You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							737 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							737 lines
						
					
					
						
							26 KiB
						
					
					
				
								namespace Eigen {
							 | 
						|
								
							 | 
						|
								/** \page QuickRefPage Quick reference guide
							 | 
						|
								
							 | 
						|
								\b Table \b of \b contents
							 | 
						|
								  - \ref QuickRef_Headers
							 | 
						|
								  - \ref QuickRef_Types
							 | 
						|
								  - \ref QuickRef_Map
							 | 
						|
								  - \ref QuickRef_ArithmeticOperators
							 | 
						|
								  - \ref QuickRef_Coeffwise
							 | 
						|
								  - \ref QuickRef_Reductions
							 | 
						|
								  - \ref QuickRef_Blocks
							 | 
						|
								  - \ref QuickRef_Misc
							 | 
						|
								  - \ref QuickRef_DiagTriSymm
							 | 
						|
								\n
							 | 
						|
								
							 | 
						|
								<hr>
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>
							 | 
						|
								\section QuickRef_Headers Modules and Header files
							 | 
						|
								
							 | 
						|
								The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
							 | 
						|
								<tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
							 | 
						|
								<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
							 | 
						|
								<tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
							 | 
						|
								<tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
							 | 
						|
								<tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
							 | 
						|
								<tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr>
							 | 
						|
								<tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
							 | 
						|
								<tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
							 | 
						|
								<tr class="alt"><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr>
							 | 
						|
								<tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
							 | 
						|
								<tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>
							 | 
						|
								\section QuickRef_Types Array, matrix and vector types
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
							 | 
						|
								\code
							 | 
						|
								typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
							 | 
						|
								typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
							 | 
						|
								\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
							 | 
						|
								\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
							 | 
						|
								
							 | 
						|
								All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
							 | 
						|
								\code
							 | 
						|
								Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation)
							 | 
						|
								Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation)
							 | 
						|
								Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation)
							 | 
						|
								Matrix<double, 13, 3>                       // Fully fixed (static allocation)
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
							 | 
						|
								<table class="example">
							 | 
						|
								<tr><th>Matrices</th><th>Arrays</th></tr>
							 | 
						|
								<tr><td>\code
							 | 
						|
								Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf
							 | 
						|
								Matrix<double,Dynamic,1>        <=>   VectorXd
							 | 
						|
								Matrix<int,1,Dynamic>           <=>   RowVectorXi
							 | 
						|
								Matrix<float,3,3>               <=>   Matrix3f
							 | 
						|
								Matrix<float,4,1>               <=>   Vector4f
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								Array<float,Dynamic,Dynamic>    <=>   ArrayXXf
							 | 
						|
								Array<double,Dynamic,1>         <=>   ArrayXd
							 | 
						|
								Array<int,1,Dynamic>            <=>   RowArrayXi
							 | 
						|
								Array<float,3,3>                <=>   Array33f
							 | 
						|
								Array<float,4,1>                <=>   Array4f
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								Conversion between the matrix and array worlds:
							 | 
						|
								\code
							 | 
						|
								Array44f a1, a1;
							 | 
						|
								Matrix4f m1, m2;
							 | 
						|
								m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix.
							 | 
						|
								a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array.
							 | 
						|
								a2 = a1 + m1.array();             // mixing array and matrix is forbidden
							 | 
						|
								m2 = a1.matrix() + m1;            // and explicit conversion is required.
							 | 
						|
								ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients
							 | 
						|
								MatrixWrapper<Array44f> a1m(a1);
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
							 | 
						|
								\li <a name="matrixonly"><a/>\matrixworld linear algebra matrix and vector only
							 | 
						|
								\li <a name="arrayonly"><a/>\arrayworld array objects only
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_Basics Basic matrix manipulation
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
							 | 
						|
								<tr><td>Constructors</td>
							 | 
						|
								<td>\code
							 | 
						|
								Vector4d  v4;
							 | 
						|
								Vector2f  v1(x, y);
							 | 
						|
								Array3i   v2(x, y, z);
							 | 
						|
								Vector4d  v3(x, y, z, w);
							 | 
						|
								
							 | 
						|
								VectorXf  v5; // empty object
							 | 
						|
								ArrayXf   v6(size);
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								Matrix4f  m1;
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								MatrixXf  m5; // empty object
							 | 
						|
								MatrixXf  m6(nb_rows, nb_columns);
							 | 
						|
								\endcode</td><td class="note">
							 | 
						|
								By default, the coefficients \n are left uninitialized</td></tr>
							 | 
						|
								<tr class="alt"><td>Comma initializer</td>
							 | 
						|
								<td>\code
							 | 
						|
								Vector3f  v1;     v1 << x, y, z;
							 | 
						|
								ArrayXf   v2(4);  v2 << 1, 2, 3, 4;
							 | 
						|
								
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								Matrix3f  m1;   m1 << 1, 2, 3,
							 | 
						|
								                      4, 5, 6,
							 | 
						|
								                      7, 8, 9;
							 | 
						|
								\endcode</td><td></td></tr>
							 | 
						|
								
							 | 
						|
								<tr><td>Comma initializer (bis)</td>
							 | 
						|
								<td colspan="2">
							 | 
						|
								\include Tutorial_commainit_02.cpp
							 | 
						|
								</td>
							 | 
						|
								<td>
							 | 
						|
								output:
							 | 
						|
								\verbinclude Tutorial_commainit_02.out
							 | 
						|
								</td>
							 | 
						|
								</tr>
							 | 
						|
								
							 | 
						|
								<tr class="alt"><td>Runtime info</td>
							 | 
						|
								<td>\code
							 | 
						|
								vector.size();
							 | 
						|
								
							 | 
						|
								vector.innerStride();
							 | 
						|
								vector.data();
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								matrix.rows();          matrix.cols();
							 | 
						|
								matrix.innerSize();     matrix.outerSize();
							 | 
						|
								matrix.innerStride();   matrix.outerStride();
							 | 
						|
								matrix.data();
							 | 
						|
								\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
							 | 
						|
								<tr><td>Compile-time info</td>
							 | 
						|
								<td colspan="2">\code
							 | 
						|
								ObjectType::Scalar              ObjectType::RowsAtCompileTime
							 | 
						|
								ObjectType::RealScalar          ObjectType::ColsAtCompileTime
							 | 
						|
								ObjectType::Index               ObjectType::SizeAtCompileTime
							 | 
						|
								\endcode</td><td></td></tr>
							 | 
						|
								<tr class="alt"><td>Resizing</td>
							 | 
						|
								<td>\code
							 | 
						|
								vector.resize(size);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								vector.resizeLike(other_vector);
							 | 
						|
								vector.conservativeResize(size);
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								matrix.resize(nb_rows, nb_cols);
							 | 
						|
								matrix.resize(Eigen::NoChange, nb_cols);
							 | 
						|
								matrix.resize(nb_rows, Eigen::NoChange);
							 | 
						|
								matrix.resizeLike(other_matrix);
							 | 
						|
								matrix.conservativeResize(nb_rows, nb_cols);
							 | 
						|
								\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
							 | 
						|
								
							 | 
						|
								<tr><td>Coeff access with \n range checking</td>
							 | 
						|
								<td>\code
							 | 
						|
								vector(i)     vector.x()
							 | 
						|
								vector[i]     vector.y()
							 | 
						|
								              vector.z()
							 | 
						|
								              vector.w()
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								matrix(i,j)
							 | 
						|
								\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
							 | 
						|
								
							 | 
						|
								<tr class="alt"><td>Coeff access without \n range checking</td>
							 | 
						|
								<td>\code
							 | 
						|
								vector.coeff(i)
							 | 
						|
								vector.coeffRef(i)
							 | 
						|
								\endcode</td><td>\code
							 | 
						|
								matrix.coeff(i,j)
							 | 
						|
								matrix.coeffRef(i,j)
							 | 
						|
								\endcode</td><td></td></tr>
							 | 
						|
								
							 | 
						|
								<tr><td>Assignment/copy</td>
							 | 
						|
								<td colspan="2">\code
							 | 
						|
								object = expression;
							 | 
						|
								object_of_float = expression_of_double.cast<float>();
							 | 
						|
								\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
							 | 
						|
								
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_PredefMat Predefined Matrices
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr>
							 | 
						|
								  <th>Fixed-size matrix or vector</th>
							 | 
						|
								  <th>Dynamic-size matrix</th>
							 | 
						|
								  <th>Dynamic-size vector</th>
							 | 
						|
								</tr>
							 | 
						|
								<tr style="border-bottom-style: none;">
							 | 
						|
								  <td>
							 | 
						|
								\code
							 | 
						|
								typedef {Matrix3f|Array33f} FixedXD;
							 | 
						|
								FixedXD x;
							 | 
						|
								
							 | 
						|
								x = FixedXD::Zero();
							 | 
						|
								x = FixedXD::Ones();
							 | 
						|
								x = FixedXD::Constant(value);
							 | 
						|
								x = FixedXD::Random();
							 | 
						|
								x = FixedXD::LinSpaced(size, low, high);
							 | 
						|
								
							 | 
						|
								x.setZero();
							 | 
						|
								x.setOnes();
							 | 
						|
								x.setConstant(value);
							 | 
						|
								x.setRandom();
							 | 
						|
								x.setLinSpaced(size, low, high);
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								  <td>
							 | 
						|
								\code
							 | 
						|
								typedef {MatrixXf|ArrayXXf} Dynamic2D;
							 | 
						|
								Dynamic2D x;
							 | 
						|
								
							 | 
						|
								x = Dynamic2D::Zero(rows, cols);
							 | 
						|
								x = Dynamic2D::Ones(rows, cols);
							 | 
						|
								x = Dynamic2D::Constant(rows, cols, value);
							 | 
						|
								x = Dynamic2D::Random(rows, cols);
							 | 
						|
								N/A
							 | 
						|
								
							 | 
						|
								x.setZero(rows, cols);
							 | 
						|
								x.setOnes(rows, cols);
							 | 
						|
								x.setConstant(rows, cols, value);
							 | 
						|
								x.setRandom(rows, cols);
							 | 
						|
								N/A
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								  <td>
							 | 
						|
								\code
							 | 
						|
								typedef {VectorXf|ArrayXf} Dynamic1D;
							 | 
						|
								Dynamic1D x;
							 | 
						|
								
							 | 
						|
								x = Dynamic1D::Zero(size);
							 | 
						|
								x = Dynamic1D::Ones(size);
							 | 
						|
								x = Dynamic1D::Constant(size, value);
							 | 
						|
								x = Dynamic1D::Random(size);
							 | 
						|
								x = Dynamic1D::LinSpaced(size, low, high);
							 | 
						|
								
							 | 
						|
								x.setZero(size);
							 | 
						|
								x.setOnes(size);
							 | 
						|
								x.setConstant(size, value);
							 | 
						|
								x.setRandom(size);
							 | 
						|
								x.setLinSpaced(size, low, high);
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								</tr>
							 | 
						|
								
							 | 
						|
								<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
							 | 
						|
								<tr style="border-bottom-style: none;">
							 | 
						|
								  <td>
							 | 
						|
								\code
							 | 
						|
								x = FixedXD::Identity();
							 | 
						|
								x.setIdentity();
							 | 
						|
								
							 | 
						|
								Vector3f::UnitX() // 1 0 0
							 | 
						|
								Vector3f::UnitY() // 0 1 0
							 | 
						|
								Vector3f::UnitZ() // 0 0 1
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								  <td>
							 | 
						|
								\code
							 | 
						|
								x = Dynamic2D::Identity(rows, cols);
							 | 
						|
								x.setIdentity(rows, cols);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								N/A
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								  <td>\code
							 | 
						|
								N/A
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								VectorXf::Unit(size,i)
							 | 
						|
								VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
							 | 
						|
								                    == Vector4f::UnitY()
							 | 
						|
								\endcode
							 | 
						|
								  </td>
							 | 
						|
								</tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_Map Mapping external arrays
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr>
							 | 
						|
								<td>Contiguous \n memory</td>
							 | 
						|
								<td>\code
							 | 
						|
								float data[] = {1,2,3,4};
							 | 
						|
								Map<Vector3f> v1(data);       // uses v1 as a Vector3f object
							 | 
						|
								Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object
							 | 
						|
								Map<Array22f> m1(data);       // uses m1 as a Array22f object
							 | 
						|
								Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object
							 | 
						|
								\endcode</td>
							 | 
						|
								</tr>
							 | 
						|
								<tr>
							 | 
						|
								<td>Typical usage \n of strides</td>
							 | 
						|
								<td>\code
							 | 
						|
								float data[] = {1,2,3,4,5,6,7,8,9};
							 | 
						|
								Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5]
							 | 
						|
								Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7]
							 | 
						|
								Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7|
							 | 
						|
								Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8|
							 | 
						|
								\endcode</td>
							 | 
						|
								</tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>
							 | 
						|
								\section QuickRef_ArithmeticOperators Arithmetic Operators
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><td>
							 | 
						|
								add \n subtract</td><td>\code
							 | 
						|
								mat3 = mat1 + mat2;           mat3 += mat1;
							 | 
						|
								mat3 = mat1 - mat2;           mat3 -= mat1;\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr class="alt"><td>
							 | 
						|
								scalar product</td><td>\code
							 | 
						|
								mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1;
							 | 
						|
								mat3 = mat1 / s1;             mat3 /= s1;\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								matrix/vector \n products \matrixworld</td><td>\code
							 | 
						|
								col2 = mat1 * col1;
							 | 
						|
								row2 = row1 * mat1;           row1 *= mat1;
							 | 
						|
								mat3 = mat1 * mat2;           mat3 *= mat1; \endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr class="alt"><td>
							 | 
						|
								transposition \n adjoint \matrixworld</td><td>\code
							 | 
						|
								mat1 = mat2.transpose();      mat1.transposeInPlace();
							 | 
						|
								mat1 = mat2.adjoint();        mat1.adjointInPlace();
							 | 
						|
								\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								\link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code
							 | 
						|
								scalar = vec1.dot(vec2);
							 | 
						|
								scalar = col1.adjoint() * col2;
							 | 
						|
								scalar = (col1.adjoint() * col2).value();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr class="alt"><td>
							 | 
						|
								outer product \matrixworld</td><td>\code
							 | 
						|
								mat = col1 * col2.transpose();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								
							 | 
						|
								<tr><td>
							 | 
						|
								\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
							 | 
						|
								scalar = vec1.norm();         scalar = vec1.squaredNorm()
							 | 
						|
								vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode
							 | 
						|
								</td></tr>
							 | 
						|
								
							 | 
						|
								<tr class="alt"><td>
							 | 
						|
								\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
							 | 
						|
								#include <Eigen/Geometry>
							 | 
						|
								vec3 = vec1.cross(vec2);\endcode</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>
							 | 
						|
								\section QuickRef_Coeffwise Coefficient-wise \& Array operators
							 | 
						|
								Coefficient-wise operators for matrices and vectors:
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
							 | 
						|
								<tr><td>\code
							 | 
						|
								mat1.cwiseMin(mat2)
							 | 
						|
								mat1.cwiseMax(mat2)
							 | 
						|
								mat1.cwiseAbs2()
							 | 
						|
								mat1.cwiseAbs()
							 | 
						|
								mat1.cwiseSqrt()
							 | 
						|
								mat1.cwiseProduct(mat2)
							 | 
						|
								mat1.cwiseQuotient(mat2)\endcode
							 | 
						|
								</td><td>\code
							 | 
						|
								mat1.array().min(mat2.array())
							 | 
						|
								mat1.array().max(mat2.array())
							 | 
						|
								mat1.array().abs2()
							 | 
						|
								mat1.array().abs()
							 | 
						|
								mat1.array().sqrt()
							 | 
						|
								mat1.array() * mat2.array()
							 | 
						|
								mat1.array() / mat2.array()
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun:
							 | 
						|
								\code mat1.unaryExpr(std::ptr_fun(foo))\endcode
							 | 
						|
								
							 | 
						|
								Array operators:\arrayworld
							 | 
						|
								
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><td>Arithmetic operators</td><td>\code
							 | 
						|
								array1 * array2     array1 / array2     array1 *= array2    array1 /= array2
							 | 
						|
								array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								<tr><td>Comparisons</td><td>\code
							 | 
						|
								array1 < array2     array1 > array2     array1 < scalar     array1 > scalar
							 | 
						|
								array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar
							 | 
						|
								array1 == array2    array1 != array2    array1 == scalar    array1 != scalar
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								<tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code
							 | 
						|
								array1.min(array2)            
							 | 
						|
								array1.max(array2)            
							 | 
						|
								array1.abs2()
							 | 
						|
								array1.abs()                  std::abs(array1)
							 | 
						|
								array1.sqrt()                 std::sqrt(array1)
							 | 
						|
								array1.log()                  std::log(array1)
							 | 
						|
								array1.exp()                  std::exp(array1)
							 | 
						|
								array1.pow(exponent)          std::pow(array1,exponent)
							 | 
						|
								array1.square()
							 | 
						|
								array1.cube()
							 | 
						|
								array1.inverse()
							 | 
						|
								array1.sin()                  std::sin(array1)
							 | 
						|
								array1.cos()                  std::cos(array1)
							 | 
						|
								array1.tan()                  std::tan(array1)
							 | 
						|
								array1.asin()                 std::asin(array1)
							 | 
						|
								array1.acos()                 std::acos(array1)
							 | 
						|
								\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>
							 | 
						|
								\section QuickRef_Reductions Reductions
							 | 
						|
								
							 | 
						|
								Eigen provides several reduction methods such as:
							 | 
						|
								\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
							 | 
						|
								\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
							 | 
						|
								\link MatrixBase::trace() trace() \endlink \matrixworld,
							 | 
						|
								\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
							 | 
						|
								\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
							 | 
						|
								All reduction operations can be done matrix-wise,
							 | 
						|
								\link DenseBase::colwise() column-wise \endlink or
							 | 
						|
								\link DenseBase::rowwise() row-wise \endlink. Usage example:
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
							 | 
						|
								      5 3 1
							 | 
						|
								mat = 2 7 8
							 | 
						|
								      9 4 6 \endcode
							 | 
						|
								</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
							 | 
						|
								<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
							 | 
						|
								<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
							 | 
						|
								1
							 | 
						|
								2
							 | 
						|
								4
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								Special versions of \link DenseBase::minCoeff(Index*,Index*) minCoeff \endlink and \link DenseBase::maxCoeff(Index*,Index*) maxCoeff \endlink:
							 | 
						|
								\code
							 | 
						|
								int i, j;
							 | 
						|
								s = vector.minCoeff(&i);        // s == vector[i]
							 | 
						|
								s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j)
							 | 
						|
								\endcode
							 | 
						|
								Typical use cases of all() and any():
							 | 
						|
								\code
							 | 
						|
								if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ...
							 | 
						|
								if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
							 | 
						|
								
							 | 
						|
								Read-write access to a \link DenseBase::col(Index) column \endlink
							 | 
						|
								or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
							 | 
						|
								\code
							 | 
						|
								mat1.row(i) = mat2.col(j);
							 | 
						|
								mat1.col(j1).swap(mat1.col(j2));
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								Read-write access to sub-vectors:
							 | 
						|
								<table class="manual">
							 | 
						|
								<tr>
							 | 
						|
								<th>Default versions</th>
							 | 
						|
								<th>Optimized versions when the size \n is known at compile time</th></tr>
							 | 
						|
								<th></th>
							 | 
						|
								
							 | 
						|
								<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
							 | 
						|
								<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
							 | 
						|
								<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
							 | 
						|
								    <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
							 | 
						|
								<tr class="alt"><td colspan="3">
							 | 
						|
								
							 | 
						|
								Read-write access to sub-matrices:</td></tr>
							 | 
						|
								<tr>
							 | 
						|
								  <td>\code mat1.block(i,j,rows,cols)\endcode
							 | 
						|
								      \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
							 | 
						|
								  <td>\code mat1.block<rows,cols>(i,j)\endcode
							 | 
						|
								      \link DenseBase::block(Index,Index) (more) \endlink</td>
							 | 
						|
								  <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
							 | 
						|
								<tr><td>\code
							 | 
						|
								 mat1.topLeftCorner(rows,cols)
							 | 
						|
								 mat1.topRightCorner(rows,cols)
							 | 
						|
								 mat1.bottomLeftCorner(rows,cols)
							 | 
						|
								 mat1.bottomRightCorner(rows,cols)\endcode
							 | 
						|
								 <td>\code
							 | 
						|
								 mat1.topLeftCorner<rows,cols>()
							 | 
						|
								 mat1.topRightCorner<rows,cols>()
							 | 
						|
								 mat1.bottomLeftCorner<rows,cols>()
							 | 
						|
								 mat1.bottomRightCorner<rows,cols>()\endcode
							 | 
						|
								 <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
							 | 
						|
								 <tr><td>\code
							 | 
						|
								 mat1.topRows(rows)
							 | 
						|
								 mat1.bottomRows(rows)
							 | 
						|
								 mat1.leftCols(cols)
							 | 
						|
								 mat1.rightCols(cols)\endcode
							 | 
						|
								 <td>\code
							 | 
						|
								 mat1.topRows<rows>()
							 | 
						|
								 mat1.bottomRows<rows>()
							 | 
						|
								 mat1.leftCols<cols>()
							 | 
						|
								 mat1.rightCols<cols>()\endcode
							 | 
						|
								 <td>specialized versions of block() \n when the block fit two corners</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_Reverse Reverse
							 | 
						|
								Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
							 | 
						|
								\code
							 | 
						|
								vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse()
							 | 
						|
								vec.reverseInPlace()
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_Replicate Replicate
							 | 
						|
								Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
							 | 
						|
								\code
							 | 
						|
								vec.replicate(times)                                          vec.replicate<Times>
							 | 
						|
								mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>()
							 | 
						|
								mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
							 | 
						|
								mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
							 | 
						|
								(matrix world \matrixworld)
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_Diagonal Diagonal matrices
							 | 
						|
								
							 | 
						|
								<table class="example">
							 | 
						|
								<tr><th>Operation</th><th>Code</th></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
							 | 
						|
								mat1 = vec1.asDiagonal();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Declare a diagonal matrix</td><td>\code
							 | 
						|
								DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
							 | 
						|
								diag1.diagonal() = vector;\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
							 | 
						|
								 <td>\code
							 | 
						|
								vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal
							 | 
						|
								vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal
							 | 
						|
								vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal
							 | 
						|
								vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal
							 | 
						|
								vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal
							 | 
						|
								\endcode</td>
							 | 
						|
								</tr>
							 | 
						|
								
							 | 
						|
								<tr><td>Optimized products and inverse</td>
							 | 
						|
								 <td>\code
							 | 
						|
								mat3  = scalar * diag1 * mat1;
							 | 
						|
								mat3 += scalar * mat1 * vec1.asDiagonal();
							 | 
						|
								mat3 = vec1.asDiagonal().inverse() * mat1
							 | 
						|
								mat3 = mat1 * diag1.inverse()
							 | 
						|
								\endcode</td>
							 | 
						|
								</tr>
							 | 
						|
								
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_TriangularView Triangular views
							 | 
						|
								
							 | 
						|
								TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
							 | 
						|
								
							 | 
						|
								\note The .triangularView() template member function requires the \c template keyword if it is used on an
							 | 
						|
								object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
							 | 
						|
								
							 | 
						|
								<table class="example">
							 | 
						|
								<tr><th>Operation</th><th>Code</th></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Reference to a triangular with optional \n
							 | 
						|
								unit or null diagonal (read/write):
							 | 
						|
								</td><td>\code
							 | 
						|
								m.triangularView<Xxx>()
							 | 
						|
								\endcode \n
							 | 
						|
								\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
							 | 
						|
								</td><td>\code
							 | 
						|
								m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Conversion to a dense matrix setting the opposite triangular part to zero:
							 | 
						|
								</td><td>\code
							 | 
						|
								m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Products:
							 | 
						|
								</td><td>\code
							 | 
						|
								m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
							 | 
						|
								m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Solving linear equations:\n
							 | 
						|
								\f$ M_2 := L_1^{-1} M_2 \f$ \n
							 | 
						|
								\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
							 | 
						|
								\f$ M_4 := M_4 U_1^{-1} \f$
							 | 
						|
								</td><td>\n \code
							 | 
						|
								L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
							 | 
						|
								L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
							 | 
						|
								U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
							 | 
						|
								
							 | 
						|
								Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
							 | 
						|
								matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
							 | 
						|
								used to store other information.
							 | 
						|
								
							 | 
						|
								\note The .selfadjointView() template member function requires the \c template keyword if it is used on an
							 | 
						|
								object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
							 | 
						|
								
							 | 
						|
								<table class="example">
							 | 
						|
								<tr><th>Operation</th><th>Code</th></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Conversion to a dense matrix:
							 | 
						|
								</td><td>\code
							 | 
						|
								m2 = m.selfadjointView<Eigen::Lower>();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Product with another general matrix or vector:
							 | 
						|
								</td><td>\code
							 | 
						|
								m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
							 | 
						|
								m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Rank 1 and rank K update: \n
							 | 
						|
								\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
							 | 
						|
								\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
							 | 
						|
								</td><td>\n \code
							 | 
						|
								M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
							 | 
						|
								M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
							 | 
						|
								</td><td>\code
							 | 
						|
								M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
							 | 
						|
								\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
							 | 
						|
								</td><td>\code
							 | 
						|
								// via a standard Cholesky factorization
							 | 
						|
								m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
							 | 
						|
								// via a Cholesky factorization with pivoting
							 | 
						|
								m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
							 | 
						|
								\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								*/
							 | 
						|
								
							 | 
						|
								/*
							 | 
						|
								<table class="tutorial_code">
							 | 
						|
								<tr><td>
							 | 
						|
								\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
							 | 
						|
								mat1 = vec1.asDiagonal();\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>
							 | 
						|
								Declare a diagonal matrix</td><td>\code
							 | 
						|
								DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
							 | 
						|
								diag1.diagonal() = vector;\endcode
							 | 
						|
								</td></tr>
							 | 
						|
								<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
							 | 
						|
								 <td>\code
							 | 
						|
								vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal
							 | 
						|
								vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal
							 | 
						|
								vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal
							 | 
						|
								vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal
							 | 
						|
								vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal
							 | 
						|
								\endcode</td>
							 | 
						|
								</tr>
							 | 
						|
								
							 | 
						|
								<tr><td>View on a triangular part of a matrix (read/write)</td>
							 | 
						|
								 <td>\code
							 | 
						|
								mat2 = mat1.triangularView<Xxx>();
							 | 
						|
								// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
							 | 
						|
								mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								
							 | 
						|
								<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
							 | 
						|
								 <td>\code
							 | 
						|
								mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower
							 | 
						|
								mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only
							 | 
						|
								\endcode</td></tr>
							 | 
						|
								
							 | 
						|
								</table>
							 | 
						|
								
							 | 
						|
								Optimized products:
							 | 
						|
								\code
							 | 
						|
								mat3 += scalar * vec1.asDiagonal() * mat1
							 | 
						|
								mat3 += scalar * mat1 * vec1.asDiagonal()
							 | 
						|
								mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
							 | 
						|
								mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
							 | 
						|
								mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
							 | 
						|
								mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
							 | 
						|
								mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
							 | 
						|
								mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								Inverse products: (all are optimized)
							 | 
						|
								\code
							 | 
						|
								mat3 = vec1.asDiagonal().inverse() * mat1
							 | 
						|
								mat3 = mat1 * diag1.inverse()
							 | 
						|
								mat1.triangularView<Xxx>().solveInPlace(mat2)
							 | 
						|
								mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
							 | 
						|
								mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
							 | 
						|
								\endcode
							 | 
						|
								
							 | 
						|
								*/
							 | 
						|
								}
							 |