%13.6g ", row->lb);
else
xfprintf(fp, "%13s ", "");
if (row->type == GLP_UP || row->type == GLP_DB)
xfprintf(fp, "%13.6g ", row->ub);
else
xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, " No. Column name Activity Lower bound "
" Upper bound\n");
xfprintf(fp, "------ ------------ ------------- ------------- "
"-------------\n");
for (j = 1; j <= P->n; j++)
{ col = P->col[j];
xfprintf(fp, "%6d ", j);
if (col->name == NULL || strlen(col->name) <= 12)
xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
else
xfprintf(fp, "%s\n%20s", col->name, "");
xfprintf(fp, "%s ",
col->kind == GLP_CV ? " " :
col->kind == GLP_IV ? "*" : "?");
xfprintf(fp, "%13.6g ",
fabs(col->mipx) <= 1e-9 ? 0.0 : col->mipx);
if (col->type == GLP_LO || col->type == GLP_DB ||
col->type == GLP_FX)
xfprintf(fp, "%13.6g ", col->lb);
else
xfprintf(fp, "%13s ", "");
if (col->type == GLP_UP || col->type == GLP_DB)
xfprintf(fp, "%13.6g ", col->ub);
else
xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
xfprintf(fp, "\n");
}
xfprintf(fp, "\n");
xfprintf(fp, "Integer feasibility conditions:\n");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
ae_max, ae_ind);
xfprintf(fp, " max.rel.err = %.2e on row %d\n",
re_max, re_ind);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "SOLUTION IS WRONG");
xfprintf(fp, "\n");
glp_check_kkt(P, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
&re_ind);
xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
ae_max, ae_ind <= P->m ? "row" : "column",
ae_ind <= P->m ? ae_ind : ae_ind - P->m);
xfprintf(fp, " max.rel.err = %.2e on %s %d\n",
re_max, re_ind <= P->m ? "row" : "column",
re_ind <= P->m ? re_ind : re_ind - P->m);
xfprintf(fp, "%8s%s\n", "",
re_max <= 1e-9 ? "High quality" :
re_max <= 1e-6 ? "Medium quality" :
re_max <= 1e-3 ? "Low quality" : "SOLUTION IS INFEASIBLE");
xfprintf(fp, "\n");
xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
ret = 0;
done: if (fp != NULL) glp_close(fp);
return ret;
}
/***********************************************************************
* NAME
*
* glp_read_mip - read MIP solution from text file
*
* SYNOPSIS
*
* int glp_read_mip(glp_prob *mip, const char *fname);
*
* DESCRIPTION
*
* The routine glp_read_mip reads MIP solution from a text file whose
* name is specified by the parameter fname into the problem object.
*
* For the file format see description of the routine glp_write_mip.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero. */
int glp_read_mip(glp_prob *mip, const char *fname)
{ glp_data *data;
jmp_buf jump;
int i, j, k, ret = 0;
xprintf("Reading MIP solution from `%s'...\n", fname);
data = glp_sdf_open_file(fname);
if (data == NULL)
{ ret = 1;
goto done;
}
if (setjmp(jump))
{ ret = 1;
goto done;
}
glp_sdf_set_jump(data, jump);
/* number of rows, number of columns */
k = glp_sdf_read_int(data);
if (k != mip->m)
glp_sdf_error(data, "wrong number of rows\n");
k = glp_sdf_read_int(data);
if (k != mip->n)
glp_sdf_error(data, "wrong number of columns\n");
/* solution status, objective value */
k = glp_sdf_read_int(data);
if (!(k == GLP_UNDEF || k == GLP_OPT || k == GLP_FEAS ||
k == GLP_NOFEAS))
glp_sdf_error(data, "invalid solution status\n");
mip->mip_stat = k;
mip->mip_obj = glp_sdf_read_num(data);
/* rows (auxiliary variables) */
for (i = 1; i <= mip->m; i++)
{ GLPROW *row = mip->row[i];
row->mipx = glp_sdf_read_num(data);
}
/* columns (structural variables) */
for (j = 1; j <= mip->n; j++)
{ GLPCOL *col = mip->col[j];
col->mipx = glp_sdf_read_num(data);
if (col->kind == GLP_IV && col->mipx != floor(col->mipx))
glp_sdf_error(data, "non-integer column value");
}
xprintf("%d lines were read\n", glp_sdf_line(data));
done: if (ret) mip->mip_stat = GLP_UNDEF;
if (data != NULL) glp_sdf_close_file(data);
return ret;
}
/***********************************************************************
* NAME
*
* glp_write_mip - write MIP solution to text file
*
* SYNOPSIS
*
* int glp_write_mip(glp_prob *mip, const char *fname);
*
* DESCRIPTION
*
* The routine glp_write_mip writes the current MIP solution to a text
* file whose name is specified by the parameter fname. This file can
* be read back with the routine glp_read_mip.
*
* RETURNS
*
* On success the routine returns zero, otherwise non-zero.
*
* FILE FORMAT
*
* The file created by the routine glp_write_sol is a plain text file,
* which contains the following information:
*
* m n
* stat obj_val
* r_val[1]
* . . .
* r_val[m]
* c_val[1]
* . . .
* c_val[n]
*
* where:
* m is the number of rows (auxiliary variables);
* n is the number of columns (structural variables);
* stat is the solution status (GLP_UNDEF = 1, GLP_FEAS = 2,
* GLP_NOFEAS = 4, or GLP_OPT = 5);
* obj_val is the objective value;
* r_val[i], i = 1,...,m, is the value of i-th row;
* c_val[j], j = 1,...,n, is the value of j-th column. */
int glp_write_mip(glp_prob *mip, const char *fname)
{ glp_file *fp;
int i, j, ret = 0;
xprintf("Writing MIP solution to `%s'...\n", fname);
fp = glp_open(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
/* number of rows, number of columns */
xfprintf(fp, "%d %d\n", mip->m, mip->n);
/* solution status, objective value */
xfprintf(fp, "%d %.*g\n", mip->mip_stat, DBL_DIG, mip->mip_obj);
/* rows (auxiliary variables) */
for (i = 1; i <= mip->m; i++)
xfprintf(fp, "%.*g\n", DBL_DIG, mip->row[i]->mipx);
/* columns (structural variables) */
for (j = 1; j <= mip->n; j++)
xfprintf(fp, "%.*g\n", DBL_DIG, mip->col[j]->mipx);
#if 0 /* FIXME */
xfflush(fp);
#endif
if (glp_ioerr(fp))
{ xprintf("Write error on `%s' - %s\n", fname, get_err_msg());
ret = 1;
goto done;
}
xprintf("%d lines were written\n", 2 + mip->m + mip->n);
done: if (fp != NULL) glp_close(fp);
return ret;
}
/* eof */